您当前的位置:首页 > 发表论文>论文发表

船底研究论文

2023-03-02 20:46 来源:学术参考网 作者:未知

船底研究论文

一、重力式下水 重力式下水又分纵向涂油滑道下水、纵向钢珠滑道下水和横向涂油滑道下水三种,这也是主要的重力式下水方式。

1、纵向涂油滑道下水是船台和滑道一体的下水设施,其历史悠久,经久耐用。

下水操作时先用一定厚度的油脂浇涂在滑道上以减少摩擦力,这种油脂以前多采用牛油,现在多使用不同比例的石蜡、硬脂酸和松香调制而成。然后将龙骨墩、边墩和支撑全部拆除,使船舶重量移到滑道和滑板上,再松开止滑装置,船舶便和支架、滑板等一起沿滑道滑入水中,同时依靠自身浮力漂浮在水面上,从而完成船舶下水。这种下水方式适用于不同下水重量和船型的船舶,具有设备简单、建造费用少和维护管理方便的优点;但也存在较大的缺点:下水工艺复杂;浇注的油脂受环境温度影响较大,会污染水域;船舶尾浮时会产生很大的首端压力,一些装有球鼻艏和艏声呐罩的船舶为此不得不加强球首或暂不装待下水后再入坞安装;船舶在水中的冲程较大,一般要求水域宽度有待下水船舶总长的数倍长度,必要时还要在待下水船舶上设置锚装置或转向装置,利用拖锚或全浮后转向的方式来控制下水冲程。

2、纵向钢珠滑道下水

这种方式是用一定直径的钢珠代替油脂充当减摩装置,使原来的滑动摩擦变为滚动摩擦,降低滑板和滑道之间的摩擦阻力,钢珠可以重复使用,经济性较好。钢珠滑道下水装置主要由高强度钢珠、保距器和轨板组成。保距器每平方米装有12个钢珠。木质的滑板和滑道上各有一层钢制轨板以防被钢珠压坏,在滑道末端设有钢珠网袋以承接落下的钢珠和保距器。这种下水方式使用启动快,滑道坡度小,滑板和滑
道的宽度也较小,钢珠可以回收复用,其下水装置安装费用和使用费用都比油脂滑道低。而且不受气候影响,下水计算比较准确。但初始投资大、滑板比较笨重、振动大。

3、横向涂油滑道下水

这种方式是指船舶下水是按船宽方向滑移的,不是船尾首先进入水中而是船舶的一舷首先入水。这种方式分为两种,一种是滑道伸入水中,先将船舶牵引到楔形滑板上,再沿滑道滑移到水中;另一种是滑道末端在垂直岸壁中断,下水时船舶连同下水架、滑板一起堕入水中,再依靠船舶自身浮力和稳性趋于平衡全浮。船舶跌落高度为1-3米。这种方式由于同时使用的滑道多,易造成下水滑移速度不一样,造成下水事故,而且跌落式下水船舶横摇剧烈,船舶受力大,对船舶横向强度和稳性要求较高。
二、漂浮式下水漂浮式下水是一种将水用水泵或自流方式注入建造船舶的大坑里依靠船舶自身的浮力将船浮起的下水方式。最常见的是造船坞下水。

漂浮式下水使用的船坞分两种,即造船坞和修船坞,区别在于造船坞比较宽浅而修船坞比较深。

造船坞是用来建造船舶和船舶下水的水工建筑物,有单门的,双门的和母子坞等多种形式,基本结构是由坞底板、坞墙、坞门和泵房等组成。坞门本身具有压载水舱和进排水系统,安装到位后将水压入坞门水舱内,坞门会下沉就位,就在坞外海水的压力下紧紧压在坞门口,再将坞内的水抽干就可以在坞内造船了。
船舶建造完成后,通过进排水系统将坞外水域的水引入坞内,船舶依靠浮力起浮,待坞内水面和坞外一致时就可以排出坞门内的压载水起浮坞门并脱开坞门,然后将船舶用拖船拖出船坞,坞门复位进入下一轮造船。

造船坞下水是一种简便易行的下水方式,其安全性、工艺简单性比较好。可以有效地克服倾斜船台头部标高太大的缺点,减低吊机起吊高度,还可以避免重力式下水所要求的水域宽度,可以引入机械化施工手段。因此,尽管造船坞造船方式初始投资较大,但是仍是建造VLCC的唯一手段。

三、机械化下水

1、纵向船排滑道机械化下水
船舶在带有滚轮的整体船排或分节船排上建造,下水时用绞车牵引船排沿着倾斜船台上的轨道将船舶送入水中,使船舶全浮的一种下水方式。分节式船排每节长度是 3-4米,宽度是骨干产品船宽的80%,高度在0.4米到0.8米间。由于位于船艏的那节船排要承受较大的首端压力,因此要特别加强其结构,因此
分为首节船排和普通船排两种。由于船排顶面与滑道平行,而且高度只有0.4-0.8米,所以其滑道水下部分较短,滑道末端水深较小,采用挠性连接的分节船排时由于船排可以在船舶起浮后在滑道末端靠拢,则可以进一步降低滑道水下部分长度和降低末端水深。这种滑道技术要求较低,水工施工较简单,投资也较小,而且下水操作平稳安全,主要适用于小型船厂。但由于船排高度小,船底作业很不方便,一次仅适用小型船舶的下水作业。
为提高船排滑道的利用率,可以设置横移坑和多船位水平船台和纵向倾斜滑道组合,可以大大提高纵向船台的利用率。

2、两支点纵向滑道机械化下水

这种下水使用两辆分开的下水车支撑下水船舶,它可以直接讲船舶从水平船台拖曳到倾斜滑道上从而使船舶下水。

这种滑道是用一段圆弧将水平船台和倾斜滑道连接起来,以便移船时可以平滑过渡。具有结构简单、施工方便、操作容易的优点,缺点是由于只有两辆下水车支撑船舶首尾,对船舶纵向强度要求很高,在尾浮时会产生很大的首端压力,因此只适用纵向强度很大的船舶。

3、楔形下水车纵向机械化下水

这种滑道上的下水车架面是水平的或稍有坡度,船舶下水时是平浮起来的,不会产生首端压力,下水工艺简单可靠,适用于较大的船舶下水。把它用横移坑和多船位水平船台连接起来可以提高滑道使用效率,是一种比较理想的纵向机械化下水设施。缺点是下水车尾端过高,要求滑道末端水深较大,因而导致水工施工量大,投资大,且滑道末端易被淤泥覆盖,选用时要充分考虑水文条件。

4、变坡度横移区纵向滑道机械化下水

这种下水方式的横移区由水平段和变坡段两部分组成。侧翼布置有多船位水平船台的横移区,因移船的需要使横移车轨道呈水平状态,故称水平段;变坡度的横移区其轨道只有一组仍为水平,其它各组均带有坡度,这些轨道的坡度能使横移车在横移过程中逐步改变其纵向坡度,最后获得与纵向滑道相同的坡度,故称为变坡段。同时,为使横移车在变坡段仍保持横向水平,带坡度轨道均采用高低两层轨道的方式。

