您当前的位置:首页 > 发表论文>论文发表

几何论文研究方法

2023-03-04 01:48 来源:学术参考网 作者:未知

几何论文研究方法

小学教材将几何图形的学习内容分为几个阶段:初步认识立体图形——认识平面图形——平面图形的测量与计算——再次认识立体图形——立体图形的测量与计算。教材按照“立体图形——平面图形——立体图形”的顺序进行编排,让学生体会从整体到部分再到整体的学习思路,也明确了平面图形和立体图形的关系。对此,我认为教师在教学中要注重让学生想象、动手操作、观察、探究、总结,让学生由浅入深地学习几何知识,找到形体之间的联系,从而发展空间思维。
一、注重生活中的形体,让数学生活化
数学来源于生活,又服务于生活。教师要结合教材,把生活中随处可见的几何图形与所教知识联系在一起开展教学。这样学生就能在不知不觉中获得数学知识。
1.重视直观操作。学生是学习的主人,让学生主动参与数学活动,并通过想象、动手、观察、初步认识几何图形。
例如,在教学“认识角”时,我是这样导入新课的:红领巾是少先队员的标志,让学生说说红领巾是什么形状的;然后用多媒体课件出示红领巾、五角星、剪刀等,让学生在图中找出角;接着让学生在教室里找角。我用这样的导入方式吸引学生的注意力,激发学生的学习兴趣,让学生对角有一个直观认识。
2.重视动手操作。课程标准指出:动手操作是学生学习数学的重要方式之一。动手操作不仅可以让学生强化数学与生活的联系,还可以使学生在未达到抽象思维水平之前,通过自主探索的形式学习数学知识。
例如,在教学“圆的周长”时,我让学生在课堂上测量圆的周长与直径,经过测量,学生发现:圆的大小与半径或直径的长短有关,但具体是什么关系呢?由于学生学过“圆由正方形切割而来”的知识,他们便猜测圆的周长比直径的四倍少一点。我再让学生动手测量圆的周长与直径。通过小组合作观察、交流,学生发现:在测量过的圆中,不管是大圆还是小圆,每一个圆的周长都是它直径的3倍多一些。我顺势引出圆周率的知识,引导学生通过自己的努力一步一步理解圆的周长。
二、注重迁移的学习方法,构建知识体系
数学知识具有紧密的联系性。教师在教学时要注重知识的前后联系,合理应用转化思想,引导学生用旧知识来探索新知。
例如,在探究圆的面积时,教师可以问学生:“以前学的是直线图形的面积,而今天学的是曲线图形的面积,能否将圆转化成学过的图形,怎样转化?”教师要帮助学生开拓思路,给予学生充分的时间与空间,让学生利用手中的学具画一画、折一折、剪一剪、拼一拼,然后通过观察、探究、讨论,使他们经历“猜想——操作——推导”的过程。经过教师的指点,有学生发现:可以将圆剪成若干个小块再拼成平行四边形或长方形。通过思考,学生认为拼成长方形更容易理解,因为圆的周长的一半相当于长方形的长,圆的半径相当于长方形的宽,长方形的面积=长×宽,因此圆的面积=圆周长的一半(C/2)×半径(r)=2πr/2×r=πr2。
三、注重多媒体动态演示,优化教学效果
1.从平面到立体,激起学生的学习兴趣。小学生的好奇心强,求知欲旺盛,喜欢动手操作,但是他们的空间思维处于萌芽阶段,直观思维仍占主导地位。在教学时,教师应该重视动手操作活动,将操作、观察、讨论活动贯穿教学始终,让学生通过找一找、摸一摸、比一比等实践活动加深体验、掌握知识、培养技能。但是要高质量地完成以上一系列的活动,单是靠动手操作是难以实现的,必须要借助多媒体把静态的教材内容变成动态的教学内容,化抽象为具体,化平面为立体,让教学变得生动起来,从而调动学生的学习兴趣。
例如,在教学“圆柱的认识”时,我先用多媒体课件出示一个长方形和一个正方形,然后以长方形其中的一边为轴旋转一周后形成一个圆柱;以正方形其中的一边为轴,旋转一周后会形成一个圆柱。学生对圆柱有了初步认识后,我让他们举例说说生活中有哪些物体是圆柱,并说说圆柱的特点。用多媒体课件演示的过程中沟通了平面图形与立体图形的联系,同时充分调动了学生的学习兴趣和积极性,发展了学生的空间思维。
2.激发学生的求知欲,培养学生的探索精神。例如,在推导圆的面积公式时,有的学生把圆纸片对折4次、8次、16次……分成8份、16份、32份……为了让学生体会极限的数学思想,我问:“能让折成的图形更像平行四边形吗?”学生无法再继续折纸时,我用多媒体课件展示(从4份开始,分的份数逐渐增多),分的份数越多,拼成的图形越来越接近平行四边形了,而把圆平均分成128份后,拼成的图形看起来就很像长方形了。通过多媒体课件展示教学内容可以弥补动手操作与想象的不足,帮助学生进一步感知“平均分的份数越多,拼成的图形越来越像平行四边形或长方形”。最终在多媒体课件的帮助下,学生顺利推导出圆的面积公式。
四、注重课后练习,培养学生的应用意识
当学生掌握学习的方法后,教师要让学生进行基础练习,以提高解决实际问题的能力。
1.基础知识的应用。简单的练习就是直接利用公式解题,这种练习是针对全体学生的,可以使大部分学生巩固基础知识,让少部分学困生学有所成。
例如,在教学“认识三角形”后,我出示练习题:(1)一个三角形有( )条边,有( )个角,有( )个顶点,有( )条高;(2)一个三角形的每条边的长度都相等,它的周长是45厘米,边长是多少厘米?
2.解决实际问题。课程标准强调要培养学生的应用意识,当面对实际问题时,学生能主动尝试从数学角度解决问题。因此,学生在学完一个几何图形的知识后,要具备解决实际问题的能力。
例如,在学完“圆的面积计算”后,我出示练习题:(1)一块圆形空地的直径是20米,每平方米草皮是8元,把这块圆形空地铺满草皮需要多少钱?(2)某小区有一个圆形花坛,直径为6米,在它周围用健身石铺了一条宽2米的小路,这条小路的面积是多少平方米?
总之,几何图形的教学策略有很多,但不管是哪种策略,只要是能激发学生的学习兴趣、提高学生的学习积极性、有助于培养学生的思维能力的策略,都是好的教学策略。教师只有运用恰当的教学策略进行教学,学生的学习兴趣才会高涨,教学效果才会理想。

