"三票一卡"巧融资
康金红
本文首先对"三票一卡"进行介绍,提出运用"三票一卡"进行融资的几种常用方式.其次,对"三票一卡"融资的积极作用,形成企业、银行和消费者多赢格局的原因与理论进行了探讨,说明其对于解决我国当前中小企...
江苏科技信息 Jiangsu Science & Technology Information 2006年,第09期
人民币信用证:结算方式的延展与提升
柯路平
1997年8月中国人民银行颁布实施<支付结算办法>,同时推出了<国内信用证结算办法>,确定了我国支付结算方式是以"三票一卡三方式"为主的结算体系.几年来,银行承兑汇票以其...
浙江金融 Zhejiang Finance 2003年,第05期
上海地铁票卡相关问题研究 Discussions on Interrelated Problems of Shanghai Subway Ticket
赵永旭 吕正昱 王伟雯
随着轨道交通的发展,与其相应的乘车凭证--票卡的流程管理还不够完善.据此在分析了票卡流程现状及存在问题的基础上,提出了票卡管理流程的优化方案,并结合票卡销售和票务经营的现状明确了优化策略,提出了...
同济大学学报(自然科学版) Journal of Tongji University(Natural Science) 2003年,第04期
电子伤票研制进展 Progress in the development of electronical medical tag
郭琪 曹文献 吴志成
伤票(medical tag)是战时记录人员负伤及救治处置情况,并随伤员后送的医疗文书[1].近年来,随着计算机网络技术、通信技术、智能卡技术、传感器技术、生物工程技术和卫星定位技术的发展及在...
东南国防医药 Journal of Southeast China National Defence Medical Science 2007年,第05期
教育部办公厅铁道部办公厅关于中等职业学校学生购火车票使用优惠卡的通知 The MOE office and MOR office notice on using the preferential card to buy train tickets by secondary VTE school's students
教职成厅[2006]2号
各省、自治区、直辖市教育厅(教委),计划单列市教育局,新疆生产建设兵团教育局,各铁路局: 自普通高等学校学生使用火车票学生优惠卡(以下简称优惠卡)购票以来,给发售、查验学生票工作带来了方便,...
中国职业技术教育 Chinese Vocational and Technical Education 2006年,第07期
地铁Ultralight单程票安全解决方案研究 Subway Single Journey Ticket Security Solution for Ultralight Cards
张宁 何铁军 余彦翔
由于价格等因素,国内部分城市地铁自动售票系统选用Mifare Ultralight卡作为单程车票票卡.Ultralight为存储卡,无安全机制,存在容易伪造的隐患.结合实际工作提出了一种单程票安...
交通与计算机 Computer and Communications 2007年,第05期
继电保护安全措施卡的应用
王永才 王群明
继电保护安全措施卡指的是为了防止继电保护"三误"事故,继电保护技术人员编制成的变电站具有危险点预控性质的继电保护装置典型安全措施卡,其实用性、可操作性强.把它作为继电保护工作票里的安全措施并要求...
电力安全技术 Electric Safety Technology 2005年,第03期
IC卡在铁路客运系统的应用--关于我国铁路票制张革的相关探讨
习群才 魏垂沛 王玉秋
本文结合我国铁路客运票制的现状,提出发行非接触式IC卡的见解,重点论述了IC卡在铁路客运系统应用的必要性和总体构思,并对铁路发行IC卡车票的相关问题进行了探讨.
内蒙古科技与经济 Inner Mongolia Science Technology and Economy 2005年,第09期
个人支票缘何 "热"不起来
黄朱文 何宋平 赖奇志
生活中当人们需要付款时,一般至少有三种方式选择:付现金、刷卡、开支票.这里所说的支票是指个人支票.作为一种支付手段,个人支票指的是在银行开设活期账户的居民,用个人信誉作保证,以支票为支付凭证的一...
金融理论与实践 Financial Theory and Practice 2004年,第04期
京城公汽售票员忆想 Memory of bus conductors in Beijing
程春水
上世纪六十年代,我在北京公共汽车上卖票.那时的公共汽车是没有售票台(座)的.售票员肩挎票兜子,手拿票板在车里来回打串卖票.每到一站,售票员要下车收验票,并要用脚卡着车门最后上车,以免车门夹着乘...
