柴油发动机是燃烧柴油来获取能量释放的发动机。我为大家整理的柴油发动机新技术论文,希望你们喜欢。
柴油发动机新技术论文篇一
柴油发动机燃烧技术及汽车新能源
摘要:汽车无疑是21世纪发展最为迅速,对人类影响最大的机械。近几十年来,面对地球能源的日益短缺和环境保护的严重形势,人们对车用发动机的燃油经济性更加重视,节能减排受到广泛关注。本文针对近年来柴油发动机燃烧技术以及其他汽车替代燃料的新能源开发应用进行了介绍和评论。最后对柴油发动机燃烧新技术的今后发展进行了展望,指出了汽车科技在21世纪的发展方向,即改善燃烧技术并且研发应用新能源。
关键词:柴油发动机 燃烧技术 燃料 新能源
0 引言
随着机动车保有量的迅速增加,全球石油能源临近枯竭。同时,排放法规日益严格,要求大幅降低汽车尾气中NOx和PM等排放。因此,燃油的经济性、节能减排受到广泛关注。改善燃烧技术,研发汽车新能源渐渐成为一项重要的课题。
汽车的动力来源于发动机气缸内燃料燃烧所放出的热能。传统的汽车发动机根据所用燃料种类区分,可分为柴油发动机和汽油发动机。近年来,由于世界能源短缺和环保低碳的要求,人们开始开发新型清洁燃料,如甲醇、乙醇、液化石油气(LPG)、压缩天然气(CNG)等。现在又大力开发混合动力汽车、电池电动汽车、电容电动汽车和太阳能汽车等。
1 柴油发动机燃烧技术
柴油机汽车因压缩比高,燃油消耗平均比汽油机汽车低30%左右,所以燃油经济性较好、热效率较高。但是传统的柴油机燃烧过程,是采用高压喷射将燃油喷入气缸,形成混合气,并借缸空气的高温自行发火燃烧。如果燃烧不充分,极易产生NOx 、PM。随着排放标准的提高,政府对节约能源与减少排放日益重视。为达到排放法规和降低油耗的要求,应该加强新的燃烧方式的探索,开发出高性能低成本的先进柴油机。近些年应运而生的先进的燃烧技术有:均质充量压缩点燃(HCCI)和低温燃烧(LTC)等。他们与传统的燃烧模式相比有很多自身的优势,有足够的提高效率和降低排放的潜力,但还需要进一步的深入讨论和完善。
1.1 均质充量压缩着火(HCCI)燃烧
自20世纪70年代末,均质充量压缩着火(HCCI)燃烧这一新概念被报道,国际上学术界和工业界一直高度重视这一燃烧技术,是世界内燃机燃烧研究领域中的热点之一。
均质充量压缩着火燃烧,就是柴油机在着火前像汽油机那样形成均质混合气,消除扩散燃烧,采用较高压缩比,压缩可控着火,实现近似等压燃烧;同时要具有良好的化学反应动力学效应,实现低温火焰快速燃烧,燃烧持续期短,燃烧效率高,可以同时保持较高的动力性和燃油经济性,达到高效、低污染的目标。与传统的点燃式发动机相比,它取消了节气门,泵气损失小,混合气多点同时着火,燃烧持续期短,可以得到与压燃式发动机相当的较高的热效率;与传统柴油机相比,由于混合气是均质的,有效的解决了传统均质稀混合气燃烧速度慢的缺点,燃烧反应几乎是同步进行,没有火焰前锋面,燃烧火焰温度低,可以同时降低NOx 和PM排放。另外,实施HCCI燃烧模式可以简化发动机燃烧系统和喷油系统的设计。因为HCCI燃烧的着火和燃烧速率只受燃料氧化反应的化学反应动力学控制,受缸内流场影响较小,同时均质预混的混合气组织也比较简单。HCCI的优点还包括它的燃料灵活性高,它能使用包括汽油、柴油、天然气、液化石油气(LPG)、甲醇、乙醇、二甲醚以及混合燃料等多种燃料。
HCCI这一燃烧方式具有重要的理论意义和广阔的应用前景。目前已在化学反应动力学机理、燃烧控制、负荷拓展等多个方面有了很大的进步。不过,业内多数研究机构认为该技术成熟至少应在2015年后,要想实用化在还技术上还存在很多弊端。这些弊端主要包括:均质混合气的制备;CO和HC排放的降低;低负荷下的燃烧不稳定和失火;高负荷下的燃烧粗暴;着火相位和燃烧速率的控制等。
