经化学方法将煤炭转换为气体、液体和固体产品或半产品,而后进一步加工成化工、能源产品的工业。
包括焦化、电石化学、煤气化等。随着世界石油资源不断减少,煤化工有着广阔的前景。
以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。
主要包括煤的气化 、液化 、干馏,以及焦油加工和电石乙炔化工等。
在煤化工可利用的生产技术中,炼焦是应用最早的工艺,并且至今仍然是化学工业的重要组成部分。
煤的气化在煤化工中占有重要地位,用于生产各种气体燃料,是洁净的能源,有利于提高人民生活水平和环境保护;煤气化生产的合成气是合成液体燃料等多种产品的原料。
煤直接液化,即煤高压加氢液化,可以生产人造石油和化学产品。在石油短缺时,煤的液化产品将替代目前的天然石油。
煤化工开始于18世纪后半叶,19世纪形成了完整的煤化工体系。进入20世纪,许多以农林产品为原料的有机化学品多改为以煤为原料生产,煤化工成为化学工业的重要组成部分。第二次世界大战以后,石油化工发展迅速,很多化学品的生产又从以煤为原料转移到以石油、天然气为原料,从而削弱了煤化工在化学工业中的地位。煤中有机质的化学结构,是以芳香族为主的稠环为单元核心,由桥键互相连接,并带有各种官能团的大分子结构,通过热加工和催化加工,可以使煤转化为各种燃料和化工产品。焦化是应用最早且至今仍然是最重要的方法,其主要目的是制取冶金用焦炭 ,同时副产煤气和苯、甲苯、二甲苯、萘等芳烃。煤气化在煤化工中也占有重要的地位,用于生产城市煤气及各种燃料气 ,也用于生产合成气 ;煤低温干馏、煤直接液化及煤间接液化等过程主要生产液体燃料。
煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。下面是我整理了煤化工生产技术论文,有兴趣的亲可以来阅读一下!
煤化工及甲醇生产技术探索
摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。
关键词:煤化工;甲醇;温度;化学反应;化学式
中图分类号:Q946文献标识码: A
1煤气化原理
在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:
吸收热量:C - H2O → C O + H2C + C O2→ 2C O
发散热量:C + O2→ C O2C +12O2→ C O
变换反应:C O + H2O → C O2+ H2
从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。
2变换工段
甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:
C O + H2O → C O2+ H2
这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:
2C O + 2H2→ C O2+ C H
2C O → C + C O2
C O + 3H2→ C H4+ H2O
C O + H2→ C + H2O
C O2+ 4H2→ C H4+ 2H2O
C O2+ 2H2→ C + 2H2O
化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。
3甲醇生产中的注意事项
1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2M Pa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2M Pa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2M Pa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。
2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。
4 甲醇生产工艺模拟
传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。
在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排
出。
需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。
精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。
参考文献:
[1] 韩雅楠. 煤制甲醇的研究进展与发展前景分析 [J]. 中国科技投资. 2013(17) :229.
[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J]. 中国石油和化工标准与质量 . 2013(10) :22.
[3] 陈倩,李士雨,李金来. 甲醇合成及精馏单元的能效优化[J]. 化学工程. 2012(10) :1-5.
[4] 金建德. 煤制甲醇工业装置工艺改造措施[J]. 天然气化工2011 36(3):67-69.
[5] 李雅静,张述伟,管凤宝等. 煤制甲醇过程低温甲醇洗流程的模拟与改造 [J]. 化工设计通讯. 2013(2) :15-18.
点击下页还有更多>>>煤化工生产技术论文