城市公共交通 Urban Public Transport 2007年,第03期
杭州市公交IC卡电子收费系统
金宝顺
为杜绝公交月票的假冒行为,为公司运营提供科学的管理手段,杭州市公共交通总公司自从在2001年9月1日进行的"简化月票票种,取消原市区、市郊月票分类,统一并轨为公交成人、学生通用月(期)票" 月票...
金卡工程 Cards World 2003年,第04期
1 2 3 4 5 6 7 8 9 10 11 下一页
希望下面这些可以帮到你
帕夫努季·利沃维奇·切比雪夫,俄文原名Пафну́тий Льво́вич Чебышёв,(1821年5月26日-1894年12月8日),俄罗斯数学家。他一生发表了70多篇科学论文,内容涉及数论、概率论、函数逼近论、积分学等方面。他证明了贝尔特兰公式,自然数列中素数分布的定理,大数定律的一般公式以及中心极限定理。他不仅重视纯数学,而且十分重视数学的应用。切比雪夫是彼得堡数学学派的奠基人和领袖。彼得堡大学执教 执教彼得堡大学35年间,切比雪夫教过数论、高等代数、积分运算、椭圆函数、有限差分、概率论、分析力学、傅里叶级数、函数逼近论、工程机械学等十余门课程。他的讲课深受学生们欢迎。A. M. 李雅普诺夫 (Ляпунов) 评论道:“他的课程是精练的,他不注重知识的数量,而是热衷于向学生阐明一些最重要的观念。他的讲解是生动的、富有吸引力的,总是充满了对问题和科学方法之重要意义的奇妙评论 他为俄罗斯培养了一代又一代杰出的数学家 切比雪夫终身未娶,日常生活十分简朴,他的一点积蓄全部用来买书和制造机器 他还研究出
来切比雪夫不等式 1856年,切比雪夫被任命为炮兵委员会的成员,积极地参与了革新炮兵装备和技术的工作。他于1867年提出的一个计算圆形炮弹射程的公式很快被弹道专家所采用,他关于插值理论的研究也部分地来源于分析弹着点数据的需要。他在彼得堡大学教授联席会上作的“论地图制法”(Черченйе геогрaфических кaрт,1856)的报告精辟地分析了数学理论与实践结合的意义,这份报告也详尽讨论了如何减少投影误差的问题。在法国科学院第七次年会上,切比雪夫提出了一篇名为“论服装裁剪”(Sur la coupe des vte-ments,1878)的论文,其中提出的“切比雪夫网”成了曲面论中的一个重要概念。
安德烈·马尔可夫,俄罗斯人(1856——1922),俄罗斯物理-数学博士,圣彼得堡科学院院士,彼得堡数学学派的代表人物,、以数论和概率论方面的工作著称,他的主要著作有《概率演算》等。1878年,荣获金质奖章,1905年被授予功勋教授称号。马尔可夫是彼得堡数学学派的代表人物。以数论和概率论方面的工作著称。他的主要著作有《概率演算》等。在数论方面,他研究了连分数和二次不定式理论 ,解决了许多难题 。在概率论中,他发展了矩法,扩大了大数律和中心极限定理的应用范围。马尔可夫最重要的工作是在1906~1912年间,提出并研究了一种能用数学分析方法研究自然过程的一般图式——马尔可夫链。同时开创了对一种无后效性的随机过程——马尔可夫的研究。马尔可夫经多次观察试验发现,一个系统的状态转换过程中第n次转换获得的状态常决定于前一次(第(n-1)次)试验的结果。马尔可夫进行深入研究后指出:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。目前,马尔可夫链理论与方法已经被广泛应用于自然科学、工程技术和公用事业中。
李雅普诺夫(Aleksandr Mikhailovich Lyapunov,1857-1918)俄国数学家、力学家。1857年6月6日生于雅罗斯拉夫尔;1918年11月3日卒于敖德萨。1876年中学毕业时,因成绩优秀获金质奖章,同年考入圣彼得堡大学物理数学系学习,被著名数学家切比雪夫渊博的学识深深吸引,从而转到切比雪夫所在的数学系学习,在切比雪夫、佐洛塔廖夫的影响下,他在大学四年级时就写出具有创见的论文,而获得金质奖章。1880年大学毕业后留校工作,1892年获博士学位并成为教授。1893年起任哈尔科夫大学教授,1900年初当选为圣彼得堡科学院通讯院士,1901年又当选为院士,兼任应用数学学部主席。1909年当选为意大利国立琴科学院外籍院士,1916年当选为巴黎科学院外籍院士。 他是切比雪夫创立的彼得堡学派的杰出代表创立了特征函数法常微分方程运动稳定性理论的创始人李雅普诺夫对位势理论的研究为数学物理方法的发展开辟了新的途径.他1898年发表的论文《关于狄利克雷问题的某些研究》也是一篇重要论文.该文首次对单层位势、双层位势的若干基本性质进行了严谨的探讨,指出了给定范围内的本问题有解的若干充要条件.他的研究成果奠定了解边值问题经典方法的基础.
