您当前的位置:首页 > 发表论文>论文发表

模板匹配论文

2023-03-06 14:04 来源:学术参考网 作者:未知

模板匹配论文

1、可以通过文字扫描器,将你的论文录入到电脑上进行查重。

2、如果字文字扫描器扫描不出来,只能一个字一个字输入到电脑上,毕竟论文系统只能通过云计算检测,没有人工检测系统。

3、识别系统:文字识别一般包括文字信息的采集、信息的分析与处理、信息的分类判别等几个部分。

4、信息采集 将纸面上的文字灰度变换成电信号,输入到计算机中去。信息采集由文字识别机中的送纸机构和光电变换装置来实现,有飞点扫描、摄像机、光敏元件和激光扫描等光电变换装置。

5、信息分析和处理 对变换后的电信号消除各种由于印刷质量、纸质(均匀性、污点等)或书写工具等因素所造成的噪音和干扰,进行大小、偏转、浓淡、粗细等各种正规化处理。

6、信息的分类判别 对去掉噪声并正规化后的文字信息进行分类判别,以输出识别结果。

7、文字识别方法 :文字识别方法基本上分为统计、逻辑判断和句法三大类。常用的方法有模板匹配法和几何特征抽取法。

(1)、模板匹配法 将输入的文字与给定的各类别标准文字(模板)进行相关匹配,计算输入文字与各模板之间的相似性程度,取相似度最大的类别作为识别结果。

(2)、几何特征抽取法 抽取文字的一些几何特征,如文字的端点、分叉点、凹凸部分以及水平、垂直、倾斜等各方向的线段、闭合环路等,根据这些特征的位置和相互关系进行逻辑组合判断,获得识别结果。这种识别方式由于利用结构信息,也适用于手写体文字那样变形较大的文字。

扩展资料:

1、论文检测服务:

(1)、论文检测服务也可以称为论文查重,是一种为了应对论文(包括学位论文、学术论文、发表论文、职称论文以及科研成果和学生作文)的学术不端行为(包括抄袭、剽窃、伪造、篡改、不当署名、一稿多投等行为)而推出的计算机软件检测系统。

2、现在,随着毕业季的临近,不断有来自大学的消息称,学生的毕业论文应该接受“反抄袭”的测试。一旦被判定为抄袭者,学生就不会按时毕业。

3、随着“反抄袭软件”的广泛应用,高校师生之间出现了“反抄袭”、“反抄袭”的拉锯战。最近也出现了一个新的行业。淘宝网上出现了大量提供“纸检服务”的卖家。他们声称能够提供“与大学的探测节点”。得到了同样的结果。

4、高校使用的反剽窃软件大多是中国知网开发的“学术不端行为检测系统”,淘宝网上卖家声称使用知网系统。

5、事实上,“反剽窃软件”是由中国知网免费提供给用户的。其官方网站特别强调,该系统只供高校、科研机构、出版单位等机构的用户免费使用,不供个人用户使用。

参考资料来源:

百度百科-论文检测服务

百度百科-文字识别

opencv 中自带的模板匹配算法出处

方法如下:
使用OPENCV下SIFT库做图像匹配的例程
// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv;

int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg";

//从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg");

//如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2);
//sift特征检测
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2;
siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp;
vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
}
siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2);
SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2);
imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches);
drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches);
//此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}

  

图像识别技术论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别   目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

机器人抓取时怎么定位的?用什么感测器来检测

机械手动作是靠伺服电机上的编码器反馈到工控机处理中心讯号与预设定引数比较、修正再输出给伺服电机执行精确定位的。也就是说靠预先程式设计决定的,不是靠感测器定位的。程式设计可解决机械手三维空间动作精确方向、速度、执行时间…………