由于横移区具有变坡功能,所以采用纵向倾斜滑道下水。同时,可以在下水滑道纵向轴线处建造一座纵向倾斜船台。通过横移车在水平段实现与水平船台的衔接;在变坡段末端实现与纵向倾斜船台、下水滑道的衔接,使一种下水设施可以供两种船台使用。而且这种滑道是用船台小车兼做下水滑车的,故滑道末端水深较小,滑道建设投资小。

但是,这种下水方式和所有采用纵向下水工艺滑道一样存在船舶尾浮时较大的首端压力。

一般这种方式多用于国内码头岸线紧张而腹地广大的渔船修造厂和中小型船厂,修造船可以在内场水平船台进行,只设一条下水滑道,减少滑道水下部分的养护工作量。

这种下水方式在使用时可以人工控制载有待下水船舶的船台小车的速度,必要时可以停止下水。也可以用于船舶的上排修理。

5、高低轨横向滑道机械化下水
这种滑道由滑道斜坡部分和横移区两部分组成。下水车在滑道斜坡部分移动时,邻水端和靠岸端得走轮各自行走在高低不同得两层轨道上,以保持下水车架面处于水平状态。为此斜坡部分得高轨和横移区得相应轨道应该用相同半径的圆弧平滑连接起来。高轨I和低轨II得高度差应保证邻水端和靠岸端得走轮轴处于同一水平面。过渡曲线上任何两点之间得水平距离应恒等于走轮轴距,才能使下水车在下滑得任何位置都能保证水平。这种方式具有布置简单、架面较低、斜坡部分受力时不致出现深陷得凹槽等优点,同时可以在横移区侧翼布置多船位水平船台,机械化程度较高和操作简单可靠,对水域的宽度和深度得要求都比纵向下水小的多,下水最大重量5000吨。但这种方式水工建筑复杂,铺轨精度高,造价高。

6、梳式滑道机械化下水

由斜坡滑道和水平横移区组成,而且和横移区侧翼的多船位水平船台连接,船台小车和下水车式分别单独使用。

在斜坡滑道部分铺设若干组轨道,每组轨道上有一辆单层楔形下水车,每辆下水车有单独的电动绞车控制。斜坡滑道部分和横移区的轨道交错排列,位于轨道错开地区处于同一水平处的连线称为O轴线,水平轨道和斜坡滑道互相伸过O轴线一定长度,形成高低交错的梳齿,所以称为梳式滑道,其作用是将水平船台上的待下水船舶转载到楔形下水车上。

具体操作时,将船舶置于船台小车上,开动船台小车做纵向运动,待船舶移到横移区的纵向轨道和横向轨道交错处时启动小车下部的液压提升装置提升船台小车的走轮,将车架旋转90度后落下走轮到横移轨道上,开动船台小车将船舶运动到O轴线处,再次启动船台小车上的提升装置将船舶略为升高,此时用电动小车将楔形下水车托住船舶,降下船台小车的提升装置并移开船台小车,船舶即座落在下水车上,最后开动下水车上的电动绞车将船舶送入水中完成下水作业。

船台小车和下水车各自有单独的电动绞车,免去穿换钢丝的麻烦,提高了作业的安全性和作业效率;下水车的轮压较低,对斜坡滑道的施工精度要求较低;各个区域的建设独立性较强,可以分期施工。但由于自备牵引设备,船台小车结构复杂,维修繁琐;船台小车走轮转向和O轴线处换车作业麻烦,使用船厂不多。

7、升船机下水

升船机就是在岸壁处建造的一个承载船舶的大型平台,利用卷扬机做垂直升降的下水设施。根据平台和移船轨道的相对位置分为纵向和横向两种类型。

船舶下水时首先驱动卷扬机将升船机平台与移船轨道对准并用定位设备固定之,船舶在移船小车的承载下移到平台上就位,带好各种缆索,解除定位设备,卷扬机将升船机平台连同下水船舶降入水中,船舶会在自身浮力作用下自行起浮。

升船机结构紧凑,占地面积小,适用于厂区狭小,岸壁陡立。水域受限的船厂,升船机作业平稳,效率高,适用于主导产品定型批量生产。但升船机对船舶尺度限制大,只适用于中小型船厂。上海的4805厂(申佳船厂)有国内第一座3000吨级升船机。

利用浮船坞做下水作业,首先使浮船坞就位,坞底板上的轨道和岸上水平船台的轨道对准,将用船台小车承载的船舶移入浮坞,然后将浮坞脱离与岸壁的连接,如果坞下水深足够的情况下浮坞就地下沉,船舶即可自浮出坞;如果坞下水深不足就要将浮坞拖带到专门建造的沉坞坑处下沉。

根据船舶入坞的方式分为纵移式和横移式。纵移式的浮坞中心线和水平船台移船轨道平行,可以采用双墙式浮坞,船舶入坞按船长方向移动。上海江南和广州黄埔使用此类浮坞。横移式浮坞多使用单墙式浮坞,也可以使用双墙式浮坞,但这种浮坞的一侧坞墙可以拆除,使用时将浮坞横靠在水平船台之岸壁,用行车拆去靠岸一侧坞墙,将船舶拖入浮坞,再将活动坞墙装复做下水作业。

浮坞下水设施具有能与多船位水平船台对接的能力,造价较低,建造周期亦短,下水作业平稳安全,但作业复杂,多数时候要配备深水沉坞坑。 四、气囊式下水    目前,我国中小型船舶生产企业普遍采用气囊下水方式,虽然具有经济便利等优点,但是与传统的滑道式下水、轨道式下水、坞内下水等下水方式相比,气囊下水方式还存在缺乏理论支撑,实际操作中不规范等问题。根据现有船舶建造实践经验,在建造船长小于180 m的钢质普通船舶时,采用气囊式下水方式基本上还是可行的。因此,标准中规定二级Ⅰ类以下的船舶生产企业允许使用气囊式下水方式,同时对采用气囊下水的设施设备以及下水方案也提出了相应的要求。

求“船舶与海洋工程”专业的大学生的毕业论文,有关7000吨油船分段生产设计课题

  威海职业学院

  毕业论文

  5000T杂货船油船船舯典型分段生产设计设计与制造

  学 生 姓 名: 王建坡
  指 导 教 师: 余秀丽、王正海
  专 业 名 称: 船舶工程技术
  所 在 系 部: 船舶工程系

  目 录

  摘要 I
  Abstract II
  第一章 前言 1
  第二章 船体说明书 2
  2.1总体部分 2
  2.1.1 概述 2
  第三章 船舯分段构件数量 3
  3.1纵向构件 3
  3.1.1纵骨:52 件 3
  3.1.2第二、三甲板:2×2 件 3
  3.1.3旁底桁:6 件(水密旁底桁1件) 4
  3.1.4纵向舱壁:1 件 4
  3.2横向构件 5
  3.2.1强肋位上强结构:16×5 件 5
  3.2.2弱肋位上强结构:23×12 件 6
  第四章 识图 7
  第五章 分段拆分 8
  第六章 零件套料 9
  第七章 舯部分段装配 9
  第八章 结论与建议 11
  致谢 12