尼古拉斯·伊万诺维奇·罗巴切夫斯基(Никола́й Ива́нович Лобаче́вский,英文Nikolas lvanovich Lobachevsky)(1792年12月1日—1856年2月24日),俄罗斯享誉世界的数学家,非欧几何的早期发现人之一。罗氏数学的奠基人 曾经担任喀山大学校长 喀山学区督学 罗巴切夫斯基在尝试证明平行公理时发现以前所有的证明都无法逃脱循环论证的错误。于是,他作出假定:过直线外一点,可以作无数条直线与已知直线平行。如果这假定被否定,则就证明了平行公理。然而,他不仅没有能否定这个命题,而且用它同其他欧氏几何中与平行公理无关的命题一起展开推论,得到了一个逻辑合理的新的几何体系—非欧几里得几何学,这就是后来人们所说的罗氏数学 罗氏几何的创立对几何学和整个数学的发展起了巨大的作用,但一开始并没有引起重视,直到罗巴切夫斯基去世后12年才逐渐被广泛认同 1893年,在喀山大学树立起了世界上第一个为数学家雕塑的塑像。这位数学家就是俄国的伟大学者、非欧几何的重要创始人——罗巴切夫斯基 罗巴切夫斯基晚年很凄惨,学术得不到认证 儿子的去世和晚年双目失明的情况下仍然完成关于非欧几何的论文《几何学原理及平行线定理严格证明的摘要》论文《几何学原理》
第2章主减速器的结构设计过程
2.1 设计方案的确定
2.1.1 主减速比的计算
主减速比对于主减速器的结构形式、轮廓尺寸、质量大小以及当变速器处于最高单位时汽车的动力性和燃料经济性都有直接影响。 的选择应在汽车总体设计时和传动系统的总传动比一起由则和那个车动力计算来确定。可利用在不同的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择 值,可是汽车获得最佳的动力性和燃料经济性。
为了得到足够的功率儿使得最高车速稍微有所下降,一般选的比最小值大10%~25%,即按照下是选择:
i =(0.377~0.472)
=(o.377~0.472) 0.5828 2400/(80 1 1 3.478)=1.478~2.23
式中:r ——车轮的滚动半径
i ——变速器最高档传动比1.0(为直接档)
i ——分动器或动力器的最高档传动比
i ——轮边减速器的传动比
2.1.2 主减速器结构方案的确定
(1)双曲面齿轮具有一系列的优点,因此比螺旋齿轮应用更加广泛。本次设计也采用双曲面齿轮。
(2)主减速器主动锥齿轮的支撑形式及其安装方式的选择,本次设计用:主动锥齿轮:悬臂式支撑(圆锥滚子轴承)
从动锥齿轮:跨置式支撑(圆锥滚子轴承)
(3)从动锥齿轮的支撑方式和安装方式的选择
从动锥齿轮的两端支撑多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并采用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上。
(4)主减速器的轴承预紧及齿轮啮合调整
支撑主减速器的圆锥滚子轴承需要预紧以消除安装的原始间隙、磨合期间该间隙的增大及增加支撑刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的1/2。预紧力虽然可以增大支撑刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一个理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可以取为发动机最大转矩时换算做得轴向力的30%。
主动锥齿轮轴承预紧度的调整采用波形套筒,从动齿轮轴承预紧度的调整采用调整螺母。
(5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及其轮边减速等。减速形式的选择与汽车的类别及使用条件有关,有时也与制造厂的产品系列及其制造条件有关,但是它主要取决于由动力性、经济性等整车性能所要求得主减速比的大小及其驱动桥下的离地间隙、驱动桥的数目及其布置形式等。通常主减速比不大于7.6的各种中小汽车上。
2.2 主减速器的基本参数选择与设计计算
2.2.1 主减速器齿轮载荷的计算
通常是将发动机最大转矩配以传动系最低档位传动比时和驱动车轮打滑两种情况作用下主减速器从动齿轮上的转矩(T ,T )较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。即
