您当前的位置:首页 > 发表论文>论文发表

雷达论文范文

2023-03-05 01:39 来源:学术参考网 作者:未知

雷达论文范文

稀疏成份分析及在雷达成像处理中的应用

稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。

工程地质论文

工程地质是一门认知工程-地质相互作用规律和过程的科学,它的使命是保障人类工程活动的安全。下面是我为大家整理的工程地质论文,供大家参考。

工程地质论文 范文 一:隧道工程地质雷达检测分析

【摘要】通过实际工程应用,介绍地质雷达的特点、原理和探测解析 方法 ;在隧道工程的超前地质探测预报以及隧道结构检测的应用中,证明了地质雷达的实用性、先进性及其实际应用中的重要作用。

【关键词】公路隧道;地质雷达;检测;超前预报;应用

1、工程概况

小北山二号隧道为长隧道,按左、右线分离布设。左线隧道起讫里程ZK19+571~ZK21+091,长1520m,揭阳端洞口采用削竹式,洞口设计标高30.353m,惠来端洞门采用削竹式,洞口设计标高17.398m,坡高0.5%~-1.317%,隧道最大埋深约209m。右线隧道起讫里程ZK19+599~ZK21+081,长1482m,揭阳端洞口采用削竹式,洞口设计标高30.493m,惠来端洞门采用削竹式,洞口设计标高17.490m,坡度0.5%~-1.321%,隧道最大埋深约212m。隧道位于丘陵地区,山体地形陡峭,山体植被较发育,山体发育花岗岩孤石,大小不一。隧址区基底主要为燕山期花岗岩,局部见辉绿岩岩脉,覆盖层由粘土、全~强风岩组成,基岩由中~微风化岩组成。隧址区地下水类型主要为 潜水 ,含水层主要为第四系松散层的孔隙及中~微风化岩的风化裂隙。

2、地质雷达的发展及其应用

随着社会的高速发展,有很多的方便加上很多的仪器可以在岩土勘察中使用,重要的方法有弹性波法及其电磁波法。在实际工程当中经常使用的电磁波法就是地质雷达,隧道地震探测仪比较适合远距离宏观的地质问题探测;并且地质雷达方法可以结合高频电磁波而进行非常快的无损伤探测,因此频段非常高的话可以在隧道结构当中进行检测。公路的隧道工程埋深、规模以及数量随着时间的增加而不断地变多,而在施工的过程当中也遇到了很多复杂的工程地质条件。虽然说在设计以前都作了非常详细地质勘察,但是在隧道实际的开挖施工当中,还会有非常多的问题发生的。从这些方面就可以很好地说明,在隧道施工过程当中的围岩稳定性状况以及一些掌子面前方的实际情况,并且做出及时地超前预报。当隧道发生一些事故或者竣工以后,应该结合现行的规范上面要求以及隧道本身的结构特性,不但应该在隧道的表面进行观测以及净空断面进行测量,需要的时候还应该采用地质雷达进行一些更深入的检测,例如围岩的密实完整稳定的情况、钢拱架的分布情况、有无离析以及蜂窝麻面、衬砌混凝土的均匀一致性以及相对应的完整性以及衬砌有效厚度等等。经过实际的情况可以证明,地质雷达技术可以在隧道的施工当中作出非常详细的超前地质预报。现在,地质雷达检测技术已经发展到了单点探测以及连续探测的实时自动成图。而国外的国家探地雷达基本上是单脉冲雷达,其工作的频率在50到2G赫兹,最为代表性的国家是美国和加拿大。我们国家所生产的一系列地质雷达,结合地下工程的超前预报的特点,采用的是脉冲调制式,这个的探测距离非常大,而且分辨率也非常高,其工作的频率大约在160到220兆赫兹,其探测的距离可以达到40到60米,可以很好地适应超前地质预报以及部分的工程检测。

3、探测的原理以及方法

结合设计的图纸以及设计的任务书按照规定进行开展地质超前预报的工作,其预测应该是沿着隧道纵向三十米的范围以内对一些不安全的地质问题进行检查,对前面的地层岩性变化以及水文地质特征(软弱岩层的分布、断层发育及其影响带、水的赋存情况等)进行探测,对隧道围岩的级别进行分析,并列出一些施工的建议,确保隧道施工的安全,减少一些不必要的损失,为动态的设计提供所需要的地质参数,从而可以更好地为隧道施工进行服务。本次的地质预报使用的是地质雷达系统,运用了空气耦合型100兆赫兹的天线,结合探测的前方岩石的特点以及现场施工的条件,对距离30米左右进行详细地探测。而这次预报的工作面位于ZK19+735里处的地方,使用一些点测的方式,使用一系列的方法对工作面的正前方进行详细地预测。

4、数据的处理以及得出来的结果

对实际测量出来的资料用一系列的软件进行处理分析,再结合现场的岩性所具体的实际情况,选择一个比较适合的相对介电常数,进而得出来一些成果,在成果的解释当中,开始的时候,假如发现了有非常明显的反相位反射波组出现的话,就应该岩性变坏的一个表现;假如发现了有非常明显的正相位强波反射波组出现的话,就应该是岩层岩性变好的一个表现,结合反射波反射强度的实际大小就可以区分反射界面前方介质的一系列的特征。依据雷达数据处理结果并结合地质资料分析得出以下预报结果:(1)掌子面为强风化花岗岩,上方自稳能力差,中部伴随严重掉块,局部潮湿明显,推断围岩级别为Ⅴ级。(2)掌子面右侧前方4~10m(ZK19+739~ZK19+745)区域反射信号强烈,同相轴紊乱,推测此区域与掌子面情况类似,有明显破碎带,围岩完整性差,推断围岩级别为Ⅴ级。(3)掌子面前方10~15m(ZK19+745~ZK19+750)区域反射信号衰退稳定,同相轴平稳但仍存在断开处,推测此区域岩性略微好转,但依旧破碎且含水,推断围岩级别为IV级。(4)掌子面前方15~30m(ZK19+750~ZK19+765)区域信号较弱,加大增益后发现同相轴较为连续,推测此区域岩性好转,级别应为IV级。依据结果给出的建议:(1)ZK19+735掌子面围岩为强风化花岗岩,自稳能力差,局部潮湿明显,中部掉块严重,应严格控制进尺,加强支护,预防坍塌。(2)掌子面前方10m区域围岩与掌子面情况相似,稳定性差,破碎带明显,容易坍塌。严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。(3)掌子面前方20m区域后,岩性有所好转。建议采用上下台阶方法,并严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。

