原子吸收光谱法在环境常规监测中的应用
西南科技大学分析测试中心 张伟
〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。
〔关键词〕原子吸收光谱法环境监测应用
原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性
好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使
用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水
和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监
测技术规范》中有关金属元素的标准分析方法。
1.水环境监测
适时地对地表水质量现状及发展趋势进行评价,对生产和生活设
施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸
收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子
吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在0-1.00mg/L
范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990;
最低检出限分别为0.001、0.01、0.0008、0.0005mg/L,相对标准偏差分别
为1.16%、1.22%、1.15%、1.16%;该方法对标准样品的测试结果与国家
标准方法基本一致,相对偏差均不大于7.0%。张美月等[2]以二乙胺基二
硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火
焰原子吸收光谱法测定水样中的痕量镉,检测限为0.238μg/L,富集倍
数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结
果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,
通过测定水相残余铜,从而间接测定水和废水中的铝。
在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含
黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原
子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏
度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天
然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法
测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到0.03μg/L,
精密度3.7%。用本法测定标准水样GBW08608中的铬,所得结果与标
准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然
水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍
数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提
高了测定准确度。
痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得
多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技
术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子
吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]
自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫
外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于
砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))
等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,
通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化
物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在
电流为0.6 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈
良好的线性关系。As(III)和As(V)检出限分别为0.3μg/L和0.6μg/L;该方
法成功应用于食用鲜牛奶中无机砷的形态分析。
2.土壤、底泥和固体物分析
景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光
度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、
铜、铅、镉、铬的相对标准偏差分别为1.2%、1.9%、1.2%、5.2%和1.8%。
方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采
用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为
5.9%,检出限达到1.2×10-12g。宫青宇[11]采用直接固体进样、添加基体改
进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实
现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过
氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原
子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土
壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环
境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。
程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收
法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联
的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液
同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分
离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)
回收率分别为85.4%-94.8%和96.7%-106%。此法对实际样品中不同
价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大
相对标准偏差分别为0.9μg/L、6.4%和2.7μg/L、3.5%。王霞等[15]用冷
原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为0.02μg/L,
回收率在91%-101%之间。方法简便快速,线性范围宽。
3.大气环境质量监测
邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光
谱法测定居住区大气中硒,检出限为3.45ng/mL,线性范围为0-50ng/mL,
回收率94.6%-102.0%;其中砷对测定硒有一定干扰,其它金属元素对
测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检
出限为0.12 ng/mL,线性范围为0-35 ng/mL,回收率为95.1-102.1%,其
他金属元素对测定镍未见明显干扰[17]。
冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-
冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到
0.05ng;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<1.41%。
在0-2.0ng汞量范围内标准工作曲线线性关系良好。并且运用该法,对
贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院
地球化学研究所等地大气气态总汞进行了测定。
综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成
果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深
入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方
法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。
参考文献
〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、
镉〔J〕.化学分析计量,2008,17(1):53-54.
〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定
水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.
〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废
水中铝〔J〕.环境保护科学,2008,34(3):111-113.
〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕
量镉〔J〕.冶金分析,2007,27(1):61-63.
〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原
子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):
627-630.
〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法
测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.
〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生
原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.
〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜
牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.
〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重
金属〔J〕.中国土壤与肥料,2009,(1):74-77.
〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.
化学工程与装备,2009,(3):100-101.
〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含
量〔J〕.内蒙古科技与经济,2009,6:69.
〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱
法测定土壤重金属〔J〕.农业工程学报,2008,24(Supp.2):255-259.
〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底
泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.
〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底
泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.
〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出
液中汞〔J〕.光谱实验室,2008,25(5):981-984.
〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研
究〔J〕.现代预防医学,2004,31(6):879-880.
〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业
与健康,2000,16(6):36-37.
〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定
大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.