数学论文选题与写作方法

关于数学论文选题与写作方法

关于数学论文选题与写作方法是怎样的呢?了解关于数学论文选题与写作方法是撰写数学论文的重要的前提。欢迎阅读我整理的关于数学论文选题与写作方法,希望能够帮到大家。

引言

在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。

数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。

1撰写数学论文应具有原则

1.1创新性

作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。

1.2科学性

科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。

1.3规范性

规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。

2撰写数学论文忌讳

2.1大题小作

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。

2.2关门写稿

一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。

2.3形式思维混乱

科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。

3关于数学论文选题

数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:

(1)需要性选题应从社会需要和科学发展的需要出发。

(2)创新性选题应是国内外还没有人研究过或是没有充分研究过的问题。

(3)科学性选题应有最基本的科学事实作依据。

(4)可行性选题应充分考虑从事研究的主客观条件,研究方案切实可行。

4关于数学论文文风

4.1语言表达确切

从选词,造句,段落,篇章,标点符号都应正确无误。

4.2语言表达清晰简洁

语句通顺,脉络清楚,行文流畅,语言简洁。

4.3语言朴实

语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。参考文献(略)

知识扩展:数学论文范文

题目:浅谈平面向量的教学设计

向量的基础知识较多,且与其他很多部分知识都有联系,如向量与函数的联系、向量与三角函数的联系、向量与立体几何的联系、向量与解析几何的联系等。因此,有必要加强对向量这一章节的进一步研究和总结。

一、从运算的角度来讲,向量可分为三种运算

(一)几何运算

本章教材给出了三角形法则,平行四边形法则,多边形法则。利用这些法则,可以很好地解决向量中的几何运算问题,从中去体会数形结合的数学思想。

(二)代数运算

1、加法、减法的运算法则;2、实数与向量乘法法则;3、向量数量积运算法则。

(三)坐标运算

在直角坐标系中,向量的坐标运算有加、减、数乘运算、数量积运算。通过向量的坐标运算将向量的几何运算与代数运算有机结合起来,充分体现了解析几何的思想,让学生初步利用"解析法"来解决实际问题,也为以后学习解析几何及立体几何相关知识打下了基础,作好了铺垫。

