怎样写科学小论文
一、什么是科学小论文
科学小论文实际上是同学们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以靠逻辑推理得出结论……
二、科学小论文的质量标准
1、科学性。
科学性是科学小论文有别于其他各类体裁文章的重要特点之一,是科学小论文的生命。它要求选题科学,研究的方法正确,论据确凿,论证合理且符合逻辑,文字简洁准确。
2、创造性。
小论文的选题、主要观点要有自己新的发现、独特的见解,而且对人们的生产生活等有一定的实际意义,同样的小论文没有参加过各级科学讨论会,也没有在各级报刊上发表过。
3、实践性。
论文选题必须是作者本人在科学探索活动中发现的;支持主要观点的论据必须是作者通过观察、考察、实验等研究手段亲自获得的,有实践依据;论文必须是作者本人撰写的。不能有凭空捏造、猜测、成人包办代替的迹象。
三、科学小论文的类型
(一)科学观察小论文
科学观察小论文,是指青少年对某事物或自然现象通过周密细致的观察,并对取得的材料和数据进行认真的分析、综合研究后得出结论,作出科学的解释和描述。
需要注意的是,科学观察小论文中研究的对象是客观存在的自然事物或现象,所观察的对象、过程和它产生的条件、各种现象,不能附加人为的任何条件或个人偏见。另外,观察是一项长期的、系统的、反复进行的活动,需要作者耐心、细致、锲而不舍的精神。
(二)科学实验小论文
科学实验小论文,有时也称实验报告,是青少年对研究的对象创设特定的条件,经过反复实验,对获取的材料和数据进行分析、综合得出结论而写出的文章。它着眼于对实验过程的客观叙述以及实验现象的科学解释。
(三)科学考察小论文
你想研究某一与人们生活息息相关的水域污染程度、某地的空气污染源,弄清某奇石奇山的演化过程、某范围动植物资源及分布情况等,你就得实地考察。通过调查、访问、实地勘探等考察方式为主要研究手段写出的小论文称为科学考察小论文。有时也称为科学考察报告、科学调查报告。
(四)科学说明小论文
科学说明小论文是指作者通过利用翔实可靠的资料对某一自然现象或自然事物进行解释和说明的一类小论文。一般来说,它并不直接采用观察、实验、考察等研究手段,而主要是从书刊资料、师长等地方获取丰富的第二手材料,并经过自己的综合分析、逻辑推理,用自己所理解的语言阐明某一观点。
特别提醒的是,写科学说明小论文是,千万不要提出一个问题后就赶忙查资料,再不加分析地原本照抄、作出解释,这样没有新意,没有新的见解的文章只能算是一般性科普文章,不能称为科学小论文,更不能培养自己研究问题的能力。
四、小论文的取材与分析
(一)取材
1、直接观察。就是用眼睛仔细去看,它是人们对自然现象在自然发生条件下进行考察的一种方法。
观察时要认真仔细,不放过任何细微末节。同时,观察时要做好详细记载,否则就不可能得到真实的第一手材料了。
2、动手实验。实验方法是人为地干预、控制所研究的对象,它比观察更利于发挥同学们的能动性去揭示隐藏的自然奥秘。
3、实地考察。包括调查、访问、实地勘探等方式。考察前,必须明确考察目的,准备好必需的工具、仪器、药品、生活用具等。考察过程中,一定要把时间、地点、过程及考察的结果随时随地详细地记录清楚,有时还要采回必要的标本、样品,将比较重要的现象拍照,这些都是很有用的第一手材料。
4、查阅资料。有些材料由于时间、空间或客观条件的限制,不可能亲自去观察、实验、考察,这就得查阅书刊或请教老师、家长等,这种间接地获取的材料叫第二手材料。有些问题是你的知识水平、能力和条件所不能解决的,而这个问题又是你的选题中必须解决的问题,你就得去查资料,把它弄清楚。
(二)分析
取得材料后,就要进行分析研究,从中选出可以作为论据的材料,还要根据论点进行去粗去精,去伪存真,按照科学的态度进行整理分析,并得出自己的论点和看法。
首先,应审核各种材料的真伪虚实,有些查阅到的材料是早已过时的观点,有些解释只适合某范围内,有些材料没有普遍性,有些材料在记录时有错误或本身就是自己虚构的,这样的材料应坚决不用。
其次,要注意材料的典型性,也就是选择的材料要能说明问题,不要多,而要精,与论点无关或关系不大的材料应舍弃。
第三,将选择的材料进行归类,研究他们之间的共同点与不同点,以及相互联系,然后概括得出结论即论点。论文论点是从对材料的分析、研究中产生的,不能先定论点,后找适合证明论点的材料.