  摘要
  本文介绍的是5000t油轮的舯部典型分段设计过程,采用的是母型船改造法。设计过程包括主尺度的确定,总布置设计,舱容和各种载况下的稳性计算。整个设计过程以货舱舱容、稳性、操纵性和经济性为中心。确保设计的船具有足够的舱容,改善设计船的稳性和操纵性,同时具备良好的经济性。

  关键词:5000t油船,典型分段,结构,设计

  Abstract
  In this paper the design process of midship 5000t oil ship is introduced, in which basic ship method is used. The design process involves in the determination of principal dimensions, general layout design, general arrangement, stability calculation
  That centers on volume of compartment,stability,maneuverability,economy in design course. Ensure that oil ship have volume of compartment enough,improve stability and maneuverability of the designing ship . Meanwhile,having good economy.
  Key words:5000t oil shiptanker; typical subsection; structure; design

  第一章 前言

  我国5000T钢质油轮油轮行业正在逐步走出低谷,而且该行业已经基本步走出了全球经济萧条的低迷期。5000T钢质油轮油轮行业在现代济危机时代背景下,面临更多新的不确定因素,这些因素增加了判断未来经济走势和把握经济增长与通货膨胀之间关系的难度。5000T钢质油轮油轮行业是否持续低迷?5000T钢质油轮油轮生产企业的决策影响很大,要求我们站在全球经济背景下、把握好经济发展的周期、剖析中国宏观经济政策走向,认清5000T钢质油轮油轮行业发展形势、抓住机遇,准确预测5000T钢质油轮油轮行业未来走势,制定正确的发展规划、及时调整发展战略、积极开拓新的市场,在危机后迅速崛起。
  沿海成品油运输历来在国民经济中占有重要地位,但我国成品油供需存在地区间的不平衡,形成了“北油南运,西油东进”的格局。为缓解成品油运输压力,提高成品油运输的经济性和安全性,迫切需要开发新型成品油船。

  第二章 船体说明书
  2.1总体部分
  2.1.1 概述
  设计船为5000t油轮,航区为Ⅱ类航区,主要作业海区为各大洋近海航区1。本论文是毕业设计的一个重要组成部分,它包括了设计中的重要计算过程,以及部分重要设计步骤。毕业设计是我们大学学习生涯中重要的一环,是我们学习新的知识,对以往所学知识的应用及检。不断的发现问题,解决问题,提高我们实际应用知识的能力。这对我们将来学习和工作都有很大的帮助。
  本船为5000T近海成品油船。本船的设计是油船船舯典型分段设计,总体上满足设计所需的要求。本分段共有17个肋位组成。
  2. 1.2 主要数据
  2. 1.2.1 主尺度
  总长 :94.80m
  型宽 :16.50m
  型深 :9.20m
  吃水 :6.5m
  垂线间长:89.00m
  2. 1.2.2 主要船型系数
  长 宽 比 Lpp/B 5.39
  长 深 比 Lpp/D1 9.67
  宽 深 比 B/D1 1.79
  宽度吃水比 B/T 2.54
  2. 1.2.3 载重量
  载重量(吨)吨:5000
  第三章 船舯分段构件数量
  3.1纵向构件
  3.1.1纵骨
  :52 件

  图3.1纵骨
  3.1.2第二、三甲板
  :2×2 件

  图3.2甲板

  3.1.3旁底桁
  :6 件(水密旁底桁1件)

  3.1.4纵向舱壁
  :1 件

  3.2横向构件
  3.2.1强肋位上强结构:16×5 件

  3.2.2弱肋位上强结构:23×12 件

  扶强材:若干
  第四章 识图

  在对图纸进行拆分前,应认真观察图纸中的符号与数据。船体中线¢表示船体的纵向中心,吃水符号表示水浸没船体的位置,一般接缝表示两块板拼接时的焊缝,分段接缝表示两分段合拢时的焊接缝,连续符号表示零件是连续的,间断符号表示两结构是断开的,小开口剖面符号,剖切符号表示纵向构件的详细纵向剖面图,肋位符号#表示肋骨所在的位置排号。

  第五章 分段拆分

  5000t油轮按1:6的比例缩小后将其舯部剖面图拆分成不同的零件图。使用autoCAD软件将5000t油轮原图缩比后,把油轮舯部横剖面图的局部移出,然后使用CAD软件中的工具修正,将需要拆分的零件呈现出来,把除零件外其它多余部分清除,然后把每个零件的零件图进行排列,按我所要设计的船舯典型分段肋位数,复制成若干。我所设计的船舯典型分段需要17个肋位,其中包含5个强肋位和12个弱肋位。在我拆分船舯横剖面图时,首先拆分强肋位上的强结构,每一个强肋位上需要拆分16个强结构,同时每个强结构上都附有扶强材(加强筋),对扶强材拆分时要注意,扶强材需要削斜时斜边的长度应该是扶强材面宽的3倍。其次在图纸上拆分弱肋位上的零件,每个弱肋位上共有23个零件,每个零件上附加着扶强材。将横向结构中的零件全部拆分完毕,把强肋位上的强结构复制5份,弱肋位上的所有零件复制12份。
  对船舯典型分段图纵向构件进行拆分,根据纵向构件的详细图解进行拆分,每件纵向结构附加着扶强材,纵向结构中旁桁材5件,第二、三甲板4件,纵向舱壁1件。对内外板的拆分,根据工具测量内外板的尺寸进行拆分。上述所有的零件中需要安装扶强材的,应作出位置线便于安装校正。将所有的零件拆分完毕,对零件进行进行排版,排版原则:零件厚度一致,排列紧密。把厚度相同的零件排列在同一块板上,尽可能的利用板的空间。排版完毕后,按板的厚度由小到大的顺序排列放好。(注意:纵向构件的两端应位于肋距的1/4或1/3处。)

  第六章 零件套料
  对使用autoCAD软件拆分出的零件图进行打印,将打印出的图纸粘贴到硬纸板上,用剪刀或小刀对拆分零件进行套料,制作出每个肋位上的零件。对零件的套料必须精准,便于组装。