式中:T ——发动机最大转矩1070N*M
i ——由发动机所计算的主减速器从动齿轮之间的传动系最低档传动比
根据同类型的车型的变速器传动比选择i =2.47
式中: ——上述传动部分的效率,取 =0.9
k ——超载系数,取k =1.0
n——驱动桥数目2
G ——汽车满载时驱动桥给水平地面的最大负荷,N;但是后桥来说还应该考虑到汽车加速时负荷增大值,但是可以取
,i ——分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减速比,分别是0.96和3.478
由式(2—1),式(2—2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作为疲劳损坏依据。对于公路车辆来说,使用条件较非公路车辆稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即是主减速器的平均计算转矩为
式中:G ——汽车满载总重32000 9.8N
G ——所牵引的挂车满载总重,N,仅用于牵引车取G =0
f ——道路滚动阻力系数,货车通常取0.015~0.020,
f ——汽车正常使用时的平均爬坡能力系数。货车通常取0.05~0.09,可以取f =0.07
f ——汽车性能系数
当
2.2.2 主减速器齿轮参数的选择z
(1)齿数的选择 对于单级主减速器,i 6时,z 的最小值可以取为5,但是为了啮合平稳及提高疲劳强度,z 最好大于5.当i 较小时,z 可以取7~12,但是这时常常会因为主动齿轮、从动齿轮的尺寸太大而不能保证所要求桥下离地间隙为了磨合均匀,主动齿轮、从动齿轮的齿数之间应避免有公约数;为了得到理想的齿面重叠系数,其齿数之和对于载货汽车应不少于40.多以取为z 17 ,z2为38.
(2)节圆直径的选择 根据从动锥齿轮大的计算转矩(见式2—2,式2—3)并取两者中较小的一个为计算依据,按照经验公示选出:
式中:K ——直径系数,取K =13~16
T ——计算转矩,N*M,取T =T =2653.34N*M
计算得,d =137.74~169.52mm,考虑到此车是重型载重卡车,其经常工作在超载的情况下,初取d =286mm。
(3)齿轮断面模数的选择 d 选定后,可以按式m=
算出从动齿轮大端模数,m=5,并用下式校核
(4)齿面宽的选择 汽车主减速器螺旋锥齿轮齿面宽度推荐为:F=0.155d =44.33mm,考虑其超载情况,可初取F=60mm。
(5)双齿面齿轮的偏移距E 轿车、轻型客车和轻型载货汽车主减速器的E值,不应超过从动齿轮节锥距A 的40%(接近于从动齿轮节圆直径d 的20%);传动比则E也越大,大传动比的双曲面齿轮传动,偏移距E可达到从动齿轮节圆直径d 的20%-30%。当E大于d 的20%时,应检查是否发生根切。
(6)双曲面齿轮的偏移方向 由从动齿轮的锥顶向其齿面看去并使主动齿轮右侧,这时如果主动齿轮在从动齿轮下方时为下偏移。下偏移时主动齿轮的旋转方向为左旋,从动齿轮为右旋。
(7)螺旋锥齿轮与双曲面齿轮的螺旋方向 对着齿面看去,如果齿轮的弯曲方向从其小端到大端为顺时针走向时则称为右旋齿,反时针时则成为左旋齿。主从动齿轮螺旋方向是不同的。螺旋锥齿轮与双曲面齿轮在传动时所产生的轴向力,其方向决定于齿轮的螺旋方向和旋转方向。判断齿轮的旋转方向是顺时针还是逆时针时,要向齿轮背面看去。所以主动齿轮螺旋方向是左旋,旋转方向是顺时针。
(8)螺旋角的选择 双曲面齿轮传动,由于有了偏移距而使主从动齿轮的名义螺旋角不等,且主动齿轮的大,而从动齿轮的小。螺旋角应满足足够大以使m =1.25.。因越大就越平稳噪声就越低。螺旋角过大时会引起轴向力也越大因此有一个适当的范围。
“格里森”制推荐用下式,近似的预选为主动齿轮螺旋角的名义值
式中: ——主动齿轮名义(中点)螺旋角的预选值
预选 后尚需要用刀号来加以校正。首先要求出近似刀号
近似刀号=
式中 , ——主、从动齿轮的齿根角,以“分”表示。
按照近似刀号选取与其最接近的标准刀号(计有:
然后按照选定的标准刀号反着算螺旋角 :
式中 标准刀号为3
最后选用的 与 之差不得超过5.