五、科学小论文的撰写
对材料的整理分析完成后,就可以开始撰写了。写作虽没有固定的格式,但一般应按提出问题、作出假设、研究分析、得出结论的步骤进行。一般来说,科学小论文应包括以下几个部分。
标题标题是小论文的眼睛,好的标题确切简明,富有吸引力,能给读者以新鲜的感受和深刻的印象,起画龙点睛的作用。
开头的方式多种多样,依研究内容、自己喜欢的写作风格而定,但一般应开门见山地提出你讨论的问题,你是怎样想到要研究这个问题的。
正文:即分析问题、解决问题部分。它包括对提出问题作出假设、观察、实验、考察过程、发现的现象、判断、推理得出结论等,这是小论文的核心部分。
应注意的是:研究步骤要写得详略得当,实验过程、数据的来历、现象要写清楚,叙述时应有一定的顺序。数据材料要准确,可设计成能说明问题的表格、图解,必要时可附上拍摄的照片、采集的标本等,以增强说服力。获得的结论要有自己独特的见解,并且和论据保持一致性,论据要有严密的逻辑性。文字要简洁生动,层次清晰,条理分明。
结尾:小论文的结尾应写你得出的结论和对某一问题的建议。以得出结论做为结尾,同开头提出问题相呼应,收到良好效果。
小论文的初稿完成后,还要反复修改。看段落是否衔接自然,语言是否通顺准确等。改好后再让同学和老师帮助修改,逐步完善。最后参加各级小论文竞赛。
科学小论文范文
鱼会说话吗?
您相信鱼会说话吗?这是一个耐人寻味的事,我想知道鱼是否会说话?
我家买了两条小金鱼,一条是全黑的,黑的叫乐乐,因为它很快乐。一条红白相间的名字叫欣欣,因为它懂得欣赏,很好玩吧!他俩生活在鱼缸里,这个鱼缸可“非比寻常”。里面有山、花、树、贝壳、彩色石头……。很美吧!让我们一起来观察它!
9月23日凌晨五点左右,我正要去喂食,我看见这么一个现象,我把鱼食撒到鱼缸里,乐乐吃了一点就不吃了。
9月23 日傍晚5 点15分,我看见鱼缸里的贝壳反过来了,小欣欣看见了,好像以为它——这个小贝壳要死了,连忙游过去,用它的头去抵,抵了近三、四分钟,它就不抵了,它游到乐乐旁边,用自己的尾巴扫了扫乐乐,然后互相碰了一下头,乐乐和欣欣一起游过去,把那块贝壳一起弄回原样了,这一点证明了“团结力量大”。
通过两次的观察,让我知道了人类有人类的表达方式和交流语言,动物也有自己王国的表达方式和交流,这也告诉了我们,如果你不团结,那么你将一无所有,朋友之间的友谊真伟大。同时,我们也要多观察,多发现,但是不能因为你在动物身上作试验,就伤害小动物,因为动物是人类的朋友。
蚂蚁为什么不会迷路?
蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢?
