您当前的位置:首页 > 发表论文>论文发表

论文检测开源

2023-03-06 22:23 来源:学术参考网 作者:未知

论文检测开源

论文: EfficientDet: Scalable and Efficient Object Detection

目前目标检测领域,高精度的模型通常需要很大的参数量和计算量,而轻量级的网络则一般都会牺牲精度。因此,论文希望建立一个可伸缩的高精度且高性能的检测框架。论文基于one-stage的检测网络范式,进行了多种主干网络、特征融合和class/box预测的结构尝试,主要面临两个挑战:

FPN是目前最广泛的多尺度融合方法,最近也有PANet和NAS-FPN一类跨尺度特征融合方法。对于融合不同的特征,最初的方法都只是简单地直接相加,然而由于不同的特征是不同的分辨率,对融合输出特征的共享应该是不相等的。为了解决这一问题,论文提出简单但高效加权的bi-directional feature pyramid network(BiFPN),该方法使用可学习的权重来学习不同特征的重要性,同时反复地进行top-down和bottom-up的多尺度融合

论文认为除了缩放主干网络和输入图片的分辨率,特征网络(feature network)和box/class预测网络的缩放对准确率和性能也是很重要的。作者借鉴EfficientNet,提出针对检测网络的混合缩放方法(compound scaling method),同时对主干网络,特征网络和box/class预测网络的分辨率/深度/宽度进行缩放

最后,论文将EfficientNet作为主干,结合BiFPN和混合缩放,提出新的检测系列EfficientDet,精度高且轻量,COCO上的结果如图1,论文的贡献有以下3点:

定义多尺寸特征 ,论文的目标是找到变化函数 来高效融合不同的特征,输出新特征 。具体地,图2a展示了top-down FPN网络结构,一般FPN只有一层,这里应该为了对比写了repeat形式。FPN获取3-7层的输入 , 代表一个分辨率为 的特征层

top-down FPN操作如上所示, 为上采用或下采样来对齐分辨率, 通常是特征处理的卷积操作

top-down FPN受限于单向的信息流,为了解决这一问题,PANet(图2b)增加了额外的bottom-up路径的融合网络,NAS_FPN(图2c)使用神经架构搜索来获取更好的跨尺度特征网络的拓扑结构,但需要大量资源进行搜索。其中准确率最高的是PANet,但是其需要太多的参数和计算量,为了提高性能,论文对跨尺寸连接做了几点改进:

大多的特征融合方法都将输入特征平等对待,而论文观察到不同分辨率的输入对融合输出的特征的贡献应该是不同的。为了解决这一问题,论文提出在融合时对输入特征添加额外的权重预测,主要有以下方法:

, 是可学习的权重,可以是标量(per-feature),也可以是向量(per-channel),或者是多维tensor(per-pixel)。论文发现标量形式已经足够提高准确率,且不增加计算量,但是由于标量是无限制的,容易造成训练不稳定,因此,要对其进行归一化限制

,利用softmax来归一化所有的权重,但softmax操作会导致GPU性能的下降,后面会详细说明

,Relu保证 , 保证数值稳定。这样,归一化的权重也落在 ,由于没有softmax操作,效率更高,大约加速30%

BiFPN集合了双向跨尺寸的连接和快速归一化融合,level 6的融合操作如上, 为top-down路径的中间特征, 是bottom-up路径的输出特征,其它层的特征也是类似的构造方法。为了进一步提高效率,论文特征融合时采用depthwise spearable convolution,并在每个卷积后面添加batch normalization和activation

EfficientDet的结构如图3所示,基于one-stage检测器的范式,将ImageNet-pretrained的EfficientNet作为主干,BiFPN将主干的3-7层特征作为输入,然后重复进行top-down和bottom-up的双向特征融合,所有层共享class和box网络

之前检测算法的缩放都是针对单一维度的,从EfficientNet得到启发,论文提出检测网络的新混合缩放方法,该方法使用混合因子 来同时缩放主干网络的宽度和深度、BiFPN网络、class/box网络和分辨率。由于缩放的维度过多,EfficientNet使用的网格搜索效率太慢,论文改用heuristic-based的缩放方法来同时缩放网络的所有维度

EfficientDet重复使用EfficientNet的宽度和深度因子,EfficinetNet-B0至EfficientNet-B6

论文以指数形式来缩放BiFPN宽度 (#channels),而以线性形式增加深度 (#layers),因为深度需要限制在较小的数字

box/class预测网络的宽度固定与BiFPN的宽度一致,而用公式2线性增加深度(#layers)

因为BiFPN使用3-7层的特征,因此输入图片的分辨率必需能被 整除,所以使用公式3线性增加分辨率

结合公式1-3和不同的 ,论文提出EfficientDet-D0到EfficientDet-D6,具体参数如Table 1,EfficientDet-D7没有使用 ,而是在D6的基础上增大输入分辨率

模型训练使用momentum=0.9和weight decay=4e-5的SGD优化器,在初始的5%warm up阶段,学习率线性从0增加到0.008,之后使用余弦衰减规律(cosine decay rule)下降,每个卷积后面都添加Batch normalization,batch norm decay=0.997,epsilon=1e-4,梯度使用指数滑动平均,decay=0.9998,采用 和 的focal loss,bbox的长宽比为 ,32块GPU,batch size=128,D0-D4采用RetinaNet的预处理方法,D5-D7采用NAS-FPN的增强方法