(9)齿轮法向压力角的选择 格里森规定载货汽车和重型汽车则应该分别选用20 和22 30 的发向压力角,对于双曲面齿轮,由于其主动齿轮轮齿的法相压力角不等,因此应按照平均压力角考虑,载货汽车选用22 30 的平均压力角。
(10)铣刀盘名义直径2r 的选择 按照从动齿轮节圆直径d 选取刀盘名义直径r =152.4mm。
2.2.3 主减速器双曲面齿轮的几何尺寸计算与强度计算
有附录1计算
(1) 主减速器圆弧齿双曲面齿轮的几何尺寸计算
双重收缩齿的优点在于能够提高小齿轮粗切工序。双重收缩齿的齿轮参数,其大、小齿轮根锥角的选定是考虑到用一把使用上最大的刀顶距地粗切刀,切出沿着齿面宽的方向正确的吃后收缩来。当打齿轮直径大于刀盘半径时采用这种方法是最好的。
圆弧齿双面齿轮的这一计算方法适用于轴交角为90 的所有传动比,但是应该使z 6 , z + z 40。此计算方法限制用于格里森刀盘切齿。对于大齿轮直径超过650mm或小齿轮轴线偏移距E大于100mm时候,必须另行考虑。
由附录双曲面齿轮计算用表第65项求的的齿轮线曲率半径 r 与第7项选定的刀盘半径r 的1%。否则需要重新计算20项至65项。如果r <r ,则需要将第20项的tan 的数值减小,重新计算各项,并将计算结果写在第二行框内。若r >r ,则应增加tan 的数值。修正量是根据曲率半径的差值来选出的。若无特殊考虑,则第二次计算可以求得tan 改变10%。如果第二次计算得出的r 新值仍不接近r ,就要进行第三次计算,通常也是最后一次计算,可用下式tan :
(2) 主减速器双曲面齿轮的强度计算
1. 单位齿长的圆周力
p=
式中 p——单位齿长上的圆周力,N/mm
P——作用在齿轮上的圆周力,N,按照发动机最大转
T 最大附着力矩两种载荷工况进行计算
按照发动机最大转矩计算时:
I档时候p=507.344N/mm<(p) =1429N/mm
直接档位时p=205.4024N*mm<(p) =250 N/mm
按照最大附着力矩计算时
可知,校核成功。
2.轮齿的弯曲强弯曲计算用综合系数J度计算。汽车主减速器双曲面齿轮轮齿的计算弯曲应力 (N/mm )为
式中 K ——超载系数1.0;
K ——尺寸系数K =
K ——载荷分配系数1.1~1.25
K ——质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径想跳动精度高时,取1
J——计算弯曲应力用的综合系数,见图3—2.J =0.2 J =0.27
T 作用下:从动齿轮上的应力 =188.37MPa<700MPa;
T 作用下:从动齿轮上的应力 =160.36MPa<210.9MPa;
当计算主动齿轮时, 与从动相当,而J <J ,故 < ,
综上所述,故所计算的齿轮满足弯曲强度的要求。
汽车主减速器齿轮的损坏形式主要时疲劳损坏,而疲劳寿命主要与日常转矩即平均计算转矩T 有关,T 或T 只能用来检验最大应力,不能作为疲劳寿命的计算依据。
2. 轮齿的接触强度计算 双曲面齿轮齿面的计算接触应力 (MPa)为:
式中 C ——材料的弹性系数,对于钢制齿轮副取232.6N /mm
K =1 =1 K =1.11 K =1
K ——表面质量系数,对于制造精度的齿轮可取1
J ——计算应力的综合系数,J =0.1875,见图3—3所示
T ——主动齿轮计算转矩,N/m
=1207.23MPa<( =1750MPa
=1226.86MPa<( =1750MPa,故负荷要求、校核合理。
2.3 主减速器齿轮的材料及热处理
汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大、工作时间长、载荷变化多、多冲击等特点。其损坏的形式主要有齿根弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有以下要求:
(1) 具有高的弯曲疲劳强度和接触疲劳强度以及较好的齿面耐磨性,故齿表面应有高的强度;
(2) 齿轮芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;