带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。
我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。
过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。
通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。
知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方
“同学们,蛋壳都带来了吗?”老师问。“带来了!”我们异口同声地回答。
为了今天的科学课,老师让我们带蛋壳来。带蛋壳做什么呢?是做不倒翁吗?我们都很好奇。
“今天,我们要用这两个半截蛋壳做一个小实验。做之前,请大家先猜猜,我用这枝铅笔朝着蛋壳垂直往下刺,是口朝上的蛋壳先破呢,还是口朝下的蛋壳先破?”“当然是口朝下的先破!”大多数同学都抢着回答。“口朝上的先破!”同桌偏要和大家作对。老师微笑着说:“那好,下面我们就来做做实验,看谁的答案才是正确的。”
老师叫了一名同学上讲台,让他用铅笔对准自己手上口朝上的蛋壳。老师一声令下,同学手一放,铅笔刺到了蛋壳上,蛋壳没有破。老师又让他试了几次,铅笔第三次刺下的时候,终于刺破了蛋壳。接着,老师又让他用铅笔刺口朝下的蛋壳。“一下、两下、三下……”我们一起数着;但那半个蛋壳就像穿了盔甲一样,被刺了十几下还是不破。
“耶!我猜对了!”同桌高兴得手舞足蹈。虽然我们都不服气,但经过多次试验,我们发现,同样的两个半边蛋壳,用铅笔垂直去刺,的确是口朝上的比较容易破。老师告诉我们,这是因为口朝上的蛋壳受力比较集中,而口朝下的蛋壳受力分散,所以就比较坚固。难怪建筑工地里的工人叔叔们都戴着口朝下的安全帽,原来就是这个道理啊!
烟花易碎年华休,勿让青春流指尖。
——题记
我不知道星星还要黯淡多久才会再次发光,不想像哈雷彗星那样要等到60年才闪烁一次。也对,再美的星光也要努力去捕获。
那年暑假,我过完了那个百无聊赖的假期,跟过去的辛酸、欢乐、成功、苦楚。。。一一道别,我轻装上阵,终于,在我的“不甘”下,我走进了高中。那是一扇门,会指引我不断向前的门。门里,那个不一样的我,凝视着脚下,未知的路……
时光荏苒,白驹过隙。我已经走完了那个我并未真正融入的脚步里程。收获的没有太多。但是我成长了,却也变成熟了。有人说:长大的代价是纯真的融化,心灵的变化是年龄的增大。兴许,正是如此,年龄会不断的变老,但成熟总要经历一番才会有的……
念伊人,春情知为谁伤?孤灯老,残风横吹冬夜雨。残的到底是夜雨还是相思?
今天下雨了,深夜枯灯下,我仍未休息。握笔的手被屋中钻进的雨滴所颤动。环顾四周:我靠在低矮的桌子,四周全是一片“汪洋”。我正孤苦着,无助着,渴望着有一双光明的手将我解救出。逃离这片“海”。我决定做些什么去远离着潮湿,远离着逼仄的屋。
我撑开了我的伞,走在街上,就这样漫无目的的……
八九点的冬夜里,已经没有多少人了。有的无非是一些仓惶逃窜的人。他们在躲避着,逃离这令人讨厌的冷雨。街,是清的,冷的,凉的。就在这时,走过拐角处,身后却传来了几句温暖的话语:
“来,小心前面脚下的水洼。”
“来,朝我这边靠靠,别淋坏喽”
“头向下低低,把手放兜里,别冻坏了。”
“对了最近在学校里有没有好好学习?要争气。”
然而,对于这几句话,有的,也仅有:“哦——”。我决心看看,是谁在冬夜雨天里散发出如此温暖的光。
借着路灯那昏黄的光。我看到了一个纤瘦的中年妇女。一手拎着沉重的书包,而另一只手有不忘撑着一把已倾斜了不知多少的伞。我明白,这是一位把女儿捧在手心的母亲。望着她渐行渐远的背影,我的眼睛也在闪烁着。前面的水洼仍是一个接一个的迎来,越过的是爱的沟壑;伞外依旧是倾盆大雨,遮挡的是爱的倾角;她的肩膀还是那么潮湿,是因为爱,她不求回报,只为给孩子撑起那把温暖的伞。
心,已是泪雨滂沱……
我恍惚间明白,成长虽然有太多的艰辛。尽管会想过放弃,但是,在青春的历程里,只有不断的追求,才会开出最美的花!