荧光光谱先要知道荧光,荧光是物质吸收电磁辐射后受到激发,受激发原子或分子在去激发过程中再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样以后,再发射过程立刻停止,这种再发射的光称为荧光。
密集光波分复用系统的波长测量技术
摘要:本文阐述密集光波分复用系统的概况、系统的测试要求,可调谐光滤器的结构,以及便携式光谱分析仪的应用方式与相关测量仪表的展望。
信息时代信息爆炸导致通信带宽需求或通信网络容量爆增。如近期北美骨干网的业务量约6-9个月翻一番,达到了所谓的“光速经济”的时期,它比微电子芯片性能发展的摩尔法则(约18个月翻一番)快2-3倍,而且迄今这种发展势头不减。面对这种发展趋势,各个通信发达国家都在积极研究设计新的宽带网络,如可持续发展网络CUN、下一代网络NGN、新公众网NPN、一体化网UN等,但其基础传输媒质的物理层都是密集光波分复用(DWDM)的光传送网OTN。不如此就不可能提供巨大的通信带宽,高度可靠的传输性能,足够的业务承载容量以及低廉的使用费用,确保网络的可持续发展,支持当前和未来的任何业务信号的传送要求。
1 密集光波分复用(DWDM)系统
DWDM系统主要由光合波器、光分波器和掺铒光纤放大器(EDFA)组成。其中EDFA的作用是由比信号波长低的高能量光泵源将能量辐射进一段掺铒光纤中,当载有净负荷的光波通过此段光纤一起传播时,完成光能量的转移,使在1530-1565m波长范围内各个光波承载的净负荷信号全都得到放大,弥补了光纤线路的能量损失。这样,当用EDFA代替传统的光通信链路中的中继段设备时,就能以最少的费用直接通过增加波长数增大传输容量,使整个光通信系统的结构和设计都大大简化,并便于施工维护。
EDFA在DWDM系统中实际应用时又分为功放或后置放大器(BA),预放或前置放大器(PA)和线路放大器(LA)3种,但有的公司为了简化,尽量减少设备品种,统一为OA,以便于维护。
目前商用的DWDM系统的每个波长的数据速率是2.5Gbps,或10Gbps,波长数为4、8、16、32等;40、80甚至132个波长的DWDM系统也已有产品。常用的有两类配置。一类是在光合波器前与在光分波器后设置波长转换器(Wavelength Transponder)OTU。这一类配置是开放式的,采用这种可以使用现有的1310nm和1550nm波长区的任一厂家的光发送与光接收机模块;波长转换器将这些非标准的光波长信号变换到1550nm窗口中规定的标准光波长信号,以便在DWDM系统中传输。美国的Ciena公司、欧洲的pirelli公司采用这类配置,他们是生产光器件的公司,通常,所生产的光分波合波器有较好的光学性能参数。如Ciena公司采用的信道波长间隔为0.8nm,对应100GHz的带宽,在1545.3-1557.4nm波长范围内提供16个光波信道或光路。但他们没有SDH传输设备,因此,在系统配置、网络管理方面不能统一考虑。此类配置的优点是应用灵活、通用性强,缺点是增加波长转换器、成本较高。另一类配置是不用波长转换器,将波分复用、解复用部分和传输系统产品集成在一起,这一类配置是一体的或集成的,这样简化了系统结构、降低了成本,而且便于将SDH传输设备和DWDM设备在同一网管平台上进行管理操作。这类配置的生产厂家如Lucent、Siemens、Nortel等,他们是SDH传输系统设备供应商,有条件这样做。他们在做4×2.5G32bpsDWDM系统设计时就考虑与4×10Gbps速率的兼容,考虑增加至8个波长、16个波长、基至40个波长、80个波长,以及2.5Gbps和10Gbps的混合应用,确保系统在线不断扩容,平滑过渡,不影响通信网的业务。当然,他们也提供开放式配置,或发送是开放式,接收为一体式的DWDM系统设备。