  第七章 舯部分段装配
  7.1托盘管理4【4】
  使用托盘管理,对套料后的零件进行分组,同一肋位上的零件放到一起,并编写顺序号;纵向构件放到一起,并编写顺序号。在分段装配中,首先进行的是小组立安装,所有开孔的强结构都需安装扶强材。
  7.2装配顺序
  7.2.1船底分段装配
  在分段装配中,首先装配船底分段,使用反造法,将船底内板反放,便于纵桁材和横向强结构的安装。纵向结构和横向结构安装时应与内底板上的划线相一致,以提高装配的效率和准确性。船底分段装配中首先安装旁桁材,由船中向两侧对称安装,旁桁材沿船底位置线定位后,对旁桁材全面涂胶进行固定粘结,旁桁材两端应留有50mm暂不粘2。横向结构进行安装时,由中间向两侧粘贴,横向结构粘贴时应先粘横向接缝,后粘角接缝。
  7.2.2舷侧分段装配
  对舷侧分段装配时,使用侧造法,以舷侧内壳为底,便于舷侧纵骨和横向强结构的安装,纵骨和强结构安装时应与内壳板位置划线相一致,以提高装配效率和缩小误差。其粘贴顺序同船底构件安装顺序相同,纵骨两端仍留50mm暂不粘2。

  将所有的零件拆分完毕,对零件进行进行排版,排版原则:零件厚度一致,排列紧密。把厚度相同的零件排列在同一块板上,尽可能的利用板的空间。排版完毕后,按板的厚度由小到大的顺序排列放好。
  7.3装配成果
  一段文字说明
  附上装配成果图片

  第八章 结论与建议
  历时两个多月的毕业设计与制作,通过这次毕业设计对大学三年所学的专业知识有了系统的运用,对知识有了更深刻的理解和掌握,同时提高了自己的动手能力。
  这次的设计是关于5000t油船的船舯典型分段的设计与制作,通过网络和图书馆查阅了很多相关的知识,对5000t油船的船体设计、套料、装配、建造有了深入的系统的了解。这次设计运用的最多的软件是AutoCAD,通过这次毕业设计对AutoCAD的运用更加熟练,速度也有了很大的提高。还有对EXCEL编程的能力也得到了很大的提高。我衷心的建议学校能够更多的引进这方面的软件,让同学们能更早的接触这方面的知识,对将来能更快的适应工作奠定一定的基础。

  致谢

  参考文献
  【1】. 《船舶设计原理》 哈尔滨工程大学出版社,2006
  2. 李忠林、魏莉洁、张子睿《船舶建造工艺学》 哈尔滨工程大学出版社,2006
  3. 彭公武 《船舶结构与制图》 哈尔滨工程大学出版社,2006
  4. 黄广茂 《造船生产设计》 哈尔滨工程大学出版社,2006
  5. 刁玉峰 《船舶舾装工程》 哈尔滨工程大学出版社,2006

  [7] 杨永祥,茆文玉.《船体制图》.哈尔滨:哈尔滨工程大学出版社,1994

  [7] 杨永祥,茆文玉.《船体制图》.哈尔滨:哈尔滨工程大学出版社,1994

十万火急,谁有船舶焊接方面的论文?