1.2 低温扩散燃烧
对于柴油机来说,燃烧技术的关键是同时降低微粒和 NOx 排放,基本思想是加速燃油与空气混合,尽量燃烧“均匀”混合气,同时还需要降低燃烧温度,实现“低温”燃烧。柴油机低温燃烧,就是控制缸内燃烧温度低于NOx和碳烟的生成温度,从而有效降低NOx和碳烟排放。均质充量压缩着火(HCCI)燃烧属于低温燃烧,另一种低温燃烧技术是低温扩散燃烧。
与均质充量压缩着火(HCCI)燃烧不同,低温扩散燃烧的着火仍是由燃油喷射来控制。着火时,缸内存在燃空当量比大于1的区域,因此也就存在扩散火焰,燃烧速率受控于燃油空气混合速率,其较低的燃烧温度是通过采用相当大的冷却EGR率、低压缩比以及推迟喷射定时等措施来实现的。
1.3 富氧燃烧技术
发动机气缸内燃料的燃烧是靠空气中的氧气来助燃的, 因此改善发动机燃烧技术可以从进入发动机气缸助燃的空气入手。发动机富氧燃烧就是用比通常空气(含氧21%)含氧浓度高的富氧空气为发动机进气的燃烧。富氧燃烧可增加发动机的功率密度,提高柴油机的动力性和经济性,降低碳烟、CO和HC的排放,它是一项高效节能的燃烧技术。
早在 20世纪60年代末Karim等就已经开始了对柴油机富氧进气燃烧的研究[2]。我国于80年代中期开始富氧技术的研究。从20世纪90年代开始,通过研究人员的大量研究,富氧燃烧技术取得了一系列实质性进展。
由于富氧燃烧提高了柴油机的燃烧速率,优化了燃烧过程,提高了燃料能量释放率,所以使柴油机具有更好的动力性和经济性。富氧燃烧降低了碳烟、CO和HC的排放, 却增加了NO的排放。近年来研究人员提出了更为先进的燃烧技术――膜法富氧燃烧, 膜法富氧技术其基本原理主要是扩散和溶解,利用供应的气体分离膜两边的压力差以及各气体组分对于特定高分子膜的相对通过率不一样,而实现渗透和分离,获得某种高浓度气体[3]。
对于柴油发动机来说,膜法富氧不但可以提高发动机动力性能,最重要的是能够降低NOx和碳烟,达到降低排放的目的。膜法富氧技术被称为“资源的创造性技术”。 1.4 当量比燃烧
最近几年,为了适应更加苛刻的环保法规,柴油机产品上都使用了尾气后处理器,使柴油机的成本增加,也降低了可靠性。为降低后处理成本,Reitz等人[4]-[6]开展了柴油机当量比燃烧的研究,以便使用三元催化器。在一台单缸机上进行了试验。研究发现,在一定条件下,柴油机当量比燃烧可以实现极低的NOx和碳烟排放,二者都在0.2g/(kWh)以下。柴油机当量比燃烧研究的开展是最近几年才开始的,已经显示出很好的低NOX和PM排放性能。如果能够改善经济性,当量比燃烧在柴油机上的应用奖充满期望。
2 汽车新能源
随着汽车工业的不断发展,柴油、汽油等燃料的需求也越来越大,导致的最直接的后果就是石油日益枯竭,柴油、汽油等价格上涨。同时汽车尾气污染也日趋严重,在不可再生能源的日益枯竭和价格的不断上涨以及环保要求的双重压力下,寻找新能源将是今后汽车行业的主要任务。
2.1 燃气汽车
燃气汽车主要有液化石油气汽车和压缩天然气汽车。燃气汽车由于其排放性能好,运行成本低、技术成熟、安全可靠,被世界各国公认为当前最理想的替代品。天然气作为一种储量丰富干净可靠的清洁燃料,兼备汽油柴油的优点,具有抗爆性好、自燃温度高、排放特性好等特点,非常适合作为内燃机的代用燃料使用。与柴油相比,颗粒物和NOx排放非常少,而与汽油相比,HC、NOx和CO2排放较少。因此,加强对燃气汽车的研究,对缓解石油能源危机,改善环境具有重要意义,对于保障国民经济的持续发展也具有重大的战略意义。