5、结束语

地质雷达在隧道工程施工或者是后期的运营过程当中,可以很好地对工程的质量进行详细地检测,可以更严格地控制工程的质量,更好地检查工程的缺陷。假如说天线的频率特性以及工作的方法有一定的影响,而地质雷达在对介质参数的探测当中,还存在很多的争议,那么经过不断地完善以及发展,地质雷达在隧道工程检测当中一定有一个非常重要的角色。综上所述,应用地质雷达在地质超前预报当中可以精准地探测预报隧道施工当中危害的工程施工安全的相关地质灾害。而地质雷达可以探测出来隧道的结构中重要的施工缺陷,可以为有问题的隧道提供一些非常可靠的依据,这样就可以提高工作的效率,并且节省一些资金。

工程地质论文范文二:福仁山隧道工程地质研究

【摘要】福仁山隧道是中国水电十四局承建的西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段的一座典型隧道工程。该隧道地处秦岭南麓低中山区,位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,内部组成与构造变形十分复杂,工程地质现象较为特殊,具有一定的研究意义。

【关键词】福仁山隧道;工程地质特征;地质构造

1福仁山隧道工程概述

目前在建的西成客运专线按国铁Ⅰ级、双线建设,设计时速250公里每小时,功能以客运为主,从西安出发,穿越秦岭经陕西汉中、翻越米仓山进入四川境内,经四川广元至江油与绵成乐客运专线相接直抵成都,预计线路通车后,将大大缩短西安到成都的直线距离。从西安到汉中仅需1小时、到成都需3小时。该项目由西安至四川江油段和成绵乐城际铁路两段组成,全长660公里,项目投资估算总额约为688亿元。西成客专陕西段全长342.9公里,建设工期5年。中国水电十四局负责西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段,正线全长31.81Km。该标段主要包括:罗曲隧道进出口路基工程94.7m,隧道工程4座(包括部分得利隧道6330m、福仁山隧道、罗曲隧道、范家咀隧道)总长度30.47Km,桥梁3座(金水河特大桥、酉水河大桥、金龙河大桥)总长度1.2457Km。福仁山隧道地处秦岭南麓低中山区,隧道范围平均海拔1200m,最高海拔为1634.1m,洞身地表起伏较大,地表自然坡度为30°~40°,分布有众多基岩“V”形侵蚀谷,多为南北展布,隧道区域山高坡陡,基岩裸露,沟壑纵横,地形复杂,植被茂密。隧道起讫里程为DK159+625.95~DK172+725.5。进口位于金水河牛角坝,出口位于酉水河宋家堰,最大埋深929m,最小埋深46m,洞身均位于直线以上,隧道以3‰上坡进洞至DK162+900后以8‰下坡出洞。进口位于金水河右岸坡地上,隧道中含有一座斜井,为本标段重点控制隧道。本隧道建筑限界采用《高速铁路设计规范》(TB10621—2009)中规定的限界尺寸,隧道内采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道内线间距为4.6m.曲线上隧道衬砌内轮廓不加宽,施工针对围岩情况采取短进尺、分部开挖和初期支护,二次衬砌及时跟进,以确保施工安全。

2沿线气候条件

本区域为亚热带湿润季风气候,特点是温暖湿润,四季分明,降水量多集中在夏秋季节,常有暴雨灾害,年平均气温15.2℃,极端最高气温38.4℃,极端最低气温-5.9℃,年平均降水量785.5mm,年平均蒸发量1160.5mm,最大积雪厚度4cm。

3工程地质特征

3.1地层岩性

隧道通过的地层主要有第四系全新统(Q4),志留系下统(S1),元古界中上统(Pt2-3)及太古界(Ar)的构造岩类。(1)第四系全新统(Q4)主要包括:膨胀土(Q4d19)、卵石土(Q4d17)、碎石土(Q4d17、p17)、块石土(Q4d18),多为灰黄色,粒径小于或等于2-60mm的约占10%,大于60-100mm的约占25%,大于200mm的约占55%。(2)志留系下统(S1):片岩夹大理岩(S1Sc+Mb),大理岩(S1Mb)、片岩(S1Sc)、主要为灰黄青灰色变晶结构,片状块状构造。(3)元古界中上统(Pt2-3):变粒岩夹大理岩(Pt2-3Gr+Mb),大理岩夹片麻岩(Pt2-3Mb+Mb)。多为灰褐色,浅灰色,风化厚度约为1-10mm。(4)太古界(Ar):片麻岩夹大理岩(Pt2-3Gr+Mb),灰褐色,浅灰色粒状变晶结构,块状结构,风化厚度2-8mm。(5)构造岩类主要包括:碎裂岩,多为青灰色、灰褐色,宽度约20-65m,工程地质较差。

3.2地质构造

福仁山隧道位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,相当于秦岭造山带的蜂腰部位,隧道主体位于佛坪窟窿的南半部,历经多次地质构造活动的影响,其内部组成与构造变形十分复杂。目前已经发现的主要断层包括:f66、f67、f68、f69、f70、f70-1、f71、f71-1、f71-2,其中f66为逆断层,产状N65°-N80°W(65°-N75°),破碎带宽约为10-30m,断层带物质成分为碎裂岩,局部夹断层角砾岩,断裂带内部岩体较为破碎,隧道洞身通过地段为DK159+856~DK159+878.4。f67为逆断层,产状N60°-N80°W(50°-N65°),断裂带宽30~40m,内部成分为断层角砾,洞身通过地段为DK160+281~DK160+318。另外,隧道段还发育两处背斜及一处向斜,背斜核部洞身中心里程为DK165+543~DK169+062,岩体破碎,节理发育,向斜核部未穿过洞身,富水,岩体破碎,节理发育,由于隧道区各地质体的发育时代,构造运动强烈,区域性大断裂贯穿东西,发育数条低序次断裂,岩石节理裂隙较发育,分布较多节理密节带,岩体较破碎-较完整。