-4现代焊接2007年第11期总第59期
he present situation for the application of the shipping welding technology
T
1焊接技术对船舶建造重要性
2我国船舶焊接技术的起步
与发展
焊接工作量占船体建造总工作量
30%~40%,焊接成本占船体建造成本
的30%~50%。同时,焊接技术能扩大
造船总量、缩短造船周期、稳定焊接
质量、提高经济效益、减轻劳动强度
等。
造船焊接技术起步于50年代手工
电弧焊;50年代中期引进埋弧自动、
半自动焊;50年代末期~70年代末,试
验半自动CO焊、重力焊、下行焊、
衬垫单面焊获得成功;80年代初,船
总大力发展高效焊技术,成立高效焊
接技术指导组,推广应用各种高效焊
2
江南造船(集团)有限公司焊接研究所所长倪慧锋
船舶焊接技术应用现状
高效化率
19.50
30.08
50.25
68.56
74.80
76.80
80.98
83.02
91.30
92.30
表1船总船厂高效化率统计表
年份
1983
1986
1990
1996
1998
2000
2001
2002
2003
2004
CO气体保护焊
0.59
3.89
9.51
23.74
35.60
49.53
55.00
65.62
76.70
77.80
2
埋弧自动焊
14.80
16.72
19.86
14.61
15.70
10.99
10.03
10.03
8.59
10.60
船总船厂高效化率变化趋势
接工艺。
船舶焊接具有工件庞大、形状复
杂、施工环境差等特点。主要有以下
三种焊接方法:①埋弧自动焊:普通
单、双丝埋弧焊、FCB法、RF法、FAB
法;②CO气体保护焊:常规CO半
自动焊、双丝自动焊(MAG)、自动
角焊、CO气保护单面焊、CO气电
垂直自动焊;③手工焊条焊:铁粉焊
条焊、下行焊条焊、深熔焊条焊、重
力焊、普通焊条焊。船总船厂高效化
率统计表如表1所示。
3.1铜衬垫单面埋弧自动焊(FCB)
原理:焊缝反面采用铜衬垫支撑,
其上铺设衬垫焊剂,利用通气软管将
铜垫板压紧在坡口背面,正面焊接,
反面同时成形。
应用:主要用于平面组装阶段的
船底外板、舷侧外板、双层底板、顶
板、甲板、隔板等的拼板对接焊。
特点:双丝、三丝(多丝)焊,
熔敷效率高;单面焊实现焊缝反面成
形,节省工时;装配定位焊缝可在坡
口内实施;坡口形状、焊接条件的波
3我国船舶焊接三大主要方法
2 2
2 2
动允许范围广;长焊缝
焊接需要大型门架结构
支持;易产生热裂纹,
特别是厚板终端裂纹。
3.2热固型焊剂衬垫单
适用拼板平对接单面焊;反面成形依靠焊剂衬垫;
可实现大线能量焊接
表2 FCB、RF工艺比较
不同点
相同点
FCB法
错边、板厚差适应性低
需要足够大且均匀压紧力
反面必须采用铜衬垫支撑
RF法
错边、板厚差适应性强
可依靠板列自重
无需铜衬垫
面埋弧焊(RF法)
原理:一种单面自动埋弧焊方法,
可以得到均匀的背面焊道。焊接只在
正面一侧进行,背面是含有热硬化性
树脂的衬垫焊剂,它的下部是装有底
层焊剂的焊剂袋,再下部是通气软管,
它们都被放置在衬垫外壳之内,依靠
密封的通气软管将焊剂压紧在坡口背
面。FCB、RF工艺比较如表2所示。
3.3焊剂石棉衬垫单面埋弧焊(FAB)
原理:利用柔性衬垫材料装在坡
口背面一侧,并用铝板和磁性压紧装
置将其固定的单面埋弧焊。
特点:具有良好柔性,对较大接
头错边、变形、不等厚接头有好的适
应性,使用操作灵活、方便。
应用:平板及背面侧有曲率的对
接焊,如弯曲外壳板、甲板、底板。
适用于船体分段中合拢、船台(船坞)
大合拢。
3.4 T排制作自动角焊。无需装配焊
接;焊接速度快;焊接变形小。
3.5船体纵骨自动角焊。双丝双电弧;
平直分段纵骨焊接;同时焊接4纵骨
8条缝。
3.6简易CO自动角焊。专用自动焊
2现代焊接2007年第11期总第59期X-5
Analects第21届中国焊接博览会论文精选
接小车,轻便、灵活、易携永久磁铁、
导向机构,避免脱离焊接线,适用于
长直焊缝,立角焊具有摆动功能,可
以调整摆动速度、摆动幅度、中心位
置与左右停留时间,焊缝两端需要补
焊。
3.7 CO垂直气电自动焊
原理:焊接时采用CO专用药芯
焊丝,焊缝正面通过水冷铜滑块强制
成形,反面借助于衬垫也同时成形的
一种高效焊接方法。
特点与应用:高熔敷效率,生产
效率比手工焊提高5~7倍;焊丝伸出
长度控制在恒定值,适应变化的焊接
条件;单道焊可焊接最大板厚32mm;
坡口间隙必须严格控制;用于船台(船
坞)大合拢垂直对接缝,如船体外侧
壳板、隔板。
3.8双丝MAG焊。双电极双摆动CO
气体保护单面焊双面成形,无间隙装
配,可在坡口内侧定位焊,坡口背面
敷粘贴型陶瓷衬垫,送丝机和丝盘与
焊机一体化,可进行长拼缝连续焊,
22mm板厚拼接可一次焊接完成,焊
接效率是普通CO焊的8倍,适用大
合拢主甲板、内底板对接,中合拢平
板对接。
3.9普通CO气保护单面焊。船厂应
用最广泛的焊接工艺,设备投资少,
高效且工艺实施方便,打底焊第一道
焊接是关键,可在平、立、横多个位
置施焊。
3.10焊条高效化。重力焊:平直角
焊缝,一人可同时操作多台;铁粉焊
条:药皮中加入铁粉,提高熔敷效率;
下行焊条:改变药皮渣系,提高电弧
吹力、熔渣凝固点温度;深熔焊条:
可焊透板厚12mm以下对接焊缝。
4.1搅拌摩擦焊(FSW)
1991年,由英国焊接研究所(The
Welding Institute-TWI)发明。焊接过
程属于固相焊接,核心技术是搅拌头,
焊接工艺参数包括搅拌头旋转速度、
焊接速度、倾斜角度、焊接压力。高
质量焊接接头,无裂纹、夹杂、气孔
等缺陷,焊接变形小,无需焊接材料,
焊前工件表面清理要求低,焊接过程
中无飞溅、烟尘、噪音等环境污染。
适用制造大型船舶铝合金结构件,挪
威、日本、澳大利亚等国的船舶制造
公司生产预成形结构件(一般为板材
或挤压型材),使船舶制造由零件的
制造装配转变为船舶甲板以及壳体的
预成型结构件的装配。单道焊接铝合
金厚度达100mm,双道焊接达180mm。
4.2激光复合焊(Laser-Hybrid)
激光+常规MIG或MAG焊,与单
纯激光焊比较有许多优点:
4.2.1可有效利用激光能量,电弧先
将母材熔化,提高激光吸收率。
4.2.2增加熔深,利用激光束作用于
电弧形成的熔池底部,进一步提高焊
接熔深。
4.2.3稳定电弧,激光使气体电离产
生等离子体,有助于电弧稳定。
4.2.4降低焊缝装配精度,装配间隙
由0.3mm增大至1mm。
船舶建造的激光焊大部分采用大
功率CO激光器,主要用于大型豪华邮
轮、高速滚装/客滚船、军用舰艇等高
附加值的军民用舰船薄板及合金材料
焊接,可以保证船体结构轻盈,焊缝
性能好,表面成形美观,构件不变形。
应用船厂:德国Meyer(玛亚)船
厂、Blohm+Voss(博隆·福斯)船厂、
丹麦Odense(欧登塞)船厂、德国Kv-
aerner Warnow(克瓦尔纳·瓦诺)船
厂。
4.3焊接机器人
计算机技术、自动控制技术、气
保护焊接技术的完美结合,适用于船
舶构件批量化、小型化焊接生产以及
狭窄舱室短焊缝全位置焊接。有固定
机械臂式焊接机器人、可移动便携式
离线编程焊接机器人。上世纪90年代
初,日本船厂已开始使用焊接机器人,
随后又研制出自动切割机器人。2003
年,韩国现代重工研发出5种获得国际
认证的焊接机器人,用于造船焊接。
具有焊接重现性好,环境适应性
强、智能化程度高的优点。
5.1船舶行业发展需求。造船总量不
断上升,2015年预计可突破3000万吨;
船舶大型化,船型多样化;进一步提
高船舶市场国际竞争力。
5.2船舶焊接技术发展方向。CO气保
护焊自动化程度不断提高,应用范围
扩大;手工焊条焊应用逐步减少,焊
接机器人(智能化焊接系统)尝试应
用;焊接设备趋向低能耗,高负载持
续率,数字化。
5.3船舶焊接中存在的问题。造船模
式相对落后;大型焊接系统国产化率
低;高性能焊接材料依赖进口;国产
船用钢板大线能量焊接适应性;焊接
技术人员流失严重,工艺开发能力不
足;生产组织管理不够完善;工艺研
究成果转化为生产应用比率不高。
2
2
2
2
2
2
2
4国外船舶焊接先进技术
5国内船舶行业焊接技术发
展趋势

研究性学习论文,关于二战著名将领的个性研究800字左右,谢谢,如果很好在追加分啊!