(3) 钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律性易控制,以提高产品质量、减少制造成本并降低废品率;
(4) 选择齿轮材料的合金元素时要适应我国的情况。例如:为了节约镍、滒等我国发展了以锰、钒、錋、钛、硅为主的合金结构刚系统。
汽车主减速器和差速器圆锥齿轮与双曲面齿轮目前均用渗碳合金钢制造。常用的钢号20C M T ,20C M M ,20C N M ,20M VB,20M 2T B,本次设计中采用了20C M T 。
用渗碳合金钢制造齿轮,经渗碳、淬火、回火后,齿轮表面硬度可高达HRC58~64,而芯部硬度较低,当m≤8时为HRC32~45。
对于渗碳深度有如下的规定:当端面模数m≤5时,为0.9~1.3mm
由于新齿轮润滑不良,为了防止齿轮在运转初期产生胶合、咬死或檫伤,防止早期磨损,圆锥齿轮与双曲面齿轮副草热处理及精加工后均予以厚度为0.005~0.010~0.020mm的磷化处理或镀铜、镀锡。这种表面镀层不应用于补偿零件的公差尺寸,也不能代替润滑油。
对齿面进行喷丸处理有可能提高寿命达25%。对于滑动速度高的齿轮,为了提高其耐磨性进行渗流处理。渗流处理时温度低,故不会引起齿轮变形。渗流后摩擦系数可显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和檫伤现象产生。
2.4 主减速器的润滑
主减速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端近主动齿轮处的主减速器壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过进油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承得到良好的润滑、散热和清洗,而且可以保护前端的油封不损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。
为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。
加油 孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。
结论
在本次毕业设计的过程中,我从实验室开始自己动手拆装主减速器及其内部的差速器等结构,一一熟悉再配合书本更加深刻的认识了本次设计的内容,熟悉了结构对于接下来的计算过程有很大的帮助,回想着拆装过程我认真的选则零件,再验证再选择直到最后确定,有了准确的数据我就开始画主减速器总成图以及后来的几个零件图。
本次毕业设计,让我增长了更多的知识,对驱动桥有了更进一步的认识,更加熟练地掌握了CAD及其我们机械行业常用的绘图软件,并且锻炼了我的动手能力。
参考文献
1 汽车工程手册.北京:人民交通出版社,2001
2 刘惟信.汽车设计.清华大学出版社,2001
3 陈家瑞.汽车构造.北京:机械工业出版社,2005
4 王望予.汽车设计 第4版.北京:机械工业出版社,2007
5 韩晓娟.机械设计课程设计.北京:机械工业出版社,2000
6 刘哲义.一种新型汽车差速机构——托森差速器.汽车运输,2000,13~14
7许铁林.工程机械轮边主减速器结构设计研究。工程机械,1997,32~42
8姚建平.装载机驱动桥改进设计研究.工程机械,2005,33~45
9 许立中,龚景安.机械设计.北京:机械工业出版社,2003,45~71
10余志生.汽车理论.北京:机械工业出版社,2003,66~70
11 Thomson Delmar Learning.Total Automotive Technology.北京:机械工业出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29
16 吴涛.AutoCAD教程.北京:清华大学出版社,北方交通大学出版社
课题名称: 斯太尔联轴式重型卡车后桥主减速器设计
一、综述本课题国内外研究动态,说明选题的依据和意义
