指纹,由于其具有终身不变性、唯一性和方便性,已几乎成为生物特征识别的代名词。指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点(minutiae)。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。其实,我国古代早就利用指纹(手印)来签押。1684年,植物形态学家Grew发表了第一篇研究指纹的科学论文。1809年Bewick把自己的指纹作为商标。1823年解剖学家Purkije将指纹分为九类。 1880年,Faulds在《自然》杂志提倡将指纹用于识别罪犯。1891年Galton提出著名的高尔顿分类系统。之后,英国、美国、德国等的警察部门先后采用指纹鉴别法作为身份鉴定的主要方法。随着计算机和信息技术的发展,FBI和法国巴黎警察局于六十年代开始研究开发指纹自动识别系统(AFIS)用于刑事案件侦破。目前,世界各地的警察局已经广泛采用了指纹自动识别系统。九十年代,用于个人身份鉴定的自动指纹识别系统得到开发和应用。
由于每次捺印的方位不完全一样,着力点不同会带来不同程度的变形,又存在大量模糊指纹,如何正确提取特征和实现正确匹配,是指纹识别技术的关键。指纹识别技术涉及图像处理、模式识别、机器学习、计算机视觉、数学形态学、小波分析等众多学科。
指纹识别系统是一个典型的模式识别系统,包括指纹图像获取、处理、特征提取和比对等模块。
指纹图像获取:通过专门的指纹采集仪可以采集活体指纹图像。目前,指纹采集仪主要有活体光学式、电容式和压感式。对于分辨率和采集面积等技术指标,公安行业已经形成了国际和国内标准,但其他还缺少统一标准。根据采集指纹面积大体可以分为滚动捺印指纹和平面捺印指纹,公安行业普遍采用滚动捺印指纹。另外,也可以通过扫描仪、数字相机等获取指纹图像。
指纹图像压缩:大容量的指纹数据库必须经过压缩后存储,以减少存储空间。主要方法包括JPEG、WSQ、EZW等。
指纹图像处理:包括指纹区域检测、图像质量判断、方向图和频率估计、图像增强、指纹图像二值化和细化等。
指纹分类:纹型是指纹的基本分类,是按中心花纹和三角的基本形态划分的。纹形从属于型,以中心线的形状定名。我国十指纹分析法将指纹分为三大类型,九种形态。一般,指纹自动识别系统将指纹分为弓形纹(弧形纹、帐形纹)、箕形纹(左箕、右箕)、斗形纹和杂形纹等。
指纹形态和细节特征提取:指纹形态特征包括中心(上、下)和三角点(左、右)等,指纹的细节特征点主要包括纹线的起点、终点、结合点和分叉点。
指纹比对:可以根据指纹的纹形进行粗匹配,进而利用指纹形态和细节特征进行精确匹配,给出两枚指纹的相似性得分。根据应用的不同,对指纹的相似性得分进行排序或给出是否为同一指纹的判决结果。
现在的计算机应用中,包括许多非常机密的文件保护,大都使用“用户ID+密码”的方法来进行用户的身份认证和访问控制。但是,如果一旦密码忘记,或被别人窃取,计算机系统以及文件的安全问题就受到了威胁。
随着科技的进步,指纹识别技术已经开始慢慢进入计算机世界中。目前许多公司和研究机构都在指纹识别技术领域取得了很大突破性进展,推出许多指纹识别与传统IT技术完美结合的应用产品,这些产品已经被越来越多的用户所认可。指纹识别技术多用于对安全性要求比较高的商务领域,而在商务移动办公领域颇具建树的富士通、三星及IBM等国际知名品牌都拥有技术与应用较为成熟的指纹识别系统,下面就对指纹识别系统在笔记本电脑中的应用进行简单介绍。
众所周知,在两年前就有部分品牌的笔记本采用指纹识别技术用于用户登录时的身份鉴定,但是,当时推出的指纹系统属于光学识别系统,按照现在的说法,应该属于第一代指纹识别技术。光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。
在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。
因此出现了第二代电容式传感器,电容传感器技术是采用了交替命令的并排列和传感器电板,交替板的形式是两个电容板,以及指纹的山谷和山脊成为板之间的电介质。两者之间的恒量电介质的传感器检测变化来生成指纹图像。但是由于传感器表面是使用硅材料 容易损坏 导致使用寿命降低,还有它是通过指纹的山谷和山脊之间的凹凸来形成指纹图像的 所以对脏手指 湿手指等困难手指识别率低。
发展到今天,出现第三代生物射频指纹识别技术,射频传感器技术是通过传感器本身发射出微量射频信号,穿透手指的表皮层去控测里层的纹路,来获得最佳的指纹图像。因此对干手指,汉手指,干手指等困难手指通过可高达99@%,防伪指纹能力强,指纹敏感器的识别原理只对人的真皮皮肤有反应,从根本上杜绝了人造指纹的问题,宽温区:适合特别寒冷或特别酷热的地区。因为射频传感器产生高质量的图像,因此射频技术是最可靠,最有力有解决方案。除此之外,高质量图像还允许减小传感器,无需牺牲认证的可靠性,从而降低成本并使得射频传感器思想的应用到可移动和大小不受拘束的任何领域中。
到万方数据库去搜索一下,记得曾经看到过一片:在MTK平台上加入指纹识别的毕业论文。这个方案和产品是真实的产品的,应该够你参考的。
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!
图像识别技术研究综述
摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。
关键词:图像处理;图像识别;成像
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02
图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。
1 图像处理技术
图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。
5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。
2 图像识别技术
图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:
2.1 指纹识别
指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。
2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。
2.3 文字识别
文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。
3 结束语
人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。
参考文献:
[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.
[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.
[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.
[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.
[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.
[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.
点击下页还有更多>>>图像识别技术论文