邓尼茨 邓尼茨1891年出生于一个普鲁土的名门望族。他之所以想参加海军;主要是因为他愿意接受唯有海军才能提供的技术教育。他在19岁时加入德意志帝国海军,4年后第一次世界大战爆发时,他是轻型巡洋舰"布雷斯劳"号上的一名尉官。这就使他参加了战争初期的一个海军"插曲"。当时,"哥本"号和"布雷斯劳"号两艘德舰逃过英国地中海舰队的围捕,到达了君士坦丁堡,然后名义上出售给土耳其。这是一段非常不光彩的"表演",年轻的邓尼茨由此认识到德国海军并非无敌于天下,英国海军在战术和技巧上都远比它占优势。 此后两年,虽然这两艘军舰在名义上是属于土耳其,但邓尼茨仍留在"布雷斯劳"号上服务,偶尔也参加在黑海中的突击行动。由于害怕苏联黑海舰队的追击,所以不敢离开土耳其海峡太远,这也使邓尼茨学到了一些特殊的海战经验。 1916年,他返回德国并转入潜艇部队。这是他第一次接触到潜艇,也是他一生事业的真正起点。经过初步训练,他被派到U39号上任守望官,1918年又升任UB68号的艇长。这是一艘在地中海内活动的潜艇,以奥地利在亚德里亚海上的波拉港为基地。他在那里与施泰因鲍尔相识,后者是第一次大战中德国最富冒险精神的潜艇指挥官之一。邓尼茨可能是从他手中学到了夜间水面攻击的理论,即利用黑暗的掩护,以求溜过敌方驱逐舰的警戒线发动攻击。他们两人约定在同盟国的一条护航线上会合,以验证他们的理论,结果施泰因鲍尔未能到达指定的会合点,邓尼茨只好单独去试验这一新理论。幸运的是一支英国的护航船队恰好到达附近海域。邓尼茨毫不困难地通过驱逐舰的屏障,悄悄地溜到了商船附近。他用鱼雷击沉了一艘商船,但此后在潜航时,潜艇失去了控制,不得不炸毁主压载水槽,以使其不至于因潜入太深而被水压所催毁。UB68号遂在英国船队中浮出海面。邓尼茨只好下令弃船。他被一艘英国驱逐舰救起,此后10个月,都在约克夏的战俘营中度过。 毫无疑问,邓尼茨从此打定主意,要发展一种新战术来击败这种传统的护航原则。邓尼茨虽然不是一位海军历史学家,对于护航原则的光荣历史也未作过研究,但凭他自身的经验,他发现自从英国人在1917年采取护航的办法之后,德国潜艇开始功败垂成。传统的潜艇攻击天在白天用潜航的潜艇来执行,这对船队中被护航的商船已经不能造成任何影响。直到16年后,邓尼茨才有机会试验有关潜艇战术的新理论。1919年,他从英国战俘营返回德国,再度进入德国共和国海军。由于受到《凡尔赛条约》的限制,那实际上是一支没有潜艇的海军。不过魏玛共和国政府还是秘密地在外国订造潜艇,这就使邓尼茨与潜艇的发展不至于完全脱节。实际上,他在海军中的服务还是以在驱逐舰和巡洋舰上为主,到1934、1935年,他已升到上校,负责指挥巡洋“"艾姆登号"。 希特勒在1933年夺得了政权之后,德国海军重整旗鼓的前途也开始日益光明。希特勒和海军总司令雷德尔会晤,表示在其未来的建军计划中,海军在公平的分配中一定占优先地位,这样他就赢得了雷德尔和全体海军人员的拥护。在雄心勃勃的"乙计划"中,预定在1944年,德国将拥有一支强大而稳定的海军舰队,到1948年,其实力足以向英国海军挑战。虽然雷德尔对希特勒的效忠是毫无疑问的,但对纳粹党当则是另一种态度。雷德尔本人不曾入党,并且严格命令一切海军人员都不得参加政治活动。他讨厌且不信任戈林,对纳粹党的其他领袖的态度也是既冷淡又谨慎。。 邓尼茨则恰好相反。虽然受到雷德尔的禁止,他不能正式加入纳粹党,但他对纳粹主义具有强烈的信仰.而对希特勒更是狂热地拥护。最初他还太年轻,资历浅,缺少表现的机会。但自从战争爆发以后,随着地位日益提高,他开始培养与党内领袖之间的友谊,甚至对戈林也曲意奉承。尽管戈林有强烈的反海军情绪,但邓尼茨知道他是希特勒亲信中权力最大的一位。1943年初,邓尼茨接替雷德尔出任海军总司令,他立即解除了海军人员不得参加政治活动的禁令。雷德尔曾戏称他"希特勒青年邓尼茨"。 自从当权之日起,希特勒的目的就是要支配欧洲。他的基本计划是先解决欧洲大陆问题,然后再占领不列颠帝国。基于这种思想,希特勒先开始和英国展开有关海军协定的谈判。在谈判所提出的建议中把德国海军的吨位数定为英国海军的35%,而潜艇则可达到45%。这个数字在某种环境下还可以增到100%。他们认为英国是一个海洋国家,对于这种程度的海上优势应会感到满意,也就可能不再干涉德国在欧洲大陆上的冒险。1935年,《英德海军协定》遂在伦敦签字。 事实上,在《英德海军协定》签字以前,德国即早已开始建造潜艇,甚至在协议书的墨迹未干之时,第一支作战部队就已经产生。其指挥官即为邓尼茨上校,以后他又被任命为海军总部中的"首席潜艇官",负责一切有关潜艇发展、政策、训练等项事宜。这使他有机会发展他的理论,并通过演习把这些理论付诸试验。 邓尼茨的潜艇思想以两项原则为基础。第一,潜艇的攻击目标就是商船。对他来说,这就包括了潜艇战的一切行动和其目的。击沉一艘敌方的军舰不过是一种额外的收获而已。对商船的攻击必须不惜一切代价,更不必考虑平民生命的损失。根据《海牙公约》,在攻击商船时应先停船检查,而在击沉之前应对所有的乘员提供安全保障。邓尼茨不仅不理会这种规定,而且还花了许多时间去寻找《公约》的漏洞,以便使潜艇可以合法地在无警告情况下击沉商船.他狡辩说一艘商船在战时发出求救的信号就意味?quot;正在受到潜艇的攻击".这就构成海军的一种情报来源。根据这种理由,它也就不应受《海牙公约》的保护。 他的第二项原则认为潜艇根本上只是一种能潜航的水面船只,应像一艘水面军舰一样投入战斗,就对商船的攻击而言,这是一种超前的观念,完全改变了当时流行的看法,即认为潜艇在白天应潜伏在水中,当目标进入其射程以内时才在水下用鱼雷加以攻击。邓尼茨认为夜间的水面攻击最为有利。因为潜艇的指挥塔体型很小,在夜间几乎看不见,而潜艇的水面航速又几乎超过商船。这两个因素加在一起。也就使潜艇可以到达最有利的火力发射位置。 他毫不浪费时间。立即在波罗的海中设计演习以求验证他的理论是否正确。在训练人员时,邓尼茨非常注意细节。他要求全体官兵对德国潜艇的设计充满信心,同时也要掌握在一切恶劣天气条件下的操作能力。他用德国舰队来扮演敌方的护航兵力,试验其潜艇的夜间攻击技术。结果它们很轻松地穿过一道驱逐舰的屏障,一到达距目标600码以内的位置而未被发现。