人类是地球的主宰者吗
小的时候,老师拿着教科书,认真地告诉我们,人是猿变来的,人与动物的区别在于会制造和使用劳动工具。这种理念根深蒂固的统治了我们幼稚的思维。
在这个信息爆炸的时代,尽管大千世界奇闻异事层出不穷,我却对这些很少关心。但一次亲身经历几乎改变了我的世界观。
我喜欢大山,绵延的贺兰山峰,不夸张的说,从十几岁起到现在,几乎边布了我的足迹。小时候跟大人在上面打岩羊是为了 生活,采蘑菇,挖药材占据了我的假期。工作以后, 逛山的爱好无法改变了,30几岁以前,我的公休假相当一部分都给了它。背锅带粮,在上面一呆就是十来天(以后封山了,不能去了)。83年的9月,我们4人一行,准备充足,到棺材山(贺兰山主峰上的一个地方)去采蘑菇。9月的山上,在上要穿棉衣,夜晚满天的星辰仿佛就在头顶,比起城市那铅灰色的天空,这里可谓是人间仙境。这也许是喜欢大山的一个潜在原因。一个夜晚,我们坐在山头上闲聊,明亮的月光照的周围恍若白昼。突然有人喊到:快看,那是啥东西?顺他指的方向(与月亮在同一角度)我们看到一个比月亮还亮的物体拖着一道长尾巴由东向西缓慢运动。4—5分钟的样子,那条明亮的尾巴突然消失,那亮光同运动方向呈垂直角度向上急升,2-3秒的时间如同一棵明亮的小星星消失在月亮的方向。坐在那里,看着时常划过天空的流星,一个向上,一个向下,但那亮光向上的速度比流星的何止快多少倍啊!
那以后,我常打开的网页是“探索”,“天文图片”,飞碟之类的。
这颗蓝色的星球运行了几十亿年,难道就在二三百万年的时间有了古猿——智人——现代人?他们统治着地球吗?白垩纪到侏罗纪的时间跨度长达几亿年,庞大的恐龙家族为什么没有进化成智能生物呢?更何况,漫长的几十亿年里,我们现代人知道的又有多少呢?带着沉重的疑问,10几年来,我浏览了我力所能及的各种现象和理论相关的书籍,杂志。 我感到朦胧当中,有了些头绪,从鸟类家族到爬行的鳄鱼,我们可以看到恐龙的影子,体形的变异没有带来智力的升腾,古猿进化为智人,中间的必不可少的环节是什么呢?是劳动吗?是会制造工具吗?答案是否定的。动物世界里,我们看到,任何生物为了活命,它必须要不停的劳作。乌鸦会把铁丝搞弯去钩到瓶子里的食物,猩猩会把树枝的叶捋掉,添上唾液掏地下的白蚁。它们为了生存,不是同样在劳动和制造着工具吗?
人是怎么来的?俄罗斯有位科学家说:地球是外星人的动物实验厂。中国的道教信奉太上老君取天地之精产生了人。圣经里讲,上帝闲的无聊捏了个亚当,造了个夏娃,从此有了人类。
唉,人啊!你到底是咋来的?看来谁也说不清了。我只是越来越信,地球上活动着一种高级生命,我们人类在他们视野里,就如同我们看蚂蚁一般,渺小的了不得。人类又象是浮在水面的一群小鱼,真正的大鱼在海洋的深处。不管他们来自何方,但是,他们才是地球的主宰者。
1.中国古代在数的方面的贡献
算筹
根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为13--14cm,径粗0.2~0.3cm,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带。需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄。别看这些都是一根根不起眼的小棍子,在中国数学史上它们却是立有大功的。而它们的发明,也同样经历了一个漫长的历史发展过程。
在算筹计数法中,以纵横两种排列方式来表示单位数目的,其中1-5均分别以纵横方式排列相应数目的算筹来表示,6-9则以上面的算筹再加下面相应的算筹来表示。表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空。这种计数法遵循十进位制。
算筹的出现年代已经不可考,但据史料推测,算筹最晚出现在春秋晚期战国初年(公元前722年~公元前221年),一直到算盘发明推广之前都是中国最重要的计算工具。
算筹的发明就是在以上这些记数方法的历史发展中逐渐产生的。它最早出现在何时,现在已经不可查考了,但至迟到春秋战国;算筹的使用已经非常普遍了。前面说过,算筹是一根根同样长短和粗细的小棍子,那么怎样用这些小棍子来表示各种各样的数目呢?