早在1890年法国的雷诺1号车,采用密闭箱式变速器、万向节传动轴和伞齿轮主减速器。而到了1898年,法国人路易斯.雷诺将万向节首先应用汽车传动系中,并发明了锥齿轮式主减速器。在现代汽车和重型卡车的驱动桥上,主减速器采用的最广泛的是“格里森”(Glesson)制或者“奥利康”(Oerlikon)制的螺旋锥齿轮和双曲面齿轮。双曲面齿轮工作时,齿面间的压力和滑动较大,齿面油膜易被破坏,必须采用双曲面齿轮油润滑,绝不允许用普通齿轮油代替,否则将使齿面迅速擦伤和磨损,大大降低使用寿命。主减速器是汽车传动系中减小转速、增大扭矩的主要部件。对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。汽车正常行驶时,发动机的转速通常在2000至3000r/min左右,如果将这么高的转速只靠变速箱来降低下来,那么变速箱内齿轮副的传动比则需很大,而齿轮副的传动比越大,两齿轮的半径比也越大,换句话说,也就是变速箱的尺寸会越大。另外,转速下降,而扭矩必然增加,也就加大了变速箱与变速箱后一级传动机构的传动负荷。所以,在动力向左右驱动轮分流的差速器之前设置一个主减速器,可使主减速器前面的传动部件如变速箱、分动器、万向传动装置等传递的扭矩减小,也可变速箱的尺寸质量减小,操纵省力。改革开放开始时,中国汽车工业与发达国家汽车工业在技术上整体存在着30年左右的巨大差距。经过改革开放30年来的努力,通过引进技术与自主开放相结合,目前中国汽车工业在整体上与国际先进水平的技术差距已经缩短到5-10年。汽车零部件的研究与开发始终是中国汽车工业的最薄弱部分。虽然经过改革开放以来的不懈努力,进入21世纪后汽车零部件的研发有了较大进展,但与汽车业制造强国仍然有一定的差距,因此我们要好好内应力让我国汽车制造业走向世界的步伐不断加速
二、研究的基本内容,拟解决的主要问题
1、斯太尔重型载重卡车后桥主减速器的结构型式确定
2、斯太尔重型载重卡车后桥主减速器的结构设计
3、斯太尔重型载重卡车后桥差速器的结构设计
4、斯太尔重型载重卡车后桥主减速器零件设计
三、研究步骤、方法及措施研究步骤:
1、结构实习,了解斯太尔重型载重卡车后桥主减速器的结构型式
2、确定斯太尔重型载重卡车后桥主减速器的结构型式
3、测绘斯太尔重型载重卡车后桥主减速器
4、设计斯太尔重型载重卡车后桥主减速器的结构
5、设计斯太尔重型载重卡车后桥差速器的结构
6、设计斯太尔重型载重卡车后桥主减速器零件
四、研究工作进度
1—4周:结构实习,主减速器的结构型式确定,翻译外文资料,撰写开题报告和文献综述。
5—8周:主减速器测绘,主减速器结构设计。
9—12周:差速器结构设计,零件设计。
13—16周:撰写毕业论文。
17—18周:准备答辩
五、主要参考文献
1、汽车工程手册.北京:人民交通出版社,2001
2、刘惟信.汽车设计.清华大学出版社,2001
3、陈家瑞.汽车构造.北京:机械工业出版社,2005
4、王望予.汽车设计 第4版.北京:机械工业出版社,2007
5、李钊刚.国内外工业工业齿轮减速器技术的发展——迎接WTO的挑战与机遇(一),机械传附录2
课题名称: 斯太尔联轴式重型卡车后桥主减速器设计
一、课题国内外现状
驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。而主减速器和差速器是驱动轿的主件。主减速器是汽车传动系中减小转速、增大扭矩的主要部件,差速器的作用就是在向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。
对于重型卡车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器和差速器在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N•m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而减速器和差速器则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良的传动系统便成了有效节油的措施之一。
二、研究主要成果