依靠定位点以及零点位置,机器手定期修正累加误差,抓取最高阶的是应用影象技术,配合物料定位点。

一般是照相定位的。感测器是COMS或者CCD。

用预先程式设计及其执行中该伺服电机轴尾的编码器反馈讯号至计算中心精确修整偏差定位的。

机器人家上了解到,机器人领域的视觉(Machine Vision)跟计算机领域(Computer Vision)的视觉有一些不同:机器视觉的目的是给机器人提供操作物体的资讯。所以,机器视觉的研究大概有这几块: 物体识别(Object Recognition):在影象中检测到物体型别等,这跟 CV 的研究有很大一部分交叉; 位姿估计(Pose Estimation):计算出物体在摄像机座标系下的位置和姿态,对于机器人而言,需要抓取东西,不仅要知道这是什么,也需要知道它具体在哪里; 相机标定(Camera Calibration):因为上面做的只是计算了物体在相机座标系下的座标,我们还需要确定相机跟机器人的相对位置和姿态,这样才可以将物 *** 姿转换到机器人位姿。 当然,我这里主要是在物体抓取领域的机器视觉;SLAM 等其他领域的就先不讲了。 由于视觉是机器人感知的一块很重要内容,所以研究也非常多了,我就我了解的一些,按照由简入繁的顺序介绍吧: 0. 相机标定 这其实属于比较成熟的领域。由于我们所有物体识别都只是计算物体在相机座标系下的位姿,但是,机器人操作物体需要知道物体在机器人座标系下的位姿。所以,我们先需要对相机的位姿进行标定。 内参标定就不说了,参照张正友的论文,或者各种标定工具箱; 外参标定的话,根据相机安装位置,有两种方式: Eye to Hand:相机与机器人极座标系固连,不随机械臂运动而运动 Eye in Hand:相机固连在机械臂上,随机械臂运动而运动 两种方式的求解思路都类似,首先是眼在手外(Eye to Hand) 只需在机械臂末端固定一个棋盘格,在相机视野内运动几个姿态。由于相机可以计算出棋盘格相对于相机座标系的位姿 、机器人运动学正解可以计算出机器人底座到末端抓手之间的位姿变化 、而末端爪手与棋盘格的位姿相对固定不变。 这样,我们就可以得到一个座标系环 而对于眼在手上(Eye in Hand)的情况,也类似,在地上随便放一个棋盘格(与机器人基座固连),然后让机械臂带着相机走几个位姿,然后也可以形成一个 的座标环。 1. 平面物体检测 这是目前工业流水线上最常见的场景。目前来看,这一领域对视觉的要求是:快速、精确、稳定。所以,一般是采用最简单的边缘提取+边缘匹配/形状匹配的方法;而且,为了提高稳定性、一般会通过主要打光源、采用反差大的背景等手段,减少系统变数。 目前,很多智慧相机(如 cognex)都直接内嵌了这些功能;而且,物体一般都是放置在一个平面上,相机只需计算物体的 三自由度位姿即可。 另外,这种应用场景一般都是用于处理一种特定工件,相当于只有位姿估计,而没有物体识别。 当然,工业上追求稳定性无可厚非,但是随着生产自动化的要求越来越高,以及服务类机器人的兴起。对更复杂物体的完整位姿 估计也就成了机器视觉的研究热点。 2. 有纹理的物体 机器人视觉领域是最早开始研究有纹理的物体的,如饮料瓶、零食盒等表面带有丰富纹理的都属于这一类。 当然,这些物体也还是可以用类似边缘提取+模板匹配的方法。但是,实际机器人操作过程中,环境会更加复杂:光照条件不确定(光照)、物体距离相机距离不确定(尺度)、相机看物体的角度不确定(旋转、仿射)、甚至是被其他物体遮挡(遮挡)。 幸好有一位叫做 Lowe 的大神,提出了一个叫做 SIFT (Scale-invariant feature transform)的超强区域性特征点: Lowe, David G. "Distinctive image features from scale-invariant keypoints."International journal of puter vision 60.2 (2004): 91-110. 具体原理可以看上面这篇被引用 4万+ 的论文或各种部落格,简单地说,这个方法提取的特征点只跟物体表面的某部分纹理有关,与光照变化、尺度变化、仿射变换、整个物体无关。 因此,利用 SIFT 特征点,可以直接在相机影象中寻找到与资料库中相同的特征点,这样,就可以确定相机中的物体是什么东西(物体识别)。 对于不会变形的物体,特征点在物体座标系下的位置是固定的。所以,我们在获取若干点对之后,就可以直接求解出相机中物体与资料库中物体之间的单应性矩阵。 如果我们用深度相机(如Kinect)或者双目视觉方法,确定出每个特征点的 3D 位置。那么,直接求解这个 PnP 问题,就可以计算出物体在当前相机座标系下的位姿。 ↑ 这里就放一个实验室之前毕业师兄的成果 当然,实际操作过程中还是有很多细节工作才可以让它真正可用的,如:先利用点云分割和欧氏距离去除背景的影响、选用特征比较稳定的物体(有时候 SIFT 也会变化)、利用贝叶斯方法加速匹配等。 而且,除了 SIFT 之外,后来又出了一大堆类似的特征点,如 SURF、ORB 等。 3. 无纹理的物体 好了,有问题的物体容易解决,那么生活中或者工业里还有很多物体是没有纹理的: 我们最容易想到的就是:是否有一种特征点,可以描述物体形状,同时具有跟 SIFT 相似的不变性? 不幸的是,据我了解,目前没有这种特征点。 所以,之前一大类方法还是采用基于模板匹配的办法,但是,对匹配的特征进行了专门选择(不只是边缘等简单特征)。 简单而言,这篇论文同时利用了彩色影象的影象梯度和深度影象的表面法向作为特征,与资料库中的模板进行匹配。 由于资料库中的模板是从一个物体的多个视角拍摄后生成的,所以这样匹配得到的物 *** 姿只能算是初步估计,并不精确。 但是,只要有了这个初步估计的物 *** 姿,我们就可以直接采用 ICP 演算法(Iterative closest point)匹配物体模型与 3D 点云,从而得到物体在相机座标系下的精确位姿。 当然,这个演算法在具体实施过程中还是有很多细节的:如何建立模板、颜色梯度的表示等。另外,这种方法无法应对物体被遮挡的情况。(当然,通过降低匹配阈值,可以应对部分遮挡,但是会造成误识别)。 针对部分遮挡的情况,我们实验室的张博士去年对 LineMod 进行了改进,但由于论文尚未发表,所以就先不过多涉及了。 4. 深度学习 由于深度学习在计算机视觉领域得到了非常好的效果,我们做机器人的自然也会尝试把 DL 用到机器人的物体识别中。 首先,对于物体识别,这个就可以照搬 DL 的研究成果了,各种 CNN 拿过来用就好了。有没有将深度学习融入机器人领域的尝试?有哪些难点? - 知乎 这个回答中,我提到 2016 年的『亚马逊抓取大赛』中,很多队伍都采用了 DL 作为物体识别演算法。 然而, 在这个比赛中,虽然很多人采用 DL 进行物体识别,但在物 *** 姿估计方面都还是使用比较简单、或者传统的演算法。似乎并未广泛采用 DL。 如 @周博磊 所说,一般是采用 semantic segmentation neork 在彩色影象上进行物体分割,之后,将分割出的部分点云与物体 3D 模型进行 ICP 匹配。 当然,直接用神经网路做位姿估计的工作也是有的 它的方法大概是这样:对于一个物体,取很多小块 RGB-D 资料(只关心一个patch,用区域性特征可以应对遮挡);每小块有一个座标(相对于物体座标系);然后,首先用一个自编码器对资料进行降维;之后,用将降维后的特征用于训练Hough Forest。 5. 与任务/运动规划结合 这部分也是比较有意思的研究内容,由于机器视觉的目的是给机器人操作物体提供资讯,所以,并不限于相机中的物体识别与定位,往往需要跟机器人的其他模组相结合。 我们让机器人从冰箱中拿一瓶『雪碧』,但是这个 『雪碧』 被『美年达』挡住了。 我们人类的做法是这样的:先把 『美年达』 移开,再去取 『雪碧』 。 所以,对于机器人来说,它需要先通过视觉确定雪碧在『美年达』后面,同时,还需要确定『美年达』这个东西是可以移开的,而不是冰箱门之类固定不可拿开的物体。 当然,将视觉跟机器人结合后,会引出其他很多好玩的新东西。由于不是我自己的研究方向,所以也就不再班门弄斧了。