那么为什么又要有纵式和横式两种不同的摆法呢?这就是因为十进位制的需要了。所谓十进位制,又称十进位值制,包含有两方面的含义。其一是"十进制",即每满十数进一个单位,十个一进为十,十个十进为百,十个百进为千……其二是"位值制,即每个数码所表示的数值,不仅取决于这个数码本身,而且取决于它在记数中所处的位置。如同样是一个数码"2",放在个位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我国商代的文字记数系统中,就已经有了十进位值制的荫芽,到了算筹记数和运算时,就更是标准的十进位值制了。
按照中国古代的筹算规则,算筹记数的表示方法为:个位用纵式,十位用横式,百位再用纵式,千位再用横式,万位再用纵式……这样从右到左,纵横相间,以此类推,就可以用算筹表示出任意大的自然数了。由于它位与位之间的纵横变换,且每一位都有固定的摆法,所以既不会混淆,也不会错位。毫无疑问,这样一种算筹记数法和现代通行的十进位制记数法是完全一致的。
中国古代十进位制的算筹记数法在世界数学史上是一个伟大的创造。把它与世界其他古老民族的记数法作一比较,其优越性是显而易见的。古罗马的数字系统没有位值制,只有七个基本符号,如要记稍大一点的数目就相当繁难。古美洲玛雅人虽然懂得位值制,但用的是20进位;古巴比伦人也知道位值制,但用的是60进位。20进位至少需要19个数码,60进位则需要59个数码,这就使记数和运算变得十分繁复,远不如只用9个数码便可表示任意自然数的十进位制来得简捷方便。中国古代数学之所以在计算方面取得许多卓越的成就,在一定程度上应该归功于这一符合十进位制的算筹记数法。马克思在他的《数学手稿》一书中称十进位记数法为"最妙的发明之一",确实是一点也不过分的。
二进制思想的开创国
著名的哲学家数学家莱布尼茨(1646-1716)发明了对现代计算机系统有着重要意义的二进制,不过他认为在此之前,中国的《易经》中已经提到了有关二进制的初步思想。当代的许多科学家认为易经中并不含有复杂的二进制思想,可是这本中国古籍中的一些基本思想和二进制在很大程度上仍然有着千丝万缕的联系。
元始的《灵宝经》里面把阴阳定义为阳是自冬至到夏至的上升的气,阴为从夏至到冬至下降的气,这是对地球周期运动的最简练认识。阴阳是一种物质认识,后来转化为思想方式,反者道之动等等,都是这种思想的表现。从而开创了对立统一的思想方式,实际上计算机的电子脉冲的思想是与之一致的,采样定律也是与之一致的。
《易经》是我国伏羲、周文王等当政者积累观天测算经验而成的关于天象气象和人变易的经典,从八卦到六十四卦,就是二进制三位到六位表达,上世纪八十年代还有四位计算机,可以说,周文王的六十四卦在表达能力上已经高于四位计算机。
十进制的使用
《卜辞》中记载说,商代的人们已经学会用一、二、三、四、五、六、七、八、九、十、百、千、万这13个单字记十万以内的任何数字,但是现在能够证实的当时最大的数字是三万。甲骨卜辞中还有奇数、偶数和倍数的概念。
十进位位值制记数法包括十进位和位值制两条原则,"十进"即满十进一;"位值"则是同一个数位在不同的位置上所表示的数值也就不同,如三位数"111",右边的"1"在个位上表示1个一,中间的"1"在十位上就表示1个十,左边的"1"在百位上则表示1个百。这样,就使极为困难的整数表示和演算变得如此简便易行,以至于人们往往忽略它对数学发展所起的关键作用。
我们有个成语叫"屈指可数",说明古代人数数确实是离不开手指的,而一般人的手指恰好有十个。因此十进制的使用似乎应该是极其自然的事。但实际情况并不尽然。在文明古国巴比伦使用的是60进位制(这一进位制到现在仍留有痕迹,如一分=60秒等)另外还有采用二十进位制的。古代埃及倒是很早就用10进位制,但他们却不知道位值制。所谓位值制就是一个数码表示什么数,要看它所在的位置而定。位值制是千百年来人类智慧的结晶。零是位值制记数法的精要所在。但它的出现却并非易事。我国是最早使用十进制记数法,且认识到进位制的国家。我们的口语或文字表达的数字也遵守这一原则,比如一百二十七。同时我们对0的认识最早。