2.2 电动汽车
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。电动汽车最大的优点是只要有电力供应的地方都能够充电。但是蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵。目前电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有镍镉电池、钠硫电池、燃料电池、锂电池、飞轮电池等,这些新型电源的应用对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟。
2.3 混合动力汽车
混合动力是指在原有的汽油发动机和柴油发动机基础上,同时配以电动机来改善低速动力输出和燃油消耗的车型。混合动力主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。混合动力汽车最大的优点就是“零”排放,而且采用混合动力后可按平均需用的功率来确定内燃机的最大功率。
2.4 甲醇HCCI燃烧
均质压燃的燃烧方式本身具有热效率高、NOx 排放低和几乎零PM排放的优点。甲醇来源广泛,着火界限宽,其气化速度快和易于形成混合气的特点,能更好地适应HCCI稀薄燃烧及分布式多点着火的工作方式。具有较高的抗爆性能,可以提高发动机的压缩比和热效率。将HCCI燃烧技术运用到甲醇车用发机上可满足节能减排的要求,但是目前还未能满足实际运用的要求,如对甲醇发动机HCCI燃烧过程的进行控制、拓展其负荷范围的方法等。
由此可见,汽车科技在21世纪的发展方向就是改善燃烧技术并且研发应用新能源。在大力改善燃烧技术的同时,积极降低替代燃料的生产成本、使用价格,使新能源发展为汽车产业的可持续发展带来光明的前景。
参考文献:
[1]Karim G A.Ward G.The examination of the cnmhustion processes in a compression-ignition engine by changing the partial pressure of oxygen in the intake charge[C].SAE Paper 680767.
[2]李胜琴,关强,张文会等.汽油发动机富氧燃烧分析[J].内燃机,2007(1):51-52.
[3]SangsukLee,ManuelA.GonzalezD.andRolfD.Re-itz.Stoichi-ometriccombustioninaHSDIdieselenginetoallowuseofathree-wayexhaustcatalyst[C].SAE Paper 2006-01-1148.
[4]Lee,S.,GonzalezD.,M.A.,Reitz,R.D.Effectsofengineoperatingparametersonnearstoichiometricdieselcombustioncharacteristics[C].SAE Paper 2007-01-0121.
[5]Chase,S.,Nevin,R.,Winsor,R.,Baumgard,K.,StoichiometricCompressionIgnition(SCI)Engine[C].SAE Paper2007-01-4224.
[6]黄喜鸣.浅谈汽油机稀燃层燃技术[J].装备制造技术,2006(4):174-175.