机器作定位由先由工程式设计决定空前、左右、位置定位精度由伺服电机同轴尾端编码传器反馈讯号经伺服电机驱卡至处理处理再输作自微量调整

机器人多工位动作及其执行中定位全部由人工编写操作程式而决定的,此与感测器暂不搭界。若要根据生产工艺改进,则要重新编写程式,或在原程式中作修改调整。

机器人抓取定位是预先程式设计的,工控机输出带动伺服电机精确定位,包括伺服电机编码器反馈讯号经电机驱动卡直至工控机进一步调整。若用感测器检测定位误差极大,根本不可能细微修正定位精度。

机器人抓取目前最常用的是通过视觉定位,CCD/CMOS感测器拍摄当前视野内图片,找到MARK点,算出偏移的座标和角度,再通过网口或者串列埠将资料反馈到机器人,机器人作出相应修正 ----------众合航迅科技有限公司 邓经理为您解答

机器人动作定位由先由人工程式设计决定它在空中前后、左右、上下位置的。定位精度由伺服电机同轴尾端编码感测器反馈讯号经此伺服电机驱动卡至处理中心处理后再输出作自动微小量调整

图像分割技术论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: TN957.52 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

2.1基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

2.2 边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

2.3基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

2.4结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

2.4.1基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

2.4.2基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

2.4.3基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

2.4.4基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

2.5图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页