这就证明他所走的路线不错。 夜间水面攻击理论的进一步发展就是"狼群"战术。他设想在对方船队的可能航线上横向展开一队潜艇,假使有一艘潜艇发现了踪迹,就立即跟着它走,同时通知其他的潜艇集合在一起。并驶往前方等候。以便在次夜发动攻击。 这种战术行动会产生许多问题,主要的问题是最有效的指挥命令是发自海上的指挥潜艇呢?还是发自岸的司令部呢?一郎尼茨曾试验过这两种方法,最后发现在装备有精密通信网的岸上司令部中,他可以作较好的控制。不过他又迅速认识到这种控制体系有一个明显的缺点即大量的讯号从海上潜艇中发出,将使敌方的方向寻觅系统易于发现我方潜艇的位置。他准备进行这种冒险,因为他认为从岸上进行有效的控制有较大的优势,同时他也相信英国还没有十分有效的高频率定向系统。 在以后3年内,即1936年到1939年,邓尼茨根据他的理论建立起德国潜艇兵种。除了经常演习以求将"狼群"战术发展到最高效率以外,他还集中精力为这一目标设计了一种性能最佳的潜艇。对于这样的战争,其理想的潜艇是舰体要尽可能小,因为愈小则愈不易为敌人所发现;而从燃料储量来说,则希望它具有最大的续航力。因为任何与英国人之间的战争,都使德国潜艇必须到达离基地很远的地方去作战。邓尼茨的工程专家发现,只要把排水量500吨的标准潜艇再增加17吨以加装油槽,即可以使其航程由6200海里增加到8850海里。这就是以后大量生产的VⅡC型。为了适应航程较远的战斗,他们还设计了740吨的潜艇,其航程为13450海里,这就是ⅠⅩ型,它与VⅡC型的生产比例为1比3。最后,为了真正的远程作战,例如在非洲的南部海域和印度洋的战斗,又设计了一种大型水底油轮,可以在海上为作战用的潜艇加油。这就是ⅩⅠⅤ型潜艇,其水面排水量为1688吨.那些潜艇艇长们称?quot;奶牛"。不过直到1940年底和1941年初,这种潜艇才开始按一定数量生产。 在这4年中,邓尼茨对于德国潜艇兵种的发展,无论是在物质方面还是在精神方面,都是总负其责,他专心一意地投入潜艇部的建设,亲自选拔和训练人员,并把他自己的新战术思想灌输到他们的头脑中,使他们树立坚定的信心;虽然他并非十个和善可亲的人,但他尽可能与他的艇长们保持接触。每当一艘潜艇出海演习回来,他总是在码头上欢迎官兵。所以全体官兵都把他当作父亲看待。 在这几年中他在两方面最幸运。一是他在整个4年之内都能安于其位。德国海军不像其他大多数国家的海军,不是在任职两年半左右就实行调职。这有两种好处,一方面使他有充裕的时间来发展和改善其战术思想,另一方面也使他的部下有一种安全感,知道这种指挥体系不会有所改变,他们不必害怕到时又要去适σ晃恍铝煨涞乃枷搿6�前亓值暮>�懿慷缘四岽牧硌劭创��唤龀腥纤�俏ㄒ坏那蓖ё�遥��叶杂谒�岢龅囊�笠惨宦膳�肌5笔彼�故且晃患侗鹣嗟钡偷木�伲��以说氖撬�亩ネ飞纤竞>�芩玖罾椎露�运�湃斡屑樱�谇蓖д搅煊蛑械囊磺形侍馐侨菪硭�笕ǘ览俊? 邓尼茨不仅对潜艇部队的建设专心致志,而且他对假想敌是谁也有坚定不移的看法。在1935年到1939年间的德国,也许只有他一个人如此坚信英国是未来战争中的主要敌人,他的一切训练和准备都指向这个唯一的目标。他甚至要求一切演习都应到大西洋中去进行,而不应限于波罗的海或北海范围内。雷德尔深信希特勒的诺言,即保证在1945年以前不与英国开战,所以他一点都不紧张,而是相应地去建造一支安定的大舰队。尽管邓尼茨对他的元首忠心耿耿,但在这一点上却保持着与希特勒不同的看法。他那时还是人微言轻,也就不敢随便表露自己的意见。 1939年4月26日,德国片面废除《英德海军协定》。德国占领捷克之后,英国就为波兰的安全提供了保证.两国的关系从此开始紧张,而这次废约行动堪称火上浇油。这不仅暗示战祸可能一触即发,而且也使英国人认清德国海军正在以最快速度重振旗鼓。依照雷德尔的Z计划,预计到1948年德国才能有233艘潜艇。但废约之后,邓尼茨认为德国决不能等到1948年去完成其舰队的建造计划。所以他力主德国的造船工业应立即停止其他一切船只的建造,而集中全力来生产潜艇。而最终雷德尔也只是决定把战舰和潜艇同列为第一优先而已。无论如何,时间已经来不及了,德国的工业在战争开始时未能交出邓尼茨所希望的那么多潜艇。 当英国在1939年9月3日对德国宣战时,邓尼茨手中的潜艇总共不过57艘,而其中只有46艘已完成战备,其中又只有22艘VⅡ型可以适应大西洋中的海战。依照惯例,一支潜艇部队通常是1/3在作战地区中巡逻,l/3在来往的途中行进,l/3在基地整顿和休息,所以邓尼茨在大西洋中能用的作战兵力不会超过7艘潜艇。这对于有效的"狼群"战术而言,显然是太少了。直到1940年10月,邓尼茨才有足够的潜艇来使"狠群"理论发挥真正的效力。结果实在惊人,在那一个月内,德国潜艇一共击沉了63艘商船,总吨位数达到35万吨之多。 "狼群"攻击的组织工作相当复杂,必须由邓尼茨在岸上的司令部作严密的控制。邓尼茨很容易地了解到对方的护航船队何时离开加拿大前往英国。以及所包括的船只数量。正常的情报部门就可以给他这种资料。个别潜艇散布在一条与敌方的预计航线成直角的直线上,根据能见度的差异,彼此间隔25海里到30海里,等待发现敌船。当其中一艘潜艇发现敌船之后,就立即用高频率的潜艇无线电波向邓尼茨报告,同时继续监视敌人的船队。它此时浮出海面但与敌船保持最大的能见距离,这样就不易被对方发觉。在监视的同时,这艘潜艇也就继续向邓尼茨报告敌方船队在航向或速度上的改变,以及天气情况和其他有关资料。 当潜艇司令部收到发现敌情的报告之后,就立即用同样的高频率电波通知参加"狼群"行动的其它潜艇,命令它们向那一艘潜艇靠拢。甚至连它们应该怎样走都由司令部决定。当它们即将接近敌方船队时,原先的那艘潜艇就会用中波无线电来和它们取得联系。 所有潜艇都奉有严格的命令,必须等待全部舰只到达后才开始攻击。它们驶往前方的某一位置,那是预计敌方船队在天黑之后能到达的地点,这样它们就可以在一整夜发动攻击。攻击的方法是依赖它们几乎完全不被敌人发现的特性,通过护航舰只的屏障线,一直溜到商船的中间,直到射程大约600码时才发射鱼雷。在这样的距离内几乎百发百中。