十进制是中国人民的一项杰出创造,在世界数学史上有重要意义。著名的英国科学史学家李约瑟教授曾对中国商代记数法予以很高的评价,"如果没有这种十进制,就几乎不可能出现我们现在这个统一化的世界了",李约瑟说"总的说来,商代的数字系统比同一时代的古巴比伦和古埃及更为先进更为科学。"
分数和小数的最早运用
分数的应用
最初分数的出现,并非由除法而来。分数被看作一个整体的一部分。"分"在汉语中有"分开""分割"之意。后来运算过程中也出现了分数,它表示两整数比。分数的加减乘除运算我们小学就已完全掌握了。很简单,是不是?不过在七、八百年以前的欧洲,如果你有这种水平那么就可以说相当了不起了。那时精通自然数的四则运算就已达到了学者水平。至于分数,对当时人来说简直难于上青天。德国有句谚语形容一个人陷入绝境,就说:"掉到分数里去了"。为什么会如此呢?这都是笨拙的记数法导致的。在我国古代,《九章算术》中就有了系统的分数运算方法,这比欧洲大约早1400年。
西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。
从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、除分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的著作。
分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的著作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。
小数的最早使用
刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。到公元 1300年前后,元代刘瑾所著《律吕成书》中,已将106368.6312写成把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。
九九表的使用
作为启蒙教材,我们都背过九九乘法表:一一得一、一二得二……九九八十一。而古代是从"九九八十一"开始,因此称"九九表"。九九表的使用,对于完成乘法是大有帮助的。齐恒公纳贤的故事说明,到公元前7世纪时,九九歌诀已不希罕。也许有人认为这种成绩不值一提。但在古代埃及作乘法却要用倍乘的方式呢。举个例子。如算23×13,就需要从23开始,加倍得到23×2,23×4,23×8,然后注意到13=1+4+8,于是23+23×4+23×8加起来的结果就是23×13。从比较中不难看出使用九九表的优越性了。
根据考古专家在湖南张家界古人堤汉代遗址出土的简牍上发现的汉代"九九乘法表",竟与现今生活中使用的乘法口诀表有着惊人的一致。这枚记载有"九九乘法表"的简牍是木质的,大约有22厘米长,残损比较严重。此前在湘西里耶古城出土的一枚秦简上也发现了距今2200多年的乘法口诀表,并被考证为中国现今发现的最早的乘法口诀表实物。
除了里耶秦简外,与张家界古人堤遗址发现的这枚简牍样式基本一致的"九九乘法表"还曾在楼兰文书中见到过,那是写在两张残纸上的九九乘法表,为瑞典探险家斯文赫定在上个世纪初期发掘。
乘法表在古代并非中国一家独有,古巴比伦的泥版书上也有乘法表。但汉字(包括数目字)单音节发声的特点,使之读起来朗朗上口;后来发展起来的珠算口诀也承继了这一特点,对于运算速度的提高和算法的改进起到一定作用。
负数的使用
人们在解方程或其它数的运算过程中,往往要碰到从较小数减去较大数的情形,另外,还遇到了增加与减小,盈余与亏损等互为相反意义的量,这样,人们自然地引进了负数。