二、教学内容、要求、重点与难点

(一)本章教学内容可分成两块:第一向量及其运算,第二解斜三角形。

1、平面向量基本知识,向量运算。具体教学内容有:向量(5.1节)、向量的加法与减法(5.2节)、实数与向量的积(5.3节)、平面向量的数量积及运算律(5.6节)。

2、平面向量的坐标运算,联结几何运算与数量运算的桥梁。具体教学内容体有:平面向量的坐标运算(5.4节),向量加减运算、实数与向量的积运算、平面向量的数量积的坐标表示(5.4节、5.7节)。

3、平面向量的应用,具体教学内容有:线段的定比分点(5.5节),平移(5.8节),正弦定理,余弦定理(5.9节),解斜三角形应用举例(5.10节),实习作业。

(二)教学要求

1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

2、掌握向量的加法和减法。

3、掌握实数与向量的积,理解两个向量共线的充要条件。

4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

6、掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式。

7、掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。

8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

(三)教学重点

向量的几何表示,向量的加、减运算及实数与向量的积的运算,平面向量的数量积,向量的坐标运算,向量垂直的条件,平面两点间的距离公式及线段的定比分点和中点坐标公式,平移公式,正、余弦定理。

(四)教学难点

向量的概念,向量运算法则及几何意义的理解和应用,解斜三角形等。

三、本章的.特点

教材编排的特点决定了在教学中处理本章时,有别于其它章节。

1、教材在本章处理上,充分体现了数形结合的思想。首先教材通过求小船由A地到B地的位移来引入向量,根据学生思维特点,由具体到抽象,以平面几何知识为背景。在概念、法则及例题的编辑上都尽量配了图形,并安排了较多的作图练习、看图练习及作图验证练习等,为学生积极参与教学活动提供了条件,为发挥学生学习的主体作用提供了条件,这样既抓住了平面向量的特点,又使学生通过操作性练习达到对新概念的理解。其次,本章各节的例题、练习、习题等配备量适中,可以使教学有较充分的自主空间,为教学提供了师生互动的空间,为学生提供了探究、发现与归纳的机会,也为教师根据教学目标,对教材进行再加工提供了可能。2、利用"向量法"解决实际问题是本章的显著特点之一。向量与几何之间存在着密切联系;向量又有加、减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能联系几何与代数,从而给了我们一种新的数学方法——向量法;向量法能将技巧性解题化成算法性解题,正、余弦定理的推导就采用了向量法,为以后学习解析几何与立体几何打下了基础。

4、强化数学能力是本章的另一显著特点。由于本章的向量法的精髓就是将技巧性解题思路化成算法性解题思路;利用所学知识解决实际问题的能力作为本章的重要教学要求;为了更好地培养学生应用数学知识解决实际问题的能力和实际操作能力,教材还安排了"实习作业",通过实际测量,使学生能运用正、余弦定理来解决实际问题,既体现了数学的工具作用和应用性,又从另一个方面促进了学生对知识的理解与掌握。以此来强化学生根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算,即运算能力。以此来强化学生能综合应用所学数学知识、思想和方法解决问题,能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明,即实践能力。

四、教学体会

依据教学内容、要求及本章的特点,根据学生认知水平和近几年的教学实践,对"平面向量"教学有如下的教学体会:

1、认真研究《考试大纲》及教学要求和目标,分析本章节特点,根据学生原有知识结构对学习本章可能会产生的正负迁移作用,有针对性地设计教学计划,组织教学过程,做好学法指导。

2、在教学中重基础知识,重基本方法,重基本技能,重教材,重应用,重工具作用,不拔高,不选偏题和难题,遵循学生认知规律和按大纲要求进行。

3、抓住向量的数形结合和具有几何与代数的双重属性的特点,提高"向量法"的运用能力,充分发挥工具作用。在教学中引导学生理解向量怎样用有向线段来表示,掌握向量的三种运算,理解向量运算和实数运算的联系和区别,强化本章基础。

4、利用解三角形的应用问题,结合教学过程进行数学建模的训练,要引导学生识记、区分和理解正、余弦定理的应用范围,会对公式进行变形;在运用公式解三角形时,会分类讨论三角形类型;指导学生在解三角形时掌握正、余弦定理的选用与寻找合理、简捷的运算途径的关系,总结出解与三角形有关的应用问题