柴油发动机新技术论文篇二
现代柴油发动机节能减排新技术
摘要:文章主要对传统柴油发动机与汽油发动机的优缺点、现状及存在的问题进行了分析和阐述,从高压电控共轨技术、冷却式EGR技术等几方面介绍了现代柴油机为了更好地适应社会发展所采用的一系列节能减排的新技术,以提高柴油机的综合性能。
关键词:柴油机;节能减排;冷却式EGR技术;高压电控共轨技术
中图分类号:U464 文献标识码:A 文章编号:1009-2374(2012)20-0135-03
近几年来,随着发达国家柴油轿车在全部轿车中所占份额的不断增加,电控汽车柴油机开始异军突起,技术也有所突破,特别是出现了改变传统燃油喷射系统的组成和结构特征的高压共轨系统,并且为了符合国际的排放标准及节能标准出现了各种各样
的节能减排技术,使得柴油机的发展越来越好。
1 柴油发动机的优缺点
1.1 柴油机的优点
柴油机与汽油机相比,主要有三大优点:
(1)扭矩大。相同排量下,柴油机力气更大,扭矩更大。
(2)省油。首先柴油的能量密度含量比汽油高;其次柴油机的热效率高。一般柴油机的油耗要比汽油机的低30%~40%。
(3)环保。由于柴油机的富氧燃烧,所以柴油机的CO、HC和CO2排量相对于汽油机较低。
1.2 柴油机存在的问题
柴油机的性能虽然在很多方面比汽油机更有优势,但是也存在着很多关键性的问题需要解决。
(1)尾气排放问题。虽然较汽油机来说,柴油机的CO、HC和CO2排量较低,但是颗粒和NOX的排放比较难控制。
(2)油耗问题。虽然柴油机的油耗要比汽油机的低,但是为了实现社会发展的需要,进一步降低油耗也成为柴油发动机所要克服的问题之一。
(3)升功率问题。柴油发动机本身的质量和体积也影响了其各方面的性能,所以为了使得柴油机进一步得到社会的认可,如何提高柴油发动机的升功率也成为了柴油机发展过程中的问题。
(4)比质量问题。柴油机由于采用压燃的方式,所以其材料要求较高,且其压缩比较大,也使得
柴油机相对于汽油机在同等排量的情况下其质量较大。
2 现代柴油机新技术
2.1 高压电控共轨技术
高压电控共轨式燃油喷射系统的出现,基本上改变了传统柴油机燃油喷射系统的组成和结构特征。高压电控共轨系统的最大特征就是燃油压力的形成和燃油量的计量在时间上、在系统中的部位和功能方面都是分开的。燃油压力的形成和燃油量的输送基本上与喷油过程无关。根据电控单元的指令控制每个喷油器,使得每个喷油器可按所要求的精确的喷油正式从共轨中“调出”具有所要求的精确压力和精确循环的燃油。改善了燃烧过程,提高了燃烧效率,降低了燃烧噪声和排放。该项技术已普遍在柴油车上使用。
2.2 冷却式EGR技术
采用冷却式EGR系统,在EGR气体流动管上安装冷却装置,当EGR气体进入进气管前先降低其温度,故燃烧温度比一般的EGR系统明显降低,且因进气密度高,进入燃烧室的气体量多,使得燃烧更完全,故也可减少PM的排放。
2.3 均质燃烧技术(HCCI)
在均质燃烧方式下,柴油和空气在燃烧开始前已充分混合,形成均质预混合气。混合气被活塞压缩并发生自燃,并呈分布均匀、稀混合的低温、快速燃烧,从根本上消除了产生NOx的局部高温区和产生PM的过浓混合区,从而能大大降低NOx和PM的排放。
2.4 NOx排放控制技术
(1)AR(吸附还原催化剂)。在稀燃阶段将NOx吸附储存起来,而在短暂的富燃阶段,NOx释放并被排气中的HC还原。
(2)SCR催化转化器。它是一种剂量系统,系统将还原剂(尿素)导入排气中,混合后再经过催化,可减少NOx的排放。
(3)NSCR。它是在去氮催化器中,用碳氢化合物作还原剂,将废气中的NO3还原。
(4)采用碳素纤维加载低电压技术。碳素纤维具有催化活性,能促进废气中的NO与C或HC进行氧化还原反应,随着电压的升高,可使NOx排放明显降低。
2.5 颗粒排放控制技术
(1)颗粒捕捉器。颗粒(PM)是柴油机尾气主要成分之一,对人体的危害也非常大。颗粒捕捉器能够将尾气中的颗粒物过滤掉,可以达到90%以上的净化效果。
(2)氧化催化器。氧化催化器是利用催化器中的催化剂来降低废气中的HC、CO和颗粒中的可溶有机成分的活化性能,使这些成分能与废气中的O2在较低的温度下发生反应,从而降低柴油机的有害物质排放量。
2.6 多气门技术