负数的引进,是中国古代数学家对数学的一个巨大贡献。在我国古代秦、汉时期的算经《九章算术》的第八章"方程"中,就自由地引入了负数,如负数出现在方程的系数和常数项中,把"卖(收入钱)"作为正,则"买(付出钱)"作为负,把"余钱"作为正,则"不足钱"作为负。在关于粮谷计算的问题中,是以益实(增加粮谷)为正,损实(减少粮谷)为负等,并且该书还指出:"两算得失相反,要以正负以名之"。当时是用算筹来进行计算的,所以在算筹中,相应地规定以红筹为正,黑筹为负;或将算筹直列作正,斜置作负。这样,遇到具有相反意义的量,就能用正负数明确地区别了。
在《九章算术》中,除了引进正负数的概念外,还完整地记载了正负数的运算法则,实际上是正负数加减法的运算法则,也就是书中解方程时用到的"正负术"即"同名相除,异名相益,正无入正之,负无入负之;其异名相除,同名相益,正无入正之,负无入负之。"这段话的前四句说的是正负数减法法则,后四句说的是正负数加法法则。它的意思是:同号两数相减,等于其绝对值相减;异号两数相减,等于其绝对值相加;零减正数得负数,零减负数得正数。异号两数相加,等于其绝对值相减;同号两数相加,等于其绝对值相加;零加正数得正数,零加负数得负数,当然,从现代数学观点看,古书中的文字叙述还不够严谨,但直到公元17世纪以前,这还是正负数加减运算最完整的叙述。
在国外,负数出现得很晚,直至公元1150年(比《九章算术》成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负数,并把负根统统舍去。有许多数学家由于把零看作"没有",他们不能理解比"没有"还要"少"的现象,因而认为负数是"荒谬的"。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。
从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。负数概念引进后,整数集和有理数集就完整地形成了。
圆周率的计算
圆周率是数学中最重要的常数之一。对它的计算,可以作为显示出一个国家古代数学发展的水平的尺度之一。而我国古代数学在这方面取得了令世人瞩目的成绩。
我国古代最初把圆周率取作3,这虽应用起来简便,但太不准确。在求准确圆周率值的征途中,首先迈出关键一步的是刘徽。他创立割圆术,用圆内接正多边形无限逼近圆而求取圆周率值。用这种方法他求得圆周率的近似值为3.14,也有人认为他得到了更好的结果:3.1416。青出于蓝,而胜于蓝。后继者祖冲之利用割圆术得出了正确的小数点后七位。而且他还给出了约率与密率。密率的发现是数学史上卓越的成就,保持了一千多年的世界纪录,是一项空前杰作。
2.阿拉伯数字并不是阿拉伯人最早发明的,而是最早起源于印度。据传早在公元七世纪时,阿拉伯人渐渐地征服了周围的其他民族,建立起一个东起印度,西到非洲北部及西班牙的萨拉森大帝国。到后来,这个大帝国又分裂成为东、西两个国家。由于两个国家的历代君主都注重文化艺术,所以两国的都城非常繁荣昌盛,其中东都巴格达更胜一筹。这样,西来的希腊文化,东来的印度文化,都汇集于此。阿拉伯人将两种文化理解并消化,形成了新的阿拉伯文化。
大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就好似在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。
到后来,人们虽然弄清了“阿拉伯数字”的来龙去脉,但有大家早已习惯了“阿拉伯数字”这个叫法,所以也就沿用下来了。
3.人类认识0早,还是认识1早。
1、2、3、4……9、0称为“阿拉伯数字”。其实,这些数字并不是阿拉伯人创造的,它们最早产生于古代的印度。大约在公元750年左右,有一位印度的天文学家拜访了巴格达王宫,把他随身带来的印度制作的天文表献给了当时的国王。印度数字1、2、3、4……以及印度式的计算方法,也就在这个时候介绍给了阿拉伯人。因为印度数字和计算方法简单而又方便,所以很快就被阿拉伯人所接受了,并且逐渐地传播到欧洲各个国家。在漫长的传播过程中,印度创造的数字就被称为“阿拉伯数字”了。 由此可以看出,他们是同时被创造的。