3.3不良地质及特殊岩土

(1)隧道范围内不良地质为隧道进口处左侧分布的大理岩岩溶,岩溶现象主要发育在隧道进口左侧金水河右岸的大理岩中,以溶洞形式发育,溶洞直径约1-3m,可见延伸深度大于10m,不完全填充,充填物为角砾及杂砂土。(2)隧道范围内的特殊岩土为膨胀土,具弱-中等膨胀性。

4工程设计情况

针对福仁山隧道地层岩性多样、地质构造复杂、不良地质现象多发的工程地质特点,施工单位在详细的实地勘察和室内研究的基础上,制定了较为科学合理的设计方案:(1)洞口工程采用斜切式洞门,并设置明洞段,出口采用倒斜切式洞口边仰坡设置截水天沟,边坡采用锚网喷支护。(2)洞身工程隧道内部采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道采用复合式衬砌,初期支护采用喷锚支护设置喷混凝土,锚杆,钢筋网,钢架,二次衬砌等,各衬砌类型预留变形量,特殊地形地质地段对支护 措施 采用管棚,小导管等措施进行了加强。

参考文献:

[1]王毅才.隧道工程[M].北京:人民交通出版社,2013.

[2]兰州铁道学院.隧道工程[M].北京:人民铁道出版社,1977.

[3]张咸恭.工程地质学[M].北京.地质出版社,1983.

[4]高速铁路设计规范(TB10621—2009)[S].2009.

工程地质论文相关 文章 :

1. 工程地质勘探中的钻探技术应用论文

2. 地理地质论文

3. 环境工程地质在城市规划中的作用分析

4. 地质矿产经济发展论文

5. 探析煤矿地质测绘重点及地质因素研究论文

6. 探究当代水工环地质现状及发展趋势论文

有关低频信号发生器的论文范文

  低频信号发生器的设计
  摘 要:
  直接数字合成(DDS)是一种重要的频率合成技术,具有分辨率高、频率变换快优点,在雷达及通信等领域有着广泛的应用前景。文中介绍了一种高性能DDS芯片AD9850的基本原理和工作特点,阐述了如何利用此芯片设计一种频率在0—50
  kHz内变化、相位正交的信号源,给出了AD9850芯片和MCS51单片机的硬件接口和软件流程。

  关键词:直接数字频率合成 信号源 AD9850芯片
  概述:
  随着数字技术的飞速发展,高精度大动态范围数字/模拟(D,A)转换器的出现和广泛应用,用数字控制方法从一个标准参考频率源产生多个频率信号的技术,即直接数字合成(DDS)异军突起。其主要优点有:(1)频率转换快:DDS频率转换时间短,一般在纳秒级;(2)分辨率高:大多数DDS可提供的频率分辨率在1 Hz数量级,许多可达0.001 Hz;(3)频率合成范围宽;(4)相位噪声低,信号纯度高;(5)可控制相位:DDS可方便地控制输出信号的相位,在频率变换时也能保持相位联系;(6)生成的正弦/余弦信号正交特性好等。因此,利用DDS技术特别容易产生频率快速转换、分辨率高、相位可控的信号,这在电子测量、雷达系统、
  调频通信、电子对抗等领域具有十分广泛的应用前景。
  1. 低频信号发生器的组成
  图2.7为低频信号发生器组成框图。它主要包括主振器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表等。

  (1)主振器
  RC文氏桥式振荡器具有输出波形失真小、振幅稳定、频率调节方便和频率可调范围宽等特点,故被普遍应用于低频信号发生器主振器中。主振器产生与低频信号发生器频率一致的低频正弦信号。
  文氏桥式振荡器每个波段的频率覆盖系数(即最高频率与最低频率之比)为10,因此,要覆盖1Hz~1MHz的频率范围,至少需要五个波段。为了在不分波段的情况下得到很宽的频率覆盖范围,有时采用差频式低频振荡器,图2.8为其组成框图。假设f2=3.4MHz,f1可调范围为3.3997MHz~5.1MHz,则振荡器输出差频信号频率范围为300Hz (3.4MHz-3.3997MHz)~1.7MHz(5.1 MHz-3.4 MHz)。

  差频式振荡器的缺点是对两个振荡器的频率稳定性要求很高,两个振荡器应远离整流管、功率管等发热元件,彼此分开,并良好屏蔽。
  (2)电压放大器
  电压放大器兼有缓冲与电压放大的作用。缓冲是为了使后级电路不影响主振器的工作,一般采用射极跟随器或运放组成的电压跟随器。放大是为了使信号发生器的输出电压达到预定技术指标。为了使主振输出调节电位器的阻值变化不影响电压放大倍数,要求电压放大器的输入阻抗较高。为了在调节输出衰减器时,不影响电压放大器,要求电压放大器的输出阻抗低,有一定的带负载能力。为了适应信号发生器宽频带等的要求,电压放大器应具有宽的频带、小的谐波失真和稳定的工作性能。
  (3)输出衰减器
  输出衰减器用于改变信号发生器的输出电压或功率,分为连续调节和步进调节。连续调节由电位器实现,步进调节由步进衰减器实现。图2.9为常用输出衰减器原理图,图中电位器RP为连续调节器(细调),电阻R1~R8与开关S构成步进衰减器,开关S为步进调节器(粗调)。调节RP或变换开关S的挡
  (4) 功率放大器及阻抗变换器功率放大器用来对衰减器输出的电压信号进行功率放大,使信号发生器达到额定功率输出。为了能实现与不同负载匹配,功率放大器之后与阻抗变换器相接,这样可以得到失真小的波形和最大的功率输出。
  阻抗变换器只有在要求功率输出时才使用,电压输出时只需衰减器。阻抗变换器即匹配输出变压器,输出频率为5Hz~5kHz时使用低频匹配变压器,以减少低频损耗,输出频率为5kHz~1MHz时使用高频匹配变压器。输出阻抗利用波段开关改变输出变压器次级圈数来改变。
  2. 工作原理及结构
  函数信号发生器产生信号的方法有三种:一种是由施密特电路产生方波,然后经变换得到三角波和正弦波形;第二种是先产生正弦波再得到方波和三角波;第三种是先产生三角波再变换为方波和正弦波。在此主要介绍第一种方法,即脉冲式函数信号发生器