Table 2展示了EfficientDet与其它算法的对比结果,EfficientDet准确率更高且性能更好。在低准确率区域,Efficient-D0跟YOLOv3的相同准确率但是只用了1/28的计算量。而与RetianaNet和Mask-RCNN对比,相同的准确率只使用了1/8参数和1/25的计算量。在高准确率区域,EfficientDet-D7达到了51.0mAP,比NAS-FPN少使用4x参数量和9.3x计算量,而anchor也仅使用3x3,非9x9

论文在实际的机器上对模型的推理速度进行了对比,结果如图4所示,EfficientDet在GPU和CPU上分别有3.2x和8.1x加速

论文对主干网络和BiFPN的具体贡献进行了实验对比,结果表明主干网络和BiFPN都是很重要的。这里要注意的是,第一个模型应该是RetinaNet-R50(640),第二和第三个模型应该是896输入,所以准确率的提升有一部分是这个原因。另外使用BiFPN后模型精简了很多,主要得益于channel的降低,FPN的channel都是256和512的,而BiFPN只使用160维,这里应该没有repeat

Table 4展示了Figure 2中同一网络使用不同跨尺寸连接的准确率和复杂度,BiFPN在准确率和复杂度上都是相当不错的

Table 5展示了不同model size下两种加权方法的对比,在精度损失不大的情况下,论文提出的fast normalized fusion能提升26%-31%的速度

figure 5展示了两种方法在训练时的权重变化过程,fast normalizaed fusion的变化过程与softmax方法十分相似。另外,可以看到权重的变化十分快速,这证明不同的特征的确贡献是不同的,

论文对比了混合缩放方法与其它方法,尽管开始的时候相差不多,但是随着模型的增大,混合精度的作用越来越明显

论文提出BiFPN这一轻量级的跨尺寸FPN以及定制的检测版混合缩放方法,基于这些优化,推出了EfficientDet系列算法,既保持高精度也保持了高性能,EfficientDet-D7达到了SOTA。整体而言,论文的idea基于之前的EfficientNet,创新点可能没有之前那么惊艳,但是从实验来看,论文推出的新检测框架十分实用,期待作者的开源

知名学术搜索引擎有哪些

其他也可参见科塔学术导航网站

查论文资料的网站有哪些

网站有爱学术、汉斯出版社等。

1、爱学术是一家专业的学术文献分享平台,覆盖各个行业期刊论文,学位论文,会议论文,标准,专利等各类学术资源,是国内最大的学术文献交流中心和论文资源免费下载网站,旨在构建一个专业的学术文献交流分享平台。

2、汉斯出版社聚焦于国际开源(OpenAccess)中文期刊的出版发行,是秉承着传播文化和促进交流的理念,积极探索中文学术期刊国际化道路,并且积极推进中国学术思想走向世界。

用户还可以选择维普、万方、paperpass、论文狗、知网等查重网站进行毕业论文查重。

而如果学校通知统一查重会使用知网进行检测,那么建议学生也使用正规的知网查重网站进行检测,保证两者查重后的数据一致。

因此建议学生在提前查重前查看学校的查重通知,若学校通知学生使用对应类型的查重系统,学生在提前查重时建议也使用对应的查重系统进行检测。

知网查重包括包括论文正文、原创说明、摘要、图标及公式说明、参考文献、附录、实验研究成果、结语、引言、专利、文献、注释,以及各种表格。

大多数高校在每年毕业季时,都会统一发通知说明学校的毕业论文规范和查重说明,学校会统一下发论文样式等内容,一般会详细说明查重的范围。要是学校有具体的要求,那提交到学校的时候必须按照学校所要求的来。

知网查重是按照连续出现13个字符类似就会判为重复的标准计算论文重复率。如果学生抄袭了他人论文中的句子或者段落,知网查重系统在对其进行查重时,就会识别出重复部分,并计算到论文的总重复率之中。

因此建议学生在写作论文时不可出现抄袭等学术不端行为,防止因为出现过多重复部分从而使论文总重复率上升很多。

毕业论文复现别人的会被认定为抄袭吗?

毕业论文复现别人的会被认定为抄袭。

毕业论文查重时被判定为抄袭的4种情况:

一、直接全文复制别人的研究成果,没有任何的改动,在提交论文检测和查重的时候也没有按照要求打上引用标签,看不出任何的引用痕迹,完全当做自己正文中的一部分。除此之外还没有标注引用和借鉴的来源尾注,这种情况在论文查重的时候会被直接识别出来。

二、东拼西凑,将别人的研究结论拿过来后,根据自己的论点和论证要求稍作修改,简单润色下后直接为己所用,没有引用标签、没有引用借鉴来源、没有标明参考尾注。

三、简单说明一个迄今为止还没有出现的论点,并且没有进行论证和说明缺乏理论依据,尽管这种情况在机器检测的时候论文查重的重复率较低,但是导师在审核时会一眼看出端倪,如果你的学术水平还没有达到提出创新论点的水平,那么导师就极有可能将这认定为抄袭和造假。

四、在没有标明引用来源和尾注的基础上直接引用自己已经发表的论文。很多同学会疑惑,难道用自己的研究成果也是抄袭吗?

答案是否定的,引用自己的文章无可厚非,但是一定要注明来源和基本信息,因为机器检测的算法包含所有已发表的文献资料,在数据库对比时就会出现论文查重率过高的现象。
究竟有没有抄袭,可能只有自己最清楚,即使你通过了机器检测和导师的人工检测,你也过不了心里的那道坎,毕竟这是对大学四年的一个交代,对于这4种情况在毕业论文查重检测时会被判定为抄袭。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页