多气门发动机是指每一个气缸的气门数目超过两个,即两个进气门和一个排气门的三气门式;两个进气门和两个排气门的四气门式;三个进气门和两个排气门的五气门式。气门布置在气缸燃烧室中心两侧倾斜的位置上,是为了尽量扩大气门头的直径,加大气流通过面积,改善换气性能,形成一个火花塞位于中心的紧凑型燃烧室,有利于混合气的迅速燃烧,提高柴油机的经济性。
2.7 增压中冷技术
增压就是增加进入柴油机汽缸内的空气密度,中冷则是将压缩后的空气的温度降低。最终是提高进入气缸内的空气量,能够在不改变发动机排量的基础上提高柴油机输出功率,降低其升功率。
2.8 轻质量设计技术
在柴油机设计上,由于轻质量技术的应用以及材料和制造水平的提高,使得柴油机的比质量也有所下降,由汽油机派生出来的柴油机总质量约为汽油机的110%。
3 柴油机技术发展趋势
从当今世界各主要汽车与发动机公司开发的新一代柴油机的技术变化看来,尽管柴油机各有特点,但大体上反映了以下发展趋势:
3.1 优化结构设计
优化结构设计,减少摩擦与附件功率损失,提高机械效率。柴油机的有效效率等于指示效率与机械效率的乘积,因此,柴油机的燃油消耗率也直接受到机械效率的影响,国外在致力于完善缸内工作过程的同时,也十分重视减少摩擦损失和提高机械效率的研究。此外,以德国MTU公司为代表的可变排量技术也是一种有效手段。
3.2 发展各种代用燃料
代用燃料大多是二次能源,常用的有植物油、天然气、醇类燃料、氢和燃料电池等。各种代用燃料一般都有降低环境污染的效果,并且都有较为可靠的来源。
3.3 降污的柴油添加剂
研究节能降污的柴油添加剂,改善燃料的燃烧性能,对已投入使用的车辆来说,是较佳的技术处理方法之一。
4 结语
先进柴油机技术的应用使柴油机的综合性能有了极大的提高,因此柴油机在市场上的占有量正逐步提高。特别是在欧洲,柴油轿车的销售量已占轿车总销量的1/3以上,并且这一数字仍在不断增长。在我国,先进技术的柴油机汽车将得到广泛的采用。
参考文献
[1] 何林华.车用柴油发动机的发展趋势[J].客车技术与研究, 2004,(3).
[2] 李棠, 李理光.柴油机HCCI燃烧的均质混合气制备
[J].汽车技术,2004,(5).
[3] 周玉明. 减少柴油机NOx排放的机外措施[J].柴油机,2001,(1).
[4] 邓元望,朱梅林,向东.柴油机微粒排放控制方法评述
[J].柴油机,2001,(5).
[5] 廖梓珺, 陈国需, 陈淑莲.柴油机排放控制技术的研究进展[J]. 拖拉机与农用运输车,2009,(5).
作者简介:王晓慧,女,浙江工贸职业技术学院助理讲师,硕士,研究方向:载运工具运用工程。
看了“柴油发动机新技术论文”的人还看:
1. 柴油机新技术论文
2. 柴油机共轨新技术论文
3. 电力机车新技术论文
4. 农业机械技术论文
5. 关于机械化的论文
A diesel engine (also known as a compression-ignition engine and sometimes capitalized as Diesel engine) is an internal combustion engine that uses the heat of compression to initiate ignition to burn the fuel, which is injected into the combustion chamber during the final stage of compression. This is in contrast to spark-ignition engines such as a petrol engine (gasoline engine) or gas engine (using a gaseous fuel as opposed to gasoline), which uses a spark plug to ignite an air-fuel mixture. The diesel engine is modeled on the Diesel cycle. The engine and thermodynamic cycle were both developed by Rudolf Diesel in 1897.