  3. 低频信号发生器的主要工作特性
  目前,低频信号发生器的主要工作特性如下:
  ①频率范围 一般为20Hz~1MHz,且连续可调。
  ②频率准确度 ±(1~3)%。
  ③频率稳定度 一般为(0.1~0.4)%/小时。
  ④输出电压 0~10V连续可调。
  ⑤输出功率 0.5~5W连续可调。
  ⑥非线性失真范围 (0.1~1)%。
  ⑦输出阻抗 50Ω、75Ω、150Ω、600Ω、5kΩ等几种。
  ⑧输出形式 平衡输出与不平衡输出。
  4. 低频信号发生器的使用
  低频信号发生器型号很多,但它们的使用方法基本类似
  (1)了解面板结构
  使用仪器之前,应结合面板文字符号及技术说明书对各开关旋钮的功能及使用方法进行耐心细致的分析了解,切忌盲目猜测。信号发生器面板上有关部分通常按其功能分区布置,一般包括:波形选择开关、输出频率调谐部分(包括波段、粗调、微调等)、幅度调节旋钮(包括粗调、细调)、阻抗变换开关、指示电压表及其量程选择、电源开关及电源指示、输出接线柱等。
  5. AD9850 芯片介绍
  AD9850是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成,并具有时钟产生功能。AD9850的DDS系统包括相位累加器和正弦查找表,其中相位累加器由一个加法器和一个32位相位寄存器组成,相位寄存器的输出与外部相位控制字(5位)相加后作为正弦查找表的地址。正弦查找表实际上是一个相位/幅度转换表,它包含一个正弦波周期的数字幅度信息,每一个地址对应正弦波中0。一360。范围的一个相位点。查找表把输入地址的相位信息映射成正弦波幅度信号,然后驱动10bit的DA变换器,输出2个互补的电流,其幅度可通过外接电阻进行调节。AD9850还包括—个高速比较器,将DA变换器的输出经外部低通滤波器后接到此比较器上即可产生一个抖动很小的方波,这使得AD9850可以方便地用作时钟发生器。AD9850包含40位频率/相位控制字,可通过并行或串行方式送人器件:并行方式指连续输入5次,每次同时输入8位(1个字节);串行方式则是在—个管脚完成40位串行数据流的输入。这40位控制字中有32位用于频率控制,5位用于相位控制,1位用于掉电(powerdown)控制,2位用于选择工作方式。在并行输入方式下,通过8位总线D0一D7将外部控制字输入到寄存器,在W—CLK(字输入时钟)的上升沿装入第一个字节,并把指针指向下一个输入寄存器,连续5个W—CLK的上升沿读入5个字节数据到输入寄存器后,W—CLK的边沿就不再起作用。然后在rQ—UD(频率更新时钟)上升沿到来时将这40位数据从输入寄存器装入到频率/相位寄存器,这时DDS输出频率和相位更新一次,同时把地址指针复位到第一个输入寄存器以等待下一次的频率/相位控制字输入。
  6 硬件设计
  要产生两路相位正交、频率可由外部控制的正弦信号,必须通过单片机编程来完成外部输入的频率数据(3个字节)与DDS38芯片(AD9850)内部频率相位控制字(5个字节)间的转换。单片机8051与AD9850芯片的接口既可采用并行方式,也可采用串行方式,本设计采用的是8位并行接口方式。由于需要产生VQ两路正弦信号,因此使用了2片AD9850芯片,这两路的频率相同,相位差90。。单片机8051的P1口(P1.0一P1.7脚)用作外部控制字输入,通过中断1和中断0读入外部频率数据,连续读3次,对应频率值的二进制数;单片机的P0口(P0.0一P0.7脚)用作频率/相位控制字输出,通过8位缓冲器74LS244作数据缓冲后加到2片AD9850芯片的8位控制字输入端(DO—D7脚),同时产生相应的DDS时序控制信号(一路复位reset1、二路复位reset2、一路字输入时钟W1、二路字输入时钟W2、一路频率更新时钟FU1、二路频率更新时钟FU2)加到AD9850芯片的对应管脚。AD9850的外部参考时钟信号(dk4Om)频率为40 MHz,由晶体振荡器产生。单片机8051的复位信号(reset)、中断0和中断1控制信号(intO、int1)由外部控制系统给出,从而实现两路相位正交、频率可控的正弦信号。该DDS信号源的硬件接口电路如图1所
  图1 DDS信号源硬件接口电路
  7. 软件控制
  此程序的功能就是要将外部输入的频率数据按照一定协议和算法变换成DDS芯片(AD9850)所能接受的格式,并送出相应的频率相位控制信号,从而使AD9850能产生两路相位正交、频率可控的正弦信号。下面给出程序设计输入、输出、变换算法。
  (1) 输入
  数据同步:上升沿时读人1个字节的频率数据,作为intl中断输入;
  数据写入:上升沿时频率更新1次,作为intO中断输入;
  8位数据:输入的频率字节。分3次输入,如图2所示。