近些年来国内外一些高等院校和科研单位对以主减速器和差速器为主的驱动桥的改造做了大量的研究工作。东风汽车公司设计开发了一种轻微型混合动力电动汽车的动力总成。该动力总成能达到两个动力源分别独立输出动力和混合输出动力的目的,通过在变速箱输出端增设主减速器,将动力输出给差速器和传动轴,最后到车轮。法拉利F430使用电子差速器(E-Diff)和F1变速箱及传动装置,E-Diff电子差速器已经在F1单座赛车上使用了多年,以保证转弯时保持最大附着力,消除车轮空转。在公路上,它在稳定汽车行驶性能方面,是一个不可思议的技术改进。电子差速器由三套主要子系统组成:与F1变速箱(如果有的话)共用的高压液压系统;由阀门、传感器和电子控制装置组成的一套控制系统;装在变速箱左侧里面的一套机械装置。F430提供了一个新型的铸铝传动箱,它可以将变速箱连同电子差速器、伞形主减速器以及机油箱都罩在一起。6速变速箱带有多锥面同步器,同时,为了充分利用新引擎较高的动力和扭矩并确保可靠性,加长了第6挡齿轮和主减速器。
三、发展趋势:
据了解,目前我国重卡大量使用的斯太尔驱动桥属于典型的双级减速桥,其二级减速的结构,主减速器总成相对较小,桥包尺寸减小,因此离地间隙加大,通过性好,承载能力也较大。广泛用于公路运输,以及石油、工矿、林业、野外作业和部队等多种领域的车辆。不过,有专家认为,双级减速桥的缺点也比较明显:传动效率相对较低,油耗高;长途运输容易导致汽车轮毂发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋装置;结构相对复杂,产品价格高等。因此,在欧美重型汽车中采用该结构的车桥产品呈下降趋势,日本采用该结构的产品更少。我国双级桥使用比例下降也是必然的,专家预测今后几年内,重型车桥将会形成以下产品格局:公路运输以10 吨及以上单级减速驱动桥、承载轴为主;工程、港口等用车以10 吨级以上双级减速驱动桥为主。技术方面,轻量化、舒适性的要求将逐步提高。
四、存在问题
汽车主减速器齿轮早期失效问题;汽车主减速器盆形齿轮热处理致裂;主减速器在运行过程中产生的各种噪声等等,最主要的是目前我国卡车中,双级减速桥的应用比例还在60%左右,而双级减速桥的缺点比较明显:传动效率相对较低,油耗高;长途运输容易导致汽车轮毂发热,散热效果差,为了防止过热发生爆胎,不得不增加喷淋装置;结构相对复杂,产品价格高等。五、主要参考文献
1 汽车工程手册.北京:人民交通出版社.2001
2 刘惟信.汽车设计.清华大学出版社,2001
3 陈家瑞.汽车构造.北京:机械工业出版社,2005
4 王望予.汽车设计 第4版.北京:机械工业出版社,2007
5 韩晓娟.机械设计课程设计.北京:机械工业出版社,2000
6 余志生.汽车理论.北京:机械工业出版社,2003, 66~70
7 刘哲义.一种新型汽车差速机构——托森差速器.汽车运输,2000,13~14
8 许铁林.工程机械轮边主减速器结构设计研究。工程机械,1997,32~42
9 姚建平.装载机驱动桥改进设计研究.工程机械,2005,33~45
10 许立中,龚景安.机械设计.北京:机械工业出版社,2003,45~71
11 Thomson Delmar Learning.Total Automotive Technology.北京:机械工业出版社,2004,14~22
12 Dohann F Hartk H Tube.Hydroforming—reseach and Practical Application.journal of Material Processing Technology,1997,21~25
13 Mortor.vehicle.science.Part2.CHAPMAN AND HALL Ltd,1982,61~92
14 Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering Vteering Vehile: Vehicle System Dynamic, 1993
15 Zoubir A M. The bootstrap.a powerful tool for statistical signal processing with small sample set.ICASSP—99Tutorial,1999,25~29