The diesel engine has the highest thermal efficiency of any regular internal or external combustion engine due to its very high compression ratio. Low-speed diesel engines (as used in ships and other applications where overall engine weight is relatively unimportant) often have a thermal efficiency which exceeds 50 percent.
Diesel engines are manufactured in two stroke and four stroke versions. They were originally used as a more efficient replacement for stationary steam engines. Since the 1910s they have been used in submarines and ships. Use in locomotives, large trucks and electric generating plants followed later. In the 1930s, they slowly began to be used in a few automobiles. Since the 1970s, the use of diesel engines in larger on-road and off-road vehicles in the USA increased. As of 2007, about 50 percent of all new car sales in Europe are diesel.
The world's largest diesel engine is currently a Wärtsilä marine diesel of about 80 MW output.
Rudolf Diesel, of German nationality, was born in 1858 in Paris where his parents were German immigrants.[7] He was educated at Munich Polytechnic. After graduation he was employed as a refrigerator engineer, but his true love lay in engine design. Diesel designed many heat engines, including a solar-powered air engine. In 1892 he received patents in Germany, Switzerland, the United Kingdom and filed in the United States for "Method of and Appartus for Converting Heat into Work".[8] In 1893 he described a "slow-combustion engine" that first compressed air thereby raising its temperature above the igniting-point of the fuel, then gradually introducing fuel while letting the mixture expand "against resistance sufficiently to prevent an essential increase of temperature and pressure", then cutting off fuel and "expanding without transfer of heat".[citation needed] In 1894 and 1895 he filed patents and addenda in various countries for his Diesel engine; the first patents were issued in Spain (No.16,654), France (No.243,531) and Belgium (No.113,139) in December 1894, and in Germany (No.86,633) in 1895 and the United States (No.608,845) in 1898.[9] He operated his first successful engine in 1897. His engine was the first to prove that fuel could be ignited without a spark.[citation needed]
Though best known for his invention of the pressure-ignited heat engine that bears his name, Rudolf Diesel was also a well-respected thermal engineer and a social theorist. Diesel's inventions have three points in common: they relate to heat transfer by natural physical processes or laws; they involve markedly creative mechanical design; and they were initially motivated by the inventor's concept of sociological needs. Rudolf Diesel originally conceived the diesel engine to enable independent craftsmen and artisans to compete with industry.[10]
At Augsburg, on August 10, 1893, Rudolf Diesel's prime model, a single 10-foot (3.0 m) iron cylinder with a flywheel at its base, ran on its own power for the first time. Diesel spent two more years making improvements and in 1896 demonstrated another model with a theoretical efficiency of 75 percent, in contrast to the 10 percent efficiency of the steam engine. By 1898, Diesel had become a millionaire. His engines were used to power pipelines, electric and water plants, automobiles and trucks, and marine craft. They were soon to be used in mines, oil fields, factories, and transoceanic shipping.
The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed, hot air to ignite the fuel rather than using a spark plug (compression ignition rather than spark ignition).
In the true diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15:1 and 22:1 resulting in 40-bar (4.0 MPa; 580 psi) pressure compared to 8 to 14 bars (0.80 to 1.4 MPa) (about 200 psi) in the petrol engine. This high compression heats the air to 550 °C (1,022 °F). At about the top of the compression stroke, fuel is injected directly into the compressed air in the combustion chamber. This may be into a (typically toroidal) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporizes fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in the combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. The start of vaporisation causes a delay period during ignition, and the characteristic diesel knocking sound as the vapor reaches ignition temperature and causes an abrupt increase in pressure above the piston. The rapid expansion of combustion gases then drives the piston downward, supplying power to the crankshaft.[22] Engines for scale-model aeroplanes use a variant of the Diesel principle but premix fuel and air via a carburation system external to the combustion chambers.