  (2)输出
  单片机控制程序将产生下述输出信号加到DDS芯片(AD9850)的对应脚:
  reset1:一路DDS复位(一路AD9850第22脚);
  reset7.:二路DDS复位(-路AD9850第22脚);
  w1:一路数据同步(一路AD9850第7脚);
  w2:二路数据同步(二路AD9850第7脚);
  ful:一路数据写入(一路AD9850第8脚);
  fu2:二路数据写入(二路AD9850第8脚);
  P0口(P0.0一P0.7):8位频率/相位数据输出(AD9850的DO—D7脚)。
  (3)算法:程序中单片机输入频率数据F(3个字节)与输出频
  率数据△P(4个字节)间的变换算法见式(2)
  其中CLKIN为外部参考时钟(40 M Hz)。
  (4)程序流程:整个程序由主程序、中断0子程序、中断1子
  程序三部分构成。流程图略。
  8 结论
  对设计的信号源在不同频率下的输出波形进行了测试,结果完全能达到所要求的性能指标。而且AD9850工作可靠,对参考时钟波形要求不高,输出信号稳定且信噪比高,是一种性价比很高的芯片,正广泛应用于电子测量、跳频通信、雷达系统等领域。
  9 致谢

激光雷达的论文

激光雷达

laser radar

用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。

激光雷达在军事上可用于对各种飞行目标轨迹的测量。如对导弹和火箭初始段的跟踪与测量,对飞机和巡航导弹的低仰角跟踪测量,对卫星的精密定轨等。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统,对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光雷达可以对大气进行监测,遥测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。

激光雷达的应用
  ●孟敏 王学才

  激光雷达,采用类似于激光测距机的原理与构造研制,是一种工作在从红外到紫外光谱段的探测系统。通常,把利用激光脉冲进行探测的称作脉冲激光雷达,把利用连续波激光束进行探测的称作连续波激光雷达。目前,世界上已研制出用于火控、侦察、制导、测量、导航等多种功能的激光雷达。

  生化战高手:陆用激光雷达

  生化战剂的探测与防范,一直是军方关注的重点项目之一。传统的探测方法,主要由士兵携带探测装置,边走边测,速度慢、功效低,并易中毒。据报道,俄罗斯一改传统方式,成功地研制出“KDKhr—1N”远距离地面毒剂激光雷达探测系统,可实时地远距探测并确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数等,及时通过有、无线技术向部队控制系统报警,以采取相应的防毒措施。在这方面,德国军方也研制出更加先进的“VTB———1型 ”遥测激光雷达,使用两台9微米—11微米、可在40个频率上调节的连续波C02激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又可靠。

  飞行防撞高手:空用激光雷达

  飞机尤其是直升机在低空巡逻飞行时,极易与地面小山或建筑物相撞,这是世界许多国家关注并力求解决的一大难题。美国、德国和法国等近年费尽心血研制出了直升机障碍物规避激光雷达,成功地解决了这一难题。美国率先研制的直升机超低空飞行“障碍规避雷达”,使用固体激光二极管发射机和旋转全息扫描器,可探测直升机前方很宽的空域,地面障碍物信息可实时显示在机载平视显示器或头盔显示器上,保障了飞行员的安全飞行。随之,德国研制成功的“Hellas ”激光雷达更胜一筹,它是一种固体1.54微米成像,视场为32度×32度,能探测 300米—500米距离内直径1厘米粗的电线或障碍物,直升机采用之可确保飞行安全。法国和英国合研的吊舱载“CLARA”激光雷达,具有多种功能,采用C02激光器,不但能测得直升机飞行前方如标杆、电缆等微型障碍物,还可进行地形跟踪、目标测距和活动目标指示,保障飞行安全,这种激光雷达也适于飞机使用。

  捕获水下目标高手:海用激光雷达

  对水中目标进行警戒、搜索、定性和跟踪的传统方式,是采用体大而重的一般在600千克至几十吨重的声纳。自从发展了海洋激光雷达,即机载蓝绿激光器发射和接收设备后,海洋水下目标探测既简单方便,又准确无误。尤其是20世纪90 年代以后研制成功的第三代激光雷达上,增加了GPS定位、定高功能,实现了航线和高度的自动控制。如美国诺斯罗普公司研制的“ALARMS”机载水雷探测激光雷达,可24小时工作,能准确测得水下水雷等可疑目标。美国卡曼航天公司研制的水下成像激光雷达,更具优势,可以显示水下目标的形状等特征,准确捕获目标,以便采取应急措施,确保航行安全。

  此外,激光雷达还可以广泛用于对抗电子战、反辐射导弹、超低空突防、导弹与炮弹制导以及陆地扫雷等。

电子对抗技术论文

:随着电子技术、通信技术的快速普及和发展,军事领域已经引入了现代化、自动化的战斗设备,因此电子对抗成为了信息化背景下的一个新型战场。下面是我整理的电子对抗技术论文,希望你能从中得到感悟!

电子对抗中通信技术研究

摘 要:随着电子技术、通信技术的快速普及和发展,军事领域已经引入了现代化、自动化的战斗设备,因此电子对抗成为了信息化背景下的一个新型战场。电子对抗中,各个计算机设备之间的通信传输最薄弱,最容易受到攻击,经过多年的实践和研究,电子对抗中的通信技术已经诞生了自适应技术、跳频技术、差错控制技术、分集技术,同时为了能够更好地进行数据传输,未来电子对抗通信技术将逐渐向窄带、融合等方向发展,提高电子对抗的有效性。

关键词:电子对抗;通信;跳频;差错控制

中图分类号:TN97 文献标识码:A

电子对抗又被称为电子战斗或电子斗争,敌对双方可以使用电子技术设备、器材进行电磁斗争。电子对抗可以破坏、削弱敌方的电子设备应用成效,保证己方电子设备的综合利用。电子对抗起源于20世纪初,在两次世界大战中均得到应用,比如干扰对方通信网络。电子对抗的具体项目包括电子侦查、电子进攻和电子防御,电子侦查可以实现情报侦察和支援侦察;电子进攻可以实现电子干扰和电子摧毁;电子防御包括反干扰、反侦察等功能。电子对抗技术性强、时效性强、针对性强,贯穿了信息化作战的整个过程。