5、强化数形结合的思想,化归的思想,分类与讨论的思想,方程的思想等;加强学生运算能力的培养和提高。引导学生理解本章平移知识与函数图像平移的联系和区别;理解解三角形与三角函数的联系;注意区分两向量的夹角与直线的夹角概念。

一、编撰数学论文应具有准则

1.1立异性

作为宣布研讨效果的一种文体,应反映作者本人所供给的新的现实,新的办法,新的见地。论文选题不新颖,试验没有值的报道的效果,即使有高明写作技巧,也不可能妙笔生花,硬写出新东西来。根底性研讨最忌低水平重复,如受试方针,处理要素,观测方针,效果与前人雷同,毫无新意,这样论文不值得宣布。

1.2科学性

科技论文的生命在于它的科学性。没有科学性论文毫无价值,并且可能把他人引入歧途,构成有害效果。编撰论文应具有:(1)反映现实的实在性;(2)选题资料的客观性;(3)剖析断定的合理性;(4)言语表达的准确性。

1.3规范性

规范性是论文在体现方式上的重要特色。科技论文已构成一种相对固定的论文格式,大体上由文题,一般不超越20字;摘要(运用的办法,得到的效果,具有含义等);索引关键词;导言;研讨办法,评论,效果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)契合认识规则;(2)简练明快,较少篇幅包容较多信息;(3)便利读者阅览。

二、编撰数学论文忌讳

2.1草率行事

论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文根本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见地。这样作者应将课题选的小一些,写出特色。

2.2关门写稿

一本学术杂志中的论文,独自拿出来看自然是独立完好的。就杂志的整个系统来看就会有一些联络,它们或是构成一个小专题或是使评论不断深入。这样作者就要对你预备刊物有所了解,以免无的放矢。不能缺乏现实闭门造车,夸大定论。首要应该知道他人做了些什么,写了些什么,防止在自己的论文中重复。一起能够学习他人效果,在他人研讨效果根底上进一步研讨,防止做无用功。

2.3方式思维混乱

科学发展到今日,科技论文的根本格式在世界范围内已趋向一致。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以编撰论文应遵守方式逻辑根本规则,正确运用逻辑推理办法尤为重要。

三、关于数学论文选题

数学论文选题是找“抢手”仍是“冷门”?“抢手”课题从事研讨的人员很多,发展迅速。假如作者所在单位根底雄厚,在这个范畴占有适当位置,当然要从这一范畴深入研讨或向相关范畴扩展。假如自己在这方面根底差,起步晚又没有找到新的突破,就不宜跟在他人后边搞低水平重复。挑选“冷门”,常识的空白处及学科交叉点为研讨方针为较好的挑选。无论选“冷门”仍是“抢手”,选题应遵从以下准则:

(1)需求性选题应从社会需求和科学发展的需求动身。

(2)立异性选题应是国内外还没有人研讨过或是没有充沛研讨过的问题。

(3)科学性选题应有最根本的科学现实作根据。

(4)可行性选题应充沛考虑从事研讨的主客观条件,研讨方案切实可行。

四、关于数学论文文风

4.1言语表达确切

从选词,造句,阶段,华章,标点符号都应正确无误。

4.2言语表达清晰简练

语句通顺,脉络清楚,行文流畅,言语简练。

4.3言语朴素

言语朴素无华是科技论文本性。对于科学问题论述无须富丽词采也不必夸张润饰。总之编撰论文应有感而写,有为而写,有意图而写。学习他人效果,博采众长,进入实践,提炼新意,在你的论文中拿出你的实在感触,不简单重复他人的观点,这样的论文才可能宣布,并为广大读者承受。

《如何学好小学数学几何》 论文

何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:

1、作为数学科学的空间几何
(1)是一个完整的知识体系
(2)是一种论证几何,或称之为证明几何
(3)是存在于严密的公理体系之中的
2、作为小学数学课程的空间几何
(1)是几何学中最基础的部分
(2)是一种直观几何,或称之为经验几何、实验几何
(3)是存在于不太严密的局部组织之中的
明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:
一、 小学几何学习的基本分析
这部分内容又分三个知识点:
(一)、小学数学几何学习的基本内容:
也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。
(二)、小学数学几何学习的基本目标:(分两个方面表述)
1、从活动的特征表述
(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;
(2)能从较复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系;
(3)能描述出实物或图形的运动和变化;
(4)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。
2、从内容的特征表述
(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)
(2)使学生能建立有关长度、面积或体积等的基本概念
(3)能够对不太远的物体间的方位、距离和大小有较正确的估计
(4)能从较复杂的图形中辨别有各种特征的图形
(三)、小学数学几何学习的基本特点:(两点)
1、经验是儿童几何学习的起点
儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。儿童在玩各种积木或玩具的过程中,在选择和使用各种生活用具的过程中,在接触到的各种自然现象中,甚至于他们在玩类似“过家家”的游戏中,逐渐感觉到了各种用具在几何方面的特点。
2、操作是儿童构建空间表象的主要形式
儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想像的。
二、儿童形成空间观念的基本特征
发展儿童的空间观念是小学数学几何学习的基本价值。
所谓空间观念,就是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。下面就结合实例从“思维发展”和“空间观念形成”两大方面具体谈谈“空间观念”。
(一)儿童几何思维水平的发展:
1、水平0阶段(前认知阶段)
1)直线和曲线(线能区分)
(2)正方形和平行四边形(面不能区分)
2、水平1阶段(直观化阶段)
(1)四边形和三角形(能从边的数量上去区分)
(2)正方形和菱形(不能从角的特征上去区分)
(3)长方形和长方体(不能区分面和体)
3、水平2阶段(描述/分析阶段)
(1)长方形、四边形、三角形(不同分类方法代表不同水平)
(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)
4、水平3阶段(抽象/关联阶段)
(1)平行四边形剪拼成长方形
(2)三角形拼成平行四边形
(能通过动手操作将新知转化为旧知进行学习)
(3)长方形与长方体(能区分面和体)
(二)儿童空间观念形成与发展的基本特征(三点)
1、儿童空间想像力的发展
所谓的空间想像能力,就是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。
低年段儿童在学习空间图形时基本上是从认识“二维图形”开始的,但儿童积累的却是大量的“三维”的几何经验,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观物体,比如让学生举例说说生活中有哪些物体的形状是长方形的?学生往往会举到诸如课桌之类的,很难抽象出桌面的形状才是长方形。甚至到了较高年级学习“圆的认识”时,还会受到直观物体“球”的干扰。
2、儿童形成空间观念的主要心理特点
(1)对直观的依赖较大
“闭合的区域”往往比“开放的区域”更为直观。如对三角形的性质理解可能会比对角的性质认识更容易;对周长的理解可能会比面积更容易。正如我们听到许多教师上《面积与面积单位》时,总是让学生通过自己的手的触摸来体验“面”的大小,并与周长作出对比,逐步获得对“面积”的理解。
(2)用经验来思考和描述性质或概念
无法运用精确语言来描述“圆”,对“圆上”、“圆内”或“圆外”等概念还只能建立在“圆圈上”、“圆的里面”和“圆的外面”等上面。
(3)空间观念的形成依靠渐进的过程
学龄前儿童已经认识三角形,但这只是对形状的初步感知,到了低年段,能用“三条边围起来”这样的直观特征来辨识图形。到稍高年段,才开始逐渐获得“三角形”性质方面的认识。
(4)容易感知图形的外显性较强的因素