近年来,我国第一产煤大省山西不断探索“集团化、洁净化、多元化和现代化”的新型煤炭产业之路,山西煤炭出现的一些新变化,可以发现昔日的“黑色”产业正在“绿色”转型,科学发展已呈现许多新亮点。 煤炭开采:“粗放”走向现代化 “多、小、散、乱、差”曾经是山西煤矿的真实写照,而粗放型发展则是对山西煤炭产业的概括,与之相随的是产业集中度低、资源浪费严重等一系列问题。 2005年,山西在煤炭行业实施“三大战役”:即打击非法采矿、淘汰落后矿井,组建煤炭大集团。3年来,这个省累计关闭非法矿点5000余处,另有1656座小煤矿被整合、关闭或淘汰。目前,全省合法煤矿矿井数量已由三年前的4000多个减至2806个,除了国有重点煤矿,县营及以下矿井通过整合改造后平均单井规模已经达到了22万吨/年,而就在两年前这一规模仅为10万吨/年左右。 截至目前,山西省30万吨/年及以上煤矿已达到824座,产能占全省总产能的72%。全省已有107座地方煤矿实现了机械化开采,在建的机械化矿井达到207座。以往靠“人工放炮、骡子下井”的小煤矿,正在被一批上规模、上档次的新型大中型现代化矿井所替代,资源回收率也由前几年的不足20%,提高至目前的40%以上。 山西国有重点煤矿采煤机械化程度平均达到99.15%,掘进机械化程度平均超过50%,均高于全国水平。目前,全省累计建成高产高效煤矿37座,占到全国的五分之一,同煤塔山、平朔1、2号井,晋城寺河等千万吨级矿井装备已达到了国际先进水平。 整合做大:晋煤发展战略“关键词” 今年10月底,位于黄河东岸的河曲县沙坪煤矿一期240万吨建设项目开始联合试生产,这一现代化大矿的前身是9个地方和村办小煤矿,由神华集团和山西省煤炭运销集团合作将其整合。这些小煤矿开采方式落后、资源回收率不足30%,整合后的沙坪煤矿回收率将超过85%,大大节约了煤炭资源。 沙坪煤矿是山西省实施大集团战略、整合地方小煤矿的“缩影”。 阳煤集团先后联营兼并了晋中市的5个地方煤矿,山西焦煤集团收购兼并的煤矿项目已形成产能1220万吨/年,同煤集团目前已与12个地方煤矿签订收购、参股和托管等协议。 在大集团整合改造地方小煤矿的同时,各产煤市的整合重组步伐也在加快,年产2250万吨的太行无烟煤集团、年产1000万吨乡宁焦煤集团等一批产能超千万吨级的地方煤炭集团已经形成。 按照山西省煤炭发展规划,通过整合、淘汰,到2010年,全省煤矿个数将控制在2500个以内,形成2个上亿吨、3—5个5000万吨、年销售额几百亿元的煤炭大集团,控制全省产能的七成以上。 老矿“新景”:循环经济园区 从同煤集团,到焦煤集团,再到晋城煤业集团,一批以煤炭加工转化和循环利用为中心的园区正在山西南北拔地而起。过去一些传统意义上的单一采煤、输煤的“矿区”,如今成了立足煤炭、多元支撑、循环发展的“园区”。 近年来,山西省确立并实施了“立足煤、延伸煤、超越煤”的煤炭产业政策和调整措施,加快循环经济园区建设,由单一挖煤向煤、电、化、油、气等多种产业转变,全省煤炭产业多元化发展格局已初步形成。 全省煤炭行业“十一五”共规划建设222个项目,其中非煤项目81项,目前已建成了一批煤电铝、煤焦化、煤化工、煤建材等加工转化项目。 目前,全省共有14个煤炭循环经济园区在建,涉及167个项目。截至2007年8月,已建成56项,40个项目在建,完成投资近200亿元。“十一五”期间,园区内50个项目准备开工,21个拟规划建设。 山西煤炭洗选能力已突破3.5亿吨,建成电厂34座,总装机容量273.9万千瓦,合成氨和尿素年产能突破600万吨,煤矸石和粉煤灰制砖年产能突破10亿块,每年消耗矸石和粉煤灰近4000万吨,可节约矸石占地1000亩以上。 山西省煤炭工业局局长王守祯说:“随着煤炭循环经济园区内一批加工转化项目的建成投产,传统意义上的矿区变成了循环经济园区,形成了煤电、煤冶、煤化工等高附加值的产业链,这将成为全省煤炭新的增长点。” “黑金”的新能源思路:煤制油与煤层气 近年来,富煤而“无油”的山西审慎论证、建设、实验煤制油项目,探索高油价背景下的新能源替代思路。在晋东南的潞安矿业和晋城煤业集团,两条煤制油的工业化装置正在建设,蕴藏丰富、处处可见的“黑金”——煤炭,有望在明年“出油”。 经国家批准,山西省煤炭企业正在建设的煤变油项目有2个:潞安矿业集团16万吨/年煤基合成油示范项目,已完成投资近4亿元,将在2008年8月“出油”,随后将建设一期300万吨/年的工厂,最终达到520万吨油当量规模;晋城煤业集团利用高硫、高灰的劣质煤为原料,正在建设“高硫煤洁净化利用10万吨/年合成油示范工程”,预计2008年底竣工投产,在此基础上筹建300万吨/年的煤制油项目。 令人谈之色变的矿井“杀手”-瓦斯(煤层气),经过有效开发利用,正在成为一种洁净、高效能源。目前,煤层气开发利用规模最大的晋城煤业集团,累计建成700多口地面煤层气抽采井,形成了2亿立方米/年以上的产气规模。晋城市2000多辆出租车和公交车已改装成为可燃用压缩煤层气的双燃料汽车,当前气价比汽油便宜了一半以上,深受汽车用户欢迎。清洁高效的煤层气在为当地矿区和城区5、6万用户提供燃气的同时,还成为工厂燃料的替代品。 由香港中华煤气与晋城煤业集团合作的煤层气液化项目正在建设,经液化后的煤层气经公路运输至江浙等地区,将成为天然气的补充。到2008年,项目将形成日液化125万立方米煤层气的产能,成为全国最大的煤层气液化基地。 根据规划,到“十一五”末,山西煤层气(瓦斯)开采规模达到50亿立方米,包括地面抽采35亿立方米、井下抽采15亿立方米。煤层气(瓦斯)将以发电为主,并向化工、民用、车用等多方拓展,使之成为全省能源供应的有力补充。