信息化战争中,所有的电子设备之间的信息共享、命令传输均采用通信技术,利用短波、微波、中波等传输信息和指挥命令,并且由于通信技术自身特点,其也是电子对抗中最容易受到破坏的地方。通信技术覆盖范围广、设备接入种类多、组网结构较为复杂,通信传输非常容易受到干扰因素影响,比如电磁辐射、多径时延、幅度衰落等,因此为了提高电子通信抗干扰能力,确保数据传输安全,不被敌方窃取、破坏和篡改,许多的通信学家对其进行了研究,提出了自适应技术、分集技术、跳频技术和差错控制技术等抗干扰措施,可以有效地提升战场通信的可靠性,确保战场数据的传输质量。

1.电子对抗中通信技术应用现状

通信对抗是电子对抗在通信领域中的一个分支,通信对抗主要内容包括通信干扰、通信侦查、通信抗干扰等方面,通信对抗的主要目的是接收和破译敌方密码,获取敌方的军事部署信息;获取通信传输相关的战术参数,掌握敌方的军力部署、作战指令等情报信息。通信对抗可以造成敌方的设备通信暂时失效,从而导致军事指挥系统部分或完全瘫痪,抑制对方的军事行动,保证我方军事通信系统的有效性。

军事设施通信收发地相距较远,因此信息传递中保密性、安全性、干扰性方案较为复杂,因此通信对抗过程中,需要提高电子通信的抗干扰能力,保证我方电子通信的可靠运行,目前常用的电子通信对抗技术包括自适应技术、跳频技术、差错控制技术和分集技术。

1.1 自适应技术

军队电子通信传输过程中,自适应技术可以提高通信传输的抗干扰能力,通过自动化地优化通信系统的传输频道、结构和参数,可以根据战场通信环境的变化动态地改变通信传输信号,以便能够提高战场通信的抗干扰能力。自适应技术可以动态分析战场通信的链路质量,根据实际通信传输质量扫描多个信道,参考天气状况、太阳离子、经纬度变化、敌方干扰情况进行优化,发布LQA信号探测命令之后,可以为战场通信自动选择合适的通信频率,构建一个最优化的通信链路,自动地将通信内容切换到最佳频道上,改善军事通信过程存在的信号衰落情况,提高军事通信抗干扰能力,保持一个较好的通信传输质量。

1.2 跳频技术

跳频是军队通信传输最常用的扩频方式之一,通信双方可以利用一定的规律实现载波频率的随机跳变。从时域方面来看,跳频信号是一个多频率的频移键控信号;从频域方面看,跳频信号的频谱是在一个很宽的频带上利用不等间隔随机跳变的。其中,跳频控制器是核心的部件,其可以采用伪随机码、多频频移键控等模式改变载波信道,在一定范围内实现通信信号的跳变、同步和自适应控制,控制数据发送和接收。军事通信采用跳频技术,可以保证通信信道的隐蔽性,敌方很难发现跳频规律,就无法截获通信传输内容。跳频通信具有较强的抗干扰能力,即使通信频带的部分频点被干扰,用户依然可以在其他频点上进行正常地通信传输,由于跳频通信系统是一种瞬时窄带系统,易与其他的战场通信系统兼容,因此非常有利于军事部署使用。

1.3 差错控制技术

军事通信涉及部门、设备较多,因此承载的业务数量也是海量的,受到敌方攻击、自然条件的影响非常大,电子对抗非常容易造成通信传输存在乱码和错码现象,数据传输过程中自身也会发生丢包现象,因此为了保证通信传输的准确度,需要采用差错控制技术。差错控制技术经过多年的使用和改进,已经诞生了自动重发请求、前向纠错技术和混合纠错技术,这些技术可以大大地提升数据信息、控制命令的传输精确度。电子对抗通信传输采用自动重发请求是指当某一个军事部门接收到数据包之后,其可以对其进行验证是否存在错误,如果存在错误,则可以自动地请求发送方重新发送数据包。同时,为了能够提高数据通信和差错控制效率,如果接收方收到的错误码元较少,可以自行采用前向纠错技术改正错误的码元,将其调整为准确的信息包。混合纠错就是集成了前向纠错和自动重发请求的优点,可以快速化地、有效地对错误码元进行改正,保障通信传输的时效性、准确性和完整性,进一步提升军事通信应用成效。

1.4 分集技术

军事通信应用环境非常复杂,通信信道也会根据不同的传输距离存在衰落情况,有的信道具有较强的传输信号、有的信道传输信号则非常弱,因此为了保证信道传输信号的质量,可以利用分集技术,有条件地选择、组合信息传输通道,补偿衰落信道传输时造成的损耗,并且可以使两个或更多的接收天线均衡传输信号。军事通信环境中,各个通信设备均可以采用分集技术,可以从空间、时间、频率和角度等方面进行分集,分集技术可以选择不同的信道,将其组合在一起,并且不需要增加无线发射机、接收机的传输功率和带宽,可有效地改善军事环境无线通信的传输质量。

2.电子对抗中通信技术未来发展趋势   近年来,随着通信技术在电子对抗中的应用和改进,战场通信采用的对抗措施也越来越多,由于战场通信环境日趋复杂,传统的抗干扰技术已经逐渐不能适应现代战争需求,因此电子对抗中通信技术发展呈现出以下趋势:

(1)融合多种自适应技术,改进通信传输质量。军事电子对抗涉及的硬件、软件和传输资源非常多,因此采用的自适应技术具体措施也非常多,单一的自适应技术无法最大程度地提升军事通信质量,可以采用融合传输技术,整合多种自适应技术,形成一个集成的军事通信系统。军队通信时可以将智能天线、多输入多输出、空分编码、软件天线、软件无线电和数字波束成型技术进行整合,形成一个全自动化的军队通信传输系统,进一步改进和提高通信抗干扰能力。