但我个人认为,人类是先认识1,因为初一的教科书上写着,负数是在人们的生产生活中产生的。人类应该是先发明了用1,2,3...数数,然后发现有东西没有了再用0表示,再发明了负数。
4.数学中的符号
+ - × ÷ ∧(表示乘方)√(开方)是有理数基本运算符号。 由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。
在中学数学中,常见的数学符号有以下六种:
一、数量符号 如,圆周率;a,x等。
二、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或-),比号(:)等。
三、关系符号如“=”是“等号”,读作“等于”;“≈”或“=”是“约等号”读作“约等于”;“≠”是“不等号”。读作“不等于”;“>”是“大于符号”,读作“大于”;“<”是“小干符号”,读作“小于”;“‖”是“平行符号”,读作“平行于”;“⊥”是“垂直符号”,读作“垂直于”等。
四、结合符号 如小括号( ),中括号[ ],大括号{ }。
五、性质符号 如正号(+)、负号(-),绝对值符号(||)。
六、简写符号 如三角形(△),圆(⊙),幂()等。
这些符号的产生,一是来源于象形,实际上是缩小的图形。如平行符号“‖”是两条平行的直线;垂直符号“⊥”是互相垂直的两条直线;三角形符号“△”是一个缩小了的三角形;符号“⊙”表示一个圆,中间的一点表示圆心,以免与数0及英文字母O混淆。二是来源于会意,即由图形就可以看出某种特殊的意义。如用两条长度相等的线段“=”并列在一起,表示等号;加一条斜线“≠”,表示不等号;用符号“>”表示大于(左侧大,右边小),“<”表示小于(左侧小,右边大),意思不难理解;用括号“( )”、“[ ]”、“{}”把若干个量结合在一起,也是不言而喻的。三是来源于文字的缩写。如我们以后将要学到的平方根号“”中的“√”,是从拉丁字母Radix(根值)的第一个字母r演变而来。相似符号“∽”是把拉丁字母S横过来写,而S是Sindlar(相似)的第一个字母。还有大量的符号是人们经过规定沿用下来的。当然这些符号并不是一开始就都是这种形状,而是有一个演变过程的,这里就不多讲了。数学符号的产生,为数学科学的发展提供了有利的条件。首先,提高了计算效率。古时候,由于缺少必要的数学符号,提出一个数学问题和解决这个问题的过程,只有用语言文字叙述,几乎象做一篇短文,难怪有人把它称为“文章数学”。这种表达形式很不方便,严重阻碍了数学科学的发展。当数量、图形之间的关系能够用适当的数学符号表达后,人们就可以在这个基础上,根据自己的需要,深入进行推理和计算,因而能更迅速地得到问题的解答或发现新的规律。其次,缩短了学习的时间。初等数学发展到今天,已有两千多年的历史,内容非常丰富,而其中主要的内容今天能够在小学和中学阶段学完,这里数学符号是起一定作用的。例如,我们的祖先开始只有1、2少数几个数字的概念,而今天幼儿园的小朋友就能掌握几十个这样的数。分析原因,除了古今生活条件不同,人们的见识差别极大以外,今天已有一套完整的记数符号,人们容易掌握。第三、推动了深入的研究。我们研究数学概念和规律,不仅需要简明、确切地表达它们,而对它们内部复杂的关系,需要深人地加以探讨,没有数学符号的帮助,进行这样的研究是十分困难的。
所以,数学符号的应用,是多快好省地研究数学科学的重要途径。我国宋朝著名科学家沈括曾经说过,数学方法应该“见繁即变,见简即用”。数学符号正是适应这种变“繁”为“简”的实际需要而产生的。
数学符号不仅随着数学发展的需要而产生,而且也随着数学的发展不断完善。比如,古代各民族都有自己的记数符号,但在长期使用过程中,印度——阿拉伯数码记数方法显示出更多的优点,因而其他的数码符号逐渐淘汰,国际上都采用了这种记数方法。