您当前的位置:首页 > 发表论文>论文发表

鸡兔同笼学位论文

2023-03-07 00:10 来源:学术参考网 作者:未知

鸡兔同笼学位论文

鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。

教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。

2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。

3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:用假设法解决“鸡兔同笼”问题。

教学具准备:电脑课件

一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)

“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”

二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)

1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。

2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。

同样方法演示全是5元的,再拿二元去替换也可以。

3.抽象算法(形成策略):

(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。

三、类化巩固(自主练习)。

①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”

先由学生小组讨论,在抽生上台展示算法:

假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。

同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。

②自己出题,交换答案.

展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?

展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)

四、归纳提高:

解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).

五、知识拓展。

其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。

“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”

六、 解决生活问题(达标测试):

1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。

②小明买了6角和8角的邮票共花5元,分别买了多少张?

2.选作题:

①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?

②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?

反思

《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。

首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。

在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。

在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。

本堂课我力求做到了三动:身动、心动、神动.

随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。

在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。

“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。

一、 《孙子算经》中的“雉兔同笼”

“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)

其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:

第一步:上置三十五头,下置九十四足

我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)

古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。

如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。

第二步:半其足得四十七

意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。

图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。

第三步:上三除下三,上五除下五

这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)

用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)

第四步:下有一除上一,下有二除上二即得

与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)

以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。

二、 《算法统宗》中的“鸡兔同笼”

“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)

其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:

第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。

第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。

第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。

第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。

第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。

第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。

另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。

《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:

(94-35×2)÷2=12(只)

第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:

(35×4-94)÷2=23(只)

这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。

《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”

【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。

【关键词】鸡兔同笼;解题思路;求解方法;数学思想

鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。

解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡

方程:

解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23

答:兔有12只,鸡有23只。

我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解

对于这个问题,我们给出如下几种求解方法,并给出相应的公式;

解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数

解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数

解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数

解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数

解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数

解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数

解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数

“鸡兔同笼”中的数学思想方法

一、化归思想

化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。

二、假设思想

假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。

用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。

三、方程思想

方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。

四、建模思想

弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。

以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。

参考文献:

鸡兔同笼数学小论文怎么写

这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。

这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。

我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。

这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。

数学论文小学四年级关于鸡兔同笼与假设法的

例题:

有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和
兔?

1)假设全是鸡,则应该有脚: 2×35=70(只)

因为把有4只脚的兔当成了鸡,所以比总脚数会少一些

比总脚数少的脚数: 94-70=24 (只)

少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)

有一只兔,就少算了1个2,2只兔少算了2个2……

24里共有几个2,就是兔的只数: 24÷2=12(只)

剩下的就是鸡的只数: 35-12=23(只)

2)假设全是兔,则应该有脚: 4×35=140(只)

因为把有2只脚的鸡当成了兔,所以比总脚数会多一些

比总脚数多的脚数: 140-94=46(只)

多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)

有一只鸡,就多算了1个2,2只鸡多算了2个2……

24里共有几个2,就是鸡的只数: 46÷2=23(只)

剩下的就是兔的只数: 35-23=12(只)

补充题:

班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总

共栽树120棵,问几名男生,几名女生?

数学故事

今天中午,我正在做数学暑假作业。写着写着,不幸遇到了一道很难的题,我想了半天也没想出个所以然,这道题是这样的:
有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。
我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽、高,而它一点也没有提示。这可怎么入手啊!
正当我急得抓耳挠腮之际,我妈妈的一个同事来了。他先教我用方程的思路去解,可是我对方程这种方法还不是很熟悉。于是,他又教我另一种方法:先列出数,再逐一排除。我们先按题目要求列出了许多数字,如:3、5、7、11等一类的质数,接着我们开始排除,然后我们发现只剩下11和19这两个数字。这时,我想:这两个数中有一个是题中长方体正面,上面公用的棱长;一个则是长方体正面,上面除以上一条外另一条棱长(且长度都为质数)之和。于是,我开始分辩这两个数各是哪个数。
最后,我得到了结果,为374立方厘米。我的算式是:209=11×19 19=2+17 11×2×17=374(立方厘米)
后来,我又用我本学期学过的知识:分解质因数验算了这道题,结果一模一样。
解出这道题后,我心里比谁都高兴。我还明白了一个道理:数学充满了奥秘,等待着我们去探求。