(2)通信抗干扰技术从低速窄带向高速宽带发展。军队通信传输系统承载的业务增多,传输数据也亟需较高的速率和带宽,因此通信抗干扰技术也需要从窄带向高速宽带发展迈进,以便能够延长前向纠错长度、加入较多密码保护码元,可以大幅度提高通信传输的抗干扰性能,满足军队多业务高速率传输带宽需求。

(3)军事通信传输跳频码序列优化。跳频抗干扰技术可以采用伪随机码,比如Gold序列码、Walsh序列码、M序列码等技术。为了更好地防止军事通信由于跳频技术自身缺陷等而被黑客、病毒、木马攻击,可以引入非线性动力学混沌理论、模拟退火思想、机器学习算法等优化序列编码,寻找一个更好的跳频序列码,以进一步提升军事通信抗干扰能力。

(4)军事通信抗干扰技术可视化、智能化。军事通信已经随着软件设计、电子器件开发技术的提升向前迈进,军事通信抗干扰监控过程中引入了先进的数字化、可视化技术,这样就可以把干扰信号发生的时间、频段等进行定位,以利于干扰抑制军事通信信号精准识别,选择干扰较低或无干扰的频段进行军事通信传输。

结语

通信对抗可以使用专业的侦察设备、干扰设备等搜寻、定位、识别、截获敌方战场的相关传输数据,也可以干扰对方的通信传输,造成敌方通信系统瘫痪,直接打击敌方的军事部署。因此,为了提高通信传输的抗干扰能力,人们针对通信对抗提出了抗干扰措施,利用自适应、跳频、差错控制和分集技术等实现阻拦式干扰、瞄准式干扰,显著提高通信传输质量和能力,保证战场通信设备正常、可靠和安全地运行。

参考文献

[1]陈超.自适应跳频技术在通信对抗中的应用研究[D].南京邮电大学,2014:1-7.

[2]赵鹏,庞天杰.信息战电子对抗中大数据引导通信优化仿真[J].计算机仿真,2015,32(1):15-18.

[3]张健.电子对抗环境下飞行器测控通信技术的发展[J].太赫兹科学与电子信息学报,2006,4(2):81-88.

[4]白春惠,赵凌伟.数据链网络通信对抗技术及试验系统研究[J].无线电工程,2014,10(6):63-65.

雷达电子对抗新技术探讨

0 前言

所谓雷达电子对抗,具体指的是以雷达充当探测传感头的探测以及武器作战系统的相关电子技术。随着现代化科学技术的迅猛发展,雷达电子对抗在诸如压制式干扰、欺骗式干扰以及组合式干扰等现有电子对抗技术基础之上又有新的进展。纵观当今雷电电子对抗发展现状,结合国外雷达电子战一体化趋势,对雷达电子对抗新技术进行深入分析和探讨具有重要意义。针对雷达电子战一体化进行合理性分析,同时对超宽带雷达今后发展趋势进行展望,提炼出新的雷达电子对抗技术和作战方式,并且极有可能在今后与雷达对抗中获得验证和普遍应用。

1 雷达电子对抗新技术分析

由于普通的雷达数据链和雷达传感器不能满足信息侦查传递的要求,九十年代,美国研发出雷达通用数据链,通用数据链除了在控制组织之间传递交换更多的数据之外还能将侦察机所获取的大容量信息传递到控制中心,雷达通用数据链是用于监视侦查抗干扰的通信传感器,是用于平台和地面终端的通信设备,当国防部队或是政府等高端机构需要秘密情报时,就可以采用侦察机的雷达通用数据链来传递信息情报,很多国家的国防部都需要通用数据链作为网络中心传感器和地面终端的传输纽带,通用数据链主要有五大类数据链路组成,一类是地面平台八万英尺高的通信平台,第二类是高于第一类七万英尺的空中平台,第三类的空中平台高度有五十万英尺,第四类和第五类恶毒数据链路属于卫星的运作链路,一类用于七百五十海里的轨道的卫星运行,另一个运用在更高高度的卫星运行。

1.1 相干噪声干扰

以往的噪声干扰主要有两种方式,分别是非相关宽带阻塞式干扰以及测频瞄准式窄带阻塞式干扰,最为显著的特点体现在其与雷达信号之间并不具备任何联系。正是因为非相干噪声信号和雷达目标回波信号之间不具备联系,因此,在雷达信号的处理过程中,极有可能造成这样一种后果,即:相比较于噪声而言,回波处理有所增加。通过适当的增加噪声干扰功率可以确保干扰效果,此外,为了实现对能量的充分利用,需要选择瞄准式干扰。假如选择相干噪声干扰,就不能使雷达信号处理增益有所增加,此时所需要的噪声干扰功率也相对不高,并且因为所选择的是相干噪声,具备精确瞄频信号,因此,可以确保对噪声干扰能量进行充分有效的利用。相干噪声干扰属于转发式噪声范畴,在完成雷达信号的接收之后,对其进行相应的噪声调制处理,再将经过处理的雷达信号进行转发,这样包括连续波在内的诸多种波形形式均可以得到实现。与之前的噪声干扰相比较而言,相干噪声干扰所需要的干扰能量十分有限,由此可以推断出,在干扰能量一样的情况下,相干噪声干扰所作用的距离可以达到更远。

传统的噪声干扰是采用非相干宽带阻塞式干扰或测频瞄准式窄带阻塞式干扰,其一大特点是与雷达信号不相关。正由于非相干噪声信号与雷达目标回波信号是非相干的在雷达如机载火控雷达和导弹末制导雷达的信号处理中,对回波的处理增益相对噪声来说就可 能会变大,大约可增加十几dB。为了达到较好的干扰效果,就必须加大噪声干扰的功率, 同时为了有效的利用能量,需要采用瞄准式干扰。