当天快要亮时,潜艇立即开始停止攻击,以最高速度在水面上沿着船队的同一航向向前行驶,依赖其高速度进入下一个有利位置,等到夜幕再度垂下时再作第二次攻击,这样一夜复一夜,直到所有的潜艇把鱼雷都用完为止。 在整个作战过程中,邓尼茨都对部队保持着严密的控制,从他的司令部中发出一连串的无线电报,指挥每一艘潜艇在每一分钟的行动,只在夜间攻击时例外。在夜间,各位舰长要用自己的技巧和主动性去达到适当的射程并尽可能击沉大量的商船。但何时开始攻击和何时停止则都由司令部决定。对于这种形式的攻击,英国人基本上毫无防御能力。在最初阶段,大西洋之战是完全靠肉眼来打的,决定胜负的问题就是要看谁先发现对方。潜艇显然占了优势。当时虽已有雷达,但受到巡逻飞机航程的限制,即最远只可以到达距机场200海里的地区而护航舰只则还没有装雷达。 邓尼茨曾凭着高度的技巧和坚定的决心来充分利用这种有利情况。部队执行命令时事无巨细都根据他的指示和决定来办。当然他也有失算的地方,譬如说有些鱼雷设计不佳,有向深水处潜入而从目标船底下通过的情况发生。邓尼茨不仅立即加以矫正,而且还把负责人送交军事法庭审判。 另一方面他也有特别好的运气。最重要的是英国海军的密码几乎全被德国海军情报机构译出。所以,邓尼茨对敌情可以说是了如指掌。因此,他指挥的潜艇也就能击中敌人而不被敌人击中。 除了全面指导德国潜艇对英国海上运输的主力进行攻击以外,邓尼茨还能有余暇来计划和指导某些特殊行动。最使人难忘的是U47在1939年10月13日夜间深入斯卡巴夫罗,击沉了英国航空母舰"皇家橡树"号。这次成功使邓尼茨升任少将,并使他能与希特勒直接接触。他乘机向希特勒灌输他的思想;只有凭借潜艇作战才能击败英国。 1942年11月,英国的霍顿爵士接替诺贝尔,负责指导反潜战。在诺贝尔负责期间,由于缺乏护航舰只,所有的新舰都是立即投入战斗以至于人员都不曾接受适当的训练,等到雷顿接手时,由于造船工业的加速发展,专供反潜作战的舰只开始逐渐增多,于是他可以把它们组成护航群,加以适当的训练,以迎接大西洋中的新战斗。 霍顿也象邓尼茨一样,深知士气在大西洋之战中的极端重要性。所以他也象邓尼茨一样要求其司令部具有高度的指挥能力和奉献精神。这样才能使所有护航舰只的舰长和飞机机长对一切战斗都充满信心。正象邓尼茨站在码头上欢迎潜艇返航一样,霍顿亲自乘坐小型护航船只和巡逻飞机在海上监督作战。他们二人在第一次大战时都是潜艇艇长,现在又开始斗智,而邓尼茨早已感觉大事不妙。 1942年2月,德国潜艇的损失开始剧增,这已经给了邓尼茨一次警告。损失的原因在于英国的水面和空中护航兵力都已装备1.5公尺的雷达。当德国潜艇在夜间攻击商船时,它们也会受到全速赶来的敌方护航军舰的奇袭。邓尼茨和他的技术专家很快就弄清了其原因在于一种新的雷达装置,它比老式雷达射程更远,也更精确,但直到8月间他们才找到对策,那就最所谓FuMB,这是一种雷达射线接收器,能够迅速告诉潜艇它已被雷达盯住,于是潜艇常能迅速潜入水中来逃避敌方攻击。但是对邓尼茨来说,敌军设下的网已经在收紧之中。1943年2月,联军又在大西洋中首次使用10公分的雷达。德国的FuMB不能接收这种新型雷达的信号,潜艇因此会突然受到袭击。也许是受到这种失败心理的影响,邓尼茨此时又犯了一个最大的战术错误。他命令所有潜艇在通过比斯开湾时,一律浮出水面并用高射炮和敌机对攻。这个倒霉的命令造成了重大损失。在2月间损失潜艇19艘,3月15艘,而5月更多达37艘,损失如此惨重,其原因不仅在于新雷达,还在于威力较强的英军深水炸弹。 1942年5月,希特勒要求邓尼茨出席讨论全面战争情况的定期元首会议,以使他亲自报告潜艇战的进展。邓尼茨立即抓住这个机会,在雷德尔比较现实地作出评论之后,他就大谈其对于最后胜利的信心,这立即赢得了希特勒的赞许。所以当1943年1月雷德尔辞职时,邓尼茨就越过了其他资历较深的海军将领而接任海军总司令。 雷德尔之所以辞职,是因为希特勒在戈林的唆使下下令把所有大型军舰都报废,舰炮改为岸上炮,人员则用来扩充潜艇部队或补充陆军。雷德尔遂愤而辞职。邓尼茨最初同意希特勒的命令,但几星期之后,他弄清了海战的全盘情况,又要求希特勒收回成命。 就潜艇战的指挥而言,邓尼茨的确成就卓越,但他似乎不能胜任海军总司令的职务。他对于地中海战役的处理,尤其是在非洲的撤退和联军进攻西西里岛时,就显得不太高明。他本人在当时确信问题的关键在于陆军的补给,他坚决主张使用所有德国和意大利的军舰,从巡洋舰到潜艇,来运送补给而不参加战斗。这一错误导致轴心国部队在突尼斯大批投降,联军在西西里岛顺利登陆。 同盟国的空中兵力在大西洋地区迅速增加,尤其是在使用护航母舰之后,大西洋中部海域的漏洞也被填补了。这就使潜艇的水面攻击战术不再有用武之地。1943年5月之后,所有德国潜艇都撤出北大西洋。到此时,邓尼茨似乎已经知道海上的战争是输定了,两年多以来,他一直都在用新型潜艇的神话来欺骗希特勒,甚至也可以说他最自欺欺人。这些神话不久被揭穿了。首先是所谓?quot;史诺克"通气管,它可以容许潜艇在潜航时仍能使用柴油巡航体系。瓦尔特潜艇是第二种发明,它使用双氧水作为涡轮机的动力来源,但由于技术困难太多,几乎直到战争结束时才发明出来,已经不能产生任何实质性的影响。当海战地点已经接近德国本土时,邓尼茨又赶造了大批小型潜艇以求扭转劣势,结果是不仅损失惨重,而且也毫无成效。 当联军迫近柏林时,所有的纳粹要人中,只有邓尼茨和戈倍尔还真正效忠于希特勒。 1945年4月26日,戈林企图接管政权,希特勒大怒,命令立即将他拘捕正法。希姆莱也私自想和同盟国接触。所以希特勒在自杀前,留下遗言任命邓尼茨继任德国元首。 邓尼茨于5月1日就职,起先他还希望和西方同盟国达成单方面的停战,他以为西方国家将会利用他来对抗苏联并控制战后的德国。这种梦想只维持了3个星期就破灭了,5月22日他被捕,和其余的德国领袖们一同在纽伦堡接受战犯审判,并被判处了10年徒刑。他在1956年刑满出狱,后来在德国过着休闲的生活。 总而言之,作为一个潜艇战的指挥官,邓尼茨毫无疑问是卓有成就的,但在充任海军总司令时,他却完全失败了。他缺乏对战略问题的了解和长远眼光。但是即使当时德国能有强大的海军,他也还是照样不可能有杰出的表现。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页