周毓麟的个人履历

1923年2月,周毓麟出生在一个职员家庭里。他父亲周世铭是钱庄职员,母亲王梅荣是知书识字的家庭妇女,他从小受到父母亲很深的影响。母亲操持家务,养育子女,吃苦耐劳,勤俭朴实,经常教育小毓麟为人要正直诚实,要严于律己,宽于待人。母亲的言教和躬行铭刻在他的心上,成为他一生的做人之道。他父亲在钱庄终日与算盘、数字打交道,闲暇时与家人在一起,总爱出一些有趣的算术题考考儿女们。有一次父亲出了一道两个个位数相加的题,让才两岁多的小毓麟回答,因为得数要进位,小毓麟把一双小手的指头掰了又掰,总觉得十个指头不够用,着急地叫起来:“谁借我几个指头?”引得一阵哄堂大笑。就是在这种寓教于乐的气氛中,小毓麟开始与数学打交道,从小对数学产生了浓厚的兴趣。在小学,他迷上了鸡兔同笼之类的算术难题,到中学他又迷上了平面几何。越是难证明的几何难题越让他着迷,常常为寻求多种证法而冥思苦索,每当找到一种新的证法,他都获得一种探索成功的快乐。就是凭着这股执著的劲头,只是一名中学生的他竟然发现了平面几何中的连环定理,并把其中最简单的情形写成文章,发表在《数学通报》上,第一次显露了他的数学才华。临近高中毕业时,周毓麟做好了报考数学专业的打算。他的一位好朋友劝他说:“研究数学作为业余爱好可以,作为职业是不可取的,将来只能坐冷板凳,当个穷教师。”可是周毓麟认准了数学是一门最基础的学科,几乎每一门自然科学都需要它,具有广阔的发展前景。1941年,周毓麟如愿以偿,考取了上海大同大学数学系。在大学四年里,他发愤苦读,不仅学完了数学系的全部课程,而且学完了物理系的全部课程,以优异的成绩毕业了。 1945年周毓麟大学毕业,正值抗日战争胜利之时,国民党当局忙于抢夺抗战胜利果实,“劫收”大员在上海滩演出了一出出闹剧。局势混乱,就业困难,周毓麟一跨出大学校门就面临着严峻的现实。后来经人介绍,他去了南京,在南京临时大学数理系补习班当助教。1946年五六月间,学校解散,周毓麟又回到了上海。今后的路怎么走?周毓麟陷入了沉思。他想去当时的中央研究院数学研究所读研究生,继续深造。打听的结果,数学所不招收研究生,但他意外地获悉著名数学家陈省身教授正在那里讲课,他可以去旁听,就是旁听也是机会难得呀,他立刻做出了决定。就这样,从1946年秋到那年年底,周毓麟一直在数学所旁听陈省身教授讲课。陈省身是国际知名的数学家,当时听他讲课的吴文俊、马良、张素诚、叶彦谦等人,后来也都成为有名的数学家。周毓麟每次听课都全神贯注,终于引起了陈省身的注意。一次,陈省身与周毓麟在楼道上相遇,他关心地问周毓麟:“我讲课你能听懂吗?”周毓麟回答说听得懂,陈省身又仔细询问了他在大学的学习情况。后来,陈省身竟然破格让这位旁听生留在数学所工作,在他的指导下从事拓朴学研究。周毓麟凭着自己不懈的追求和努力,终于走上了数学研究的道路,而且不久就做出了出色的成果,发表了多篇学术论文。 解放后,周毓麟先后调到清华大学数学系和北京大学数学力学系工作,这期间他一直从事拓朴学研究,他发表的拓朴学论文受到华罗庚、段学复等数学界前辈的称赞。1954年,周毓麟被选派到苏联留学,并选择自己完全陌生但国家急需的偏微分方程理论作为自己的专业。周毓麟到苏联后,在莫斯科大学数学力学系读研究生,他的导师是国际著名的女数学家奥列尼克。奥列尼克和他一起制订了详细的学习和考试计划。学习非常紧张,差不多两三个月就要学习和考试一门课程。