As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing the compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent damaging pre-ignition. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre (TDC), premature detonation is not an issue and compression ratios are much higher.
柴油引擎(Diesel Engine),又名压燃式发动机,是内燃机的一种。其主要特徵为使用压缩产生高压及高温点燃气化燃料,而毋须另外提供点火。柴油引擎使用的原理称为狄塞尔循环,为德国工程师鲁道夫·狄塞尔(Rudolph Diesel)在1892年所发明。现时大部份的柴油引擎使用的燃料为柴油,但狄塞尔的发明原意是可以使用不同种类的燃料。事实上,他在1900年的世界博览会上展示他的发明时,使用的燃料是花生油。
1. 基于局域波分析的柴油机故障诊断方法的研究及应用
王珍 文献来自: 大连理工大学 2002年 博士论文 CAJ下载 在线阅读 分章下载 分页下载
人们就需要适用于非平稳 信号分析的新处理方法。于是,人们提出了对频率与时间分辨率均衡的时频分析方法, 如短时傅立叶分析、Wgfla分布[2’]、小波分析I“’”]及局域波时频分析[30’3‘]。目前人们 对小波分析的研究较多, ...
被引用次数: 9 文献引用-相似文献-同类文献
2. 柴油机磨损故障振动诊断机理的研究
胡以怀,杨叔子,刘永长,周轶尘 文献来自: 内燃机学报 1998年 第01期 CAJ下载 PDF下载
常常受柴油机结构、工况、状态等因素的影响。长期以来,人们致力于柴油机振动信号分析和处理方法的研究,在缺乏对诊断机理深入认识的条件下,企图通过建模试验找到表面振动特征参量与内部零部件故障之间的某种对应关系,这种诊断方法 ...
被引用次数: 30 文献引用-相似文献-同类文献
3. DF4B型内燃机车增压器主要故障分析及处理方法
陆秀琴 文献来自: 新疆职业技术教育 2006年 第03期 CAJ下载 PDF下载
DF4B型内燃机车增压器主要故障分析及处理方法@陆秀琴$新疆铁路高级技术学校!哈密839001分析DF4B型机车增压器主要故障喘振发生的原因,并且针对每一种原因提出了判断及处理方法。DF4B型机车 ...
被引用次数: 0 文献引用-相似文献-同类文献
4. 柴油机高压油管压力波数字信号的采集、处理和仿真及故障辨识的研究
林荣文,董锡明 文献来自: 中国铁道科学 2001年 第02期 CAJ下载 PDF下载
本文采用加时间窗平均和小波变换分析方法对原始油管压力波数据进行压缩。两者的不同之处在于 :加时间窗平均实际上是一种数字滤波处理方法 ...
被引用次数: 1 文献引用-相似文献-同类文献
5. 柴油机故障灰色诊断系统研究
王学合,黄震,范荫 文献来自: 柴油机 2000年 第05期 CAJ下载 PDF下载
参数超限报警模块、关联度计算与模式识别模块、故障模式库和故障分析模块,如图3所示。图3 诊断系统原理图报警模块主要是针对比较严重和明显的柴油机故障,当特征参数数值超过了其正常的工作范围时,诊断系统立即报警,并指出超限的特征参数及超限的幅度。特征参数的上、 ...
被引用次数: 2 文献引用-相似文献-同类文献
6. 内燃机车柴油机转速失控的电气故障判断处理
江昌世,江崇臻 文献来自: 机车电传动 2002年 第03期 CAJ下载 PDF下载
则为电气线路及步进电机故障。第2种情况:性能不良,则为驱动器故障。对于第1种情况,可用万用表检查步进电机是否得电,分析处理如下:(1)如得电,则为步进电机绕组烧损或传动机构卡滞。首先检查测量步进电机绕组,如不良则更换 ...