由于初期商用的EDFA带宽平坦范围在1540-1560nm,故早期使用的DWDM系统的复用光波长多在1550nm附近。后来实际EDFA的增益谱宽为35nm,约4.2THz,其中增益起伏小于1dB的谱宽在1539-1565nm之间,若以1.6nm(对应200GHz)的波长间隔,则最少可实现8波长,乃至16波长的同步放大;若以0.8nm(对应100GHz)的波长间隔,则最少可实现16个波长,乃至32个波长的DWDM系统,再加上EDFA约40dB的高增益,大于100mW的高输出功率,以及4-5dB的低噪声值等优越性能,故极大地促进了DWDM系统的快速发展。
正如电放大器那样,光放大器在放大光信号的同时也要引入噪声。它由光子的自发幅射(Spontaneous Emission)产生。此种噪声和光信号在光放大器中一起放大,并逐级积累形成干扰信号,即熟知的放大自发辐射(Amplified Spontaneous Emission,简写为ASE)干扰信号。这种ASE干扰信号经多经光放积累的功率会大到1-2mW,其频谱分布与波长增益谱对应。
这就是为什么经过若干个OLA放大后必须经过光电变换,分别取出各波长光路的电信号进行定时、整形与再生(3R),完成光数字信号处理的主要原因,它决定了电中继段或复用段的最大距离或最大光中继段数。当然,其他因素例如允许的总的色散值也决定此电中继段的最大距离,这要由系统设计作光功率预算时,哪个因素要求最严格来确定。
2 DWDM系统的测试要求
以SDH终端设备为基础的多波长密集光波分复用系统和单波长SDH系统的测试要求差别很大。首先,单波长光通信系统的精确波长测试是不重要的,只需用普通的光功率计测量了光功率值就可判断光系统是否正常了。设置光功率计到一个特定的波长值,例如是1310nm还是1550nm,仅用作不同波长区光系统光源发光功率测试的较准与修正,因为对宽光谱的功率计而言,光源波长差几十nm时测出的光功率值的差别也不大。可是,对DWDM系统就完全不同了,系统有很多波长,很多光路,要分别测出系统中每个光路的波长值与光功率大小,才能共发判断出是哪个波长,哪个光路系统出了问题。由于各个光路的波长间隔通常是1.6nm(200GHz)、0.8nm(GHz),甚至0.4nm(50GHz),故必须有波长选择性的光功率计,即波长计或光谱分析仪才能测出系统的各个光路的波长值和光功率的大小,因此,用一般的光功率计测出系统的总光功率值是不解决问题。其次,为了平滑地增加波长、扩大DWDM系统容量,或为了灵活地调度、调整电路和网络的容量,需要减少某个DWDM系统的波长数,即要求DWDM系统在增加或减少波长数时,总的输出光功率基本稳定。这样,当有某个光路、某个净负荷载体,即光波长或光载频失效时,又用普通光功率计测量总光功率值是无法发现问题的,因为一两个光载频功率大大降低或失效,对总的光功率值影响很小。此时,必须对各个光载频的功率进行选择性测量,不仅测出光功率电平值,而且还准确地测出具体的波长数值后,才能确切知道是哪个波长哪条光路出了问题。这不仅在判断光路故障时非常必要,而且在系统安装、调测和日常维护时也很重要。
此外,为了测量光放大器增益光谱特性,尤其是增益平坦度,需找出各波长或各光路的功率电平差值时,也必须测量出各光路的波长值和光功率值。
Nanofinder30三维共焦拉曼光谱仪及原子力显微镜系统具有极高的灵敏度(能在1分钟内探测到Si的第四级拉曼峰)和分辨率(空间分辨率:130nm@364nm,200nm@488nm,TERS技术可达50nm;光谱分辨率0.5cm-1/0.1cm-1),非常适用于DNA形貌分析以及拉曼光谱分析。
如果您需要了解拉曼光谱对DNA研究,请与我Email联系(),我可以提供您相关的学术论文做参考 。
至于论文写作其实不难,关键是数据要好,所以尖端的课题研究一定要尖端的科学仪器作为支持才能获得良好的结果,您如果需要做相关样品测试,可以直接电话联系。.