1.2 对单脉冲雷达的角度欺骗干扰

根据单脉冲雷达工作机理,可以确定其抗角度欺骗干扰的性能十分优越,这也在一定程度上促使其近些年来保持迅猛的发展态势,并且影响范围越来越广,特别是在导弹控制以及雷达引导等方面,其应用日益普遍。有关干扰单脉冲雷达技术的研究最初始于上世纪五十年代,六十年代开始部署战术自卫干扰系统,随后得到美国及前苏联的关注,展开了一系列的试验,并取得了相应的成果。我国在此领域经过十几年的研究,也已经取得初步成果,积累了一定的经验,但在干扰效果有效方式方面较为欠缺。结合单脉冲雷达特点,在干扰技术的设计方面要注意以下几点:1)针对雷达设计以及制造方面存在的不足,选择闪烁干扰或者是间断干扰等;2)结合雷达工作基本原理,选择交叉极化干扰或者是交叉眼干扰等;3)选择有源诱饵假目标。

首先,交叉极化干扰。所谓交叉极化干扰,主要指的是干扰信号与雷达回波,在极化方向上是互相垂直的。针对幅度单脉冲雷达而言,交叉极化干扰会导致相反的误差信号,这样就可以达到单脉冲雷达角跟踪能力彻底消失的效果;对于相位单脉冲雷达而言,交叉极化干扰会导致误差信号出现畸变的后果。在交叉极化干扰不存在的情况下,雷达主波束相位波前不会发生变化,在存在交叉极化干扰的情况下,天线瞄准轴位置的相位波前会出现一百八十度的相移。交叉极化干扰有两大要求,其一就是可以实现对雷达所发射的信号的极化进行准确的测量;其二就是具备对正交极化信号的转发功能,交叉极化欺骗干扰框架示意图详见下图所示。

交叉极化正交性还可以根据输入的信号极化对天线极化进行调整,新阿红极化参数和天线极化信号的生成并不是必备条件。

其次,交叉眼干扰。在本体上进行设备设置,所设置的两组设备需要具备一致的收发信号通路,同时还要确保在走向上是互相交叉的。在设备接收机捕获到单脉冲雷达信号后,会通过发射天线将其辐射出去,如果在作用雷达处的信号保持一百八十度的相位差,并且幅度比与一接近的情况下,所导致的后果将是单脉冲雷达探测本体等效位置中心出现明显偏置,这样会造成单脉冲雷达跟踪与本体相偏离。而只有可以确保单脉冲雷达在本体两套设备连接天线的法向中心线的交叉眼干扰才可以称之为有效。

之前的交叉眼干扰对相对位置关系以及相位差条件的要求较为严格,从而在一定程度上对其广泛应用造成限制。随着现代化科学技术的迅猛发展,雷达电子战技术也取得长足发展,使得我们有条件对交叉眼干扰进行改进和完善。当前,发达国家正在积极致力于定位准确、识别性格优越的雷达告警及侦察设备的相关研究,可以预见不久,借助本体向交叉眼干扰设备提供辐射源也就是雷达精确位置信息将成为现实。一旦交叉眼干扰设备具备了此种性能,角度欺骗可信度将会极大的提升,与此同时,借助对实时反馈信息的研制,设备状况也会有所改善,从而向辐射源偏离本体提供引导。这边是依托于辐射源定位实时校准的自适应引导交叉眼干扰。

1.3 对宽带及超宽带雷达的干扰

脉冲压缩波形雷达是宽带及超宽带信号的主要适用范围,其中主要涉及脉压雷达、SAR以及ISAR等。其中,脉压雷达由于具备超宽带线性调频信号,因此其距离分辨率相对较高;SAR以及ISAR雷达成像主要依赖于提升距离维以及角度维的分辨率,而雷达的距离维与角度维在数据方面存在一定关系,简单的说,只需要干扰距离维,将会导致成像功能失效的后果,SAR以及ISAR采取脉冲压缩体制实现距离维探测,所以,对SAR以及ISAR成像干扰便可以视为脉冲压缩雷达干扰。按照脉压雷达体制的相关规定,线性调频、脉间频率步进以及相位编码信号是比较具有代表性的几种信号形式。从本质上讲,脉间频率步进雷达波形就是线性调频信号的脉间离散化形式,所以,其同样具备线性调频信号距离特性。

线性调频脉压雷达抗噪声干扰能力及抗欺骗干扰性能均十分优越,一旦遇到噪声干扰信号,雷达信号处理机制与信号相匹配,这样,滤波器将会输出更大的信干比。为确保有效的噪声干扰,需要保持雷达接收机输入端干扰信号功率强于回波信号功率,但依据目前技术水平,实现起来还存在一定难度。通过增加多抽头延时网络的可变加权系数,可以导致幅度调制效应,这样所得到的干扰信号具备欺骗性压制干扰效果。

2 结语

综上所述,随着现代化科学技术的迅猛发展,雷达电子对抗在诸如压制式干扰、欺骗式干扰以及组合式干扰等现有电子对抗技术基础之上又有新的进展。在研究电子对抗以及雷达电子战一体化技术的过程中,发现通过相干噪声得到性能较高的干扰技术手段只需要付出极小的代价;在单脉冲雷达角度欺骗干扰方面,大功率交叉极化干扰以及对来袭目标进行实时校准判定的交叉眼干扰极具发展空间;宽带及超宽带雷达干扰具有一定难度和挑战性,比较有效的方式就是利用复合式干扰。

参考文献:

[1]晁磊,基于雷达对抗研究的电子对抗仿真系统设计与实现,华中科技大学,2011,01.

[2]李丹、童天爵、毛少杰、闵荣宝,雷达网电子对抗仿真及雷达自卫距离的修正,系统仿真学报,2006,05.

[3]贾蒙、李辉、沈莹、张安,机载雷达电子对抗系统的仿真,火力与指挥控制,2010,04.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页