被引用次数: 0 文献引用-相似文献-同类文献
7. 内燃机车柴油机增压器故障树分析
王华胜,李忠厚,闫志强,林荣文 文献来自: 机车寿命管理及当量公里记录装置应用学术研讨会论文集 2005年 CAJ下载
又受柴油机性能和运用环境的影响。因此,采用科学、合理的故障分析方法分析增压器故障就显得非常重要。故障树分析(FTA:Fault Tree Analysis)是对复杂系统进行可靠性、安全性分析的有效手段。它将“不希望 ...
被引用次数: 0 文献引用-相似文献-同类文献
8. 东风_1型内燃机车柴油机启动电路应急故障处理
文献来自: 内燃机车 1970年 第03期 CAJ下载 PDF下载
找出故障后,从新启动。 以上五项为柴油机启动控制电路故障简单处理方法,如有时间,要详细判断何处故障时,可参看火车头67年第3期文章。 如因蓄电池容量不足,不能启动柴油机,减缸启动又无效时,应利用外电源进行充电。用其 ...
被引用次数: 0 文献引用-相似文献-同类文献
9. 监控装置运行文件在转储、数据处理中出现故障以及发生运行文件丢失或记录不全的原因分析及解决方法
么贺新 文献来自: 内燃机车 2001年 第08期 CAJ下载 PDF下载
通过对文件转储、数据处理及文件丢失或文件记录不全等故障进行分析 ,找出原因 ,提出解决措施 ...
被引用次数: 0 文献引用-相似文献-同类文献
10. 油品分析专家系统在ND_5型机车柴油机监测方面的应用
李宁,张益新 文献来自: 内燃机车 2000年 第06期 CAJ下载 PDF下载
根据粘度的异常变化可判断柴油机燃油系统故障。光谱分析可诊断柴油机内部冷却系统漏水故障,柴油机主轴瓦、连杆瓦、主机油泵、气缸等主要摩擦副的情况。铁谱分析可判断机油污染,准确判断主机油泵和拉缸等故障。一般来说,机油的使用寿命用常规分析判断 ...
被引用次数: 5 文献引用-相似文献-同类文献
查运行故障 的定义
查内燃机 的定义
搜内燃机车 的学术趋势
搜柴油机 的学术趋势
搜运行 的学术趋势
搜索相关数字
中国北京内燃机车年末数
中国内燃机车年末数
温度传感器原理及应用论文参考文献
温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。
一、温度传感器工作原理–恒温器
恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。
两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。
一、温度传感器工作原理–双金属恒温器
恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。
有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。
速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。
爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。
二、温度传感器工作原理–热敏电阻
热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。
大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。
热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。
温度传感器类毕业论文文献有哪些?
1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器
期刊:《声学与电子工程》 | 2021 年第 002 期
摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、
关键词:光纤光栅;温度传感器;应力;测温精度
链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html
2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究
期刊:《环境技术》 | 2021 年第 001 期
摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、
关键词:防护套;破损;弯折疲劳
链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html
3、[期刊论文]进气压力温度传感器锡晶须的分析
期刊:《机械制造》 | 2021 年第 004 期
摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、
关键词:传感器;锡晶须;分析
链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html
4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器
期刊:《电子设计工程》 | 2021 年第 001 期
摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度
该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、
关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准
链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html
5、[期刊论文]柴油机冷却水温度传感器断裂故障分析
期刊:《内燃机与配件》 | 2021 年第 004 期
摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。
本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。
关键词:柴油机;温度传感器;流速;受力
链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html
常见温度传感器
温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。
温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。
铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。
铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为13.5033℃~961.780℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。
PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。
根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为
由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、
锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。
实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。
二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。
由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的
所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,
度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。
集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。
进气温度传感器工作原理是什么?
进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。
以下是关于进气温度传感器的详细介绍:
1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。
2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。