对“角”的本质属性的认识,往往会集中在组成角的两条边的长短上,而忽视两条边的“张开”程度,也是因为边的长短的视觉刺激明显要大于两条边的“张开”程度,甚至我前几天在问学生如果拿一个放大镜看角时,角的大小怎样时,学生居然说角会变大。
(5)对图形性质间的关系有一个逐渐理解的过程
一年级时,学生只能辨认长方形、正方形、三角形、圆形的形状;二、三年级时,学生不仅能辨认长方形、正方形、梯形、平行四边形等平面图形,还能从这些图形的基本性质上分析,并对圆柱和球也有了初步的认识;到了四、五年级,能深入地分析图形的性质及关系;而到了六年级,学生则能较好地掌握立体图形的特征。可见学生对图形的掌握及空间观念的发展都是一个渐变的过程。
(6)对图形的识别倚赖标准形式
一位老师在上《三角形的认识》时,为了让学生更好地理解“高”的概念,她先从一个正放的三角形入手,让学生画高;接着她把这个三角形旋转一下,变成倒放的三角形了,问学生这还是不是三角形的高,学生就觉得它不是高了。可见学生对图形的识别还仅仅依赖于标准形式,一旦变成了“变式图形”,学生识别起来就比较困难了。
(7)依据平面再造立体图形的空间想像能力是逐步形成的
有的教师在学生初次学习“长方体”时,用三根“拉杆天线”,将它们的三个点按“长”、“宽”、“高”这三个维度焊接在一起。然后不断地通过拉动天线的三个方向的长度,让学生在头脑中再造相应的形体大小的形象,以此来发展儿童的空间想像能力。
3、儿童形成空间观念的主要知觉障碍
1、空间识别障碍空间识别能力表现出的是空间的方位感,它无论是在日常的生活中,还是在空间几何的学习中,都是一个非常重要的能力。比如估计出要去的某个地方的大致方位,就如平时非常重要的方向感;估计出两个物体之间的大致距离等等,都涉及到空间识别能力。而这些能力在我们今后的生活中作用是非常大的。
2、视觉知觉障碍
比如让学生解决“教室粉刷墙壁和天花板,要粉刷多少面积”或是解决“游泳池铺瓷砖”等,其实都是关于长方体的表面积问题,由于学生看到教室是一个完整的长方体,他们就往往会忽略了有一个面不算在内的问题。
三、小学几何教学的主要策略
前面我在“几何学习的基本特点”中也已强调两点:经验是儿童几何学习的起点;操作是儿童构建空间表象的主要形式。针对这两大特点,在几何教学中应注意运用以下三点策略:
(一)注重儿童的生活经验
(1)利用操作体验来获得对象形状特征的认识
比如《三角形的分类》可以给定学生一些不同形状的三角形,让学生按自己的理解去分类,而不同的分类就显示着他们对对象形体特征的表征。
(2)利用已经建立的有关图形形体经验帮助概括图形的性质
比如学习平行四边形和梯形时,是在学生学习了长方形、正方形之后的,学生自然会按分析长方形、正方形的方法,从边、角的方面去分析它们的特征。
(二)观察对象的形体特征是基础
(1)观察形体特征是获得对象性质的基础
比如长方体中有一种特殊的是有两个面是正方形的,让学生凭空去想象其余四个面有什么关系是十分困难的,必须通过实物的观察,让学生明白它的宽和高相等,因此其余四个面是大小完全相等的,从而获得性质,得出结论。
(2)注意运用变式
如前面提到的认识三角形的高时,应多采用变式,以加深学生对“高”的概念的理解。又如,认识圆的半径、直径时,不必过于强调概念,而是要多一些变式的练习,以反例来加强学生对半径、直径的认识。
(三)强化动手操作
(1)搭建活动
我在上《立体图形的整理和复习》时,让学生通过“搭一搭”帮助学生思考在立方体每个面都打一个直穿洞口的长方体,使学生较好地理解被挖掉的有7个小立方体。
(2)剪拼与折叠活动
比如《三角形的内角和》一课,可以让学生通过剪拼、折叠的方法得出三角形的内角和是180度。
(3)实物操作活动
在学习圆锥的体积公式时,必须让学生通过实物操作,发现等底等高的圆柱和圆锥之间的关系,从而得出圆锥体积计算公式。
(4)测量活动
《三角形的内角和》一课,学生最初提出的验证三角形内角和是否为180度的方法都是量一量的方法,这个测量活动也是很有必要的,只有引发认知冲突,才会更深入地解决“误差”的问题,更好地引出剪拼、折叠的方法。
(5)作图活动
四、丰富的想像和有效的交流
发展儿童的空间想像能力是小学几何学习的重要任务,而丰富的想像是发展学生空间想像力的有效方式,空间想像力不仅包括对方位、立体图形的想像,还应该包括对平面表示的三维图形的透视能力,以及对图形的再造、组合或分解能力。(这让我想到一种三维图)有效交流也是促进学生几何语言发展的有效手段。
我的思考:鉴于以上收获,引发了我的思考。
给孩子留一片想像的时空
直观演示,该出手时才出手!
孔子曰:“不愤不启,不悱不发。”只有在学生先独立思考、展开想像的基础上,在学生空间想像能力无法达到某个高度时,才去演示和启发,才能更好地培养学生的空间观念,这不正是我们小学数学几何教学所应追求的目标吗?但愿我今天的粗浅看法能给大家带来一些思考!

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页