奥列尼克是第一次带中国留学生,中国学生能否适应这样紧张的学习,她有些不放心。第一次考试前,她提前一周就来询问周毓麟的准备情况,结果考得很好。在另一次考试中,周毓麟被一道证明题难住了,思考很久,找不到解题的方法。后来,他突然灵机一动,想到了老本行,结果用拓朴学的原理证明了它。证法新颖独特,大大出乎主考老师的意料。渐渐地,奥列尼克和其他苏联老师都对这位刻苦勤奋而又很有才华的中国学生刮目相看了。而这位中国学生果然也身手不凡,先后写出了几篇高水平的学术论文,发表在苏联的一流学术刊物上。他在拟线性抛物型方程研究中取得优异成绩,由此获得了苏联物理数学副博士学位,他的学位论文也被评为优秀学术论文。他和导师奥列尼克合作发表的关于渗流方程的论文,被公认为具有开创性的经典型的工作。长期以来国际上在这方面的大量研究,都是沿着这篇论文的框架进行的,在三十多年后的今天它仍被数学家们不断引用。周毓麟为祖国填补了偏微分方程理论的空白,也为中国人争得了荣誉。 1960年,中苏关系恶化,苏联单方面撕毁协定,撤走了专家,中止了对中国的援助项目。刚刚起步的中国核武器研究也不得不停止了。为了国防建设的紧急需要,党中央决定,从全国各地调集科学家、工程技术人员,组建自己的核武器研究队伍。这时,周毓麟在北京大学任教,他也在被调集的科学家之列。系领导找他谈话,他二话没说,当天下午就到新单位——核工业部第九研究所报到。周毓麟又一次为了祖国的需要,在一个崭新的领域内开始了新的征程。为了保密的需要,周毓麟的名字从那时起突然在数学界消失了。在此后漫长的岁月里,他和其他参加核武器研制的科学家一样,默默无闻地为中国的核武器事业而辛勤工作。组织上派周毓麟主管流体力学和数值模拟的工作。他在紧张组建科研队伍之余,抓紧时间从头学习了有关理论,很快就使研究工作开展起来。他和别的科学家一起组织了核武器研制中关键性的“九次计算”。他提出了多种具有实际使用价值的数值模拟方法。他对研制用于核武器研究的电子计算机提出了一系列要求和理论分析。中国第一颗原子弹、第一颗氢弹研制成功,是一批科学家、工程技术人员自力更生、艰苦奋斗、群策群力的结果。周毓麟在其中做出了突出的贡献。他作为主要参加者之一获得自然科学奖一等奖和国家科技进步奖特等奖。 1978年,周毓麟当年的恩师、著名美籍数学家陈省身教授来中国讲学,在与中国数学家座谈时,谈到由于“文革”的耽误等因素,中国的偏微分方程理论研究与西方有较大差距,希望中国数学字以加强偏微分方程理论的研究为突破口,赶超世界先进水平,使中国在21世纪成为数学大国。老师的一席话使周毓麟心中思绪万千。他坚信中国人在偏微分方程研究中能跻身于世界先进行列,但这需要中国的数学家努力奋斗啊!自己是新中国学习偏微分方程理论的第一个留学生,在这方面为祖国作贡献责无旁贷!他决定第三次改变研究方向,重新开始自己搁置了将近20年的偏微分方程研究。这时候他虽然已步入老年,但为事业拼搏的精神丝毫不减当年。将近20年实际工作的经历为他打下了进一步发展的坚实基础。他重新开始了偏微分方程理论的研究。从1980年到1987年,他发表了50多篇高水平的学术论文。1982年在长春召开的DD3国际双微会议和1986年在天津召开的DD7国际双微会议上,周毓麟都作了最新学术研究的报告,引起与会各国数学家的极大兴趣。1987年,他的研究成果获得了国家自然科学奖三等奖。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页