您当前的位置:首页 > 发表论文>论文发表

算法理论研究论文

2023-03-02 18:31 来源:学术参考网 作者:未知

算法理论研究论文

聚类分析算法论文

聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法,同时也是数据挖掘的一个重要算法。下面是我分享给大家的聚类分析算法论文,欢迎阅读。

一、引言

聚类分析算法是给定m维空间R中的n个向量,把每个向量归属到k个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为:类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。聚类分析的基本思想是:采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系。盐矿区系统是一个多层次、复杂的大系统,涉及诸多模糊、不确定的因素。平顶山市盐矿区的经济分类是以整个平顶山市的所有盐矿区为研究对象,以各盐矿区为基本单元,以经济为中心,以发展战略和合理布局为目标进行经济类型区划。其基本原则是:平顶山市的盐矿区资源开发、利用的相对一致性;自然、经济、社会条件的一致性;保持一定行政地域单元的相对稳定性。现行的平顶山市盐矿区行政划分不能反映出各个盐矿区的共同点,有必要通过模糊聚类分析将那些经济实际状况相似的铁矿区归类,剖析、发现各况矿区的差异,对症下药,为制定发展对策提供依据。

二、建立指标体系

1、确定分类指标进行经济区划分,应考虑的指标因素是多种多样的。既要以岩盐矿资源储量为主,又要适当考虑岩盐质量和勘察阶段和开发利用状况;既要有直接指标,又要有间接指标;既要考虑矿区发展的现状,又要考虑矿区发展的过程和矿区发展的未来方向。参考有关资料,结合专家意见,我们确定了对平顶山市盐矿区进行经济区划分的指标。如表1所示。表中列举了具体指标及各指标的原始数据(数据来源于河南省2006年矿产资源储量简表)。表1盐矿区经济划分指标体系及指标数据注:表中N表示缺失数据,勘察阶段1、2、3分别表示:初步勘探、详细普查、详细勘探,利用状况1~7分别表示:近期不宜进一步工作、可供进一步工作、近期难以利用、推荐近期利用、计划近期利用、基建矿区、开采矿区。

2、转换指标数据由于不同变量之间存在不同量纲由于不同变量之间存在不同量纲、不同数量级,为使各个变量更具有可比性,有必要对数据进行转换。目前进行数据处理的方法大致有三种,即标准化、极差标准化和正规化。为便于更直观的比较各市之间同一指标的数值大小,我们采用了正规化转换方式。其计算公式为:为了方便叙述,做如下设定:设Xi(i=1,2,3,…,21)为具体指标层中第i个评价指标的值,Pi(i=1,2,3,…,21)为第i个指标正规化后的值,0≤Pi≤1,Xs,i(Xs,i=Xmax-Xmin),为第i个评价指标的标准值,Xmax为最大值,Xmin为最小值。(1)对于越高越好的`指标①Xi≥Xmax,则Pi=1;②Xi≤Xmin,则Pi=0;③Xmin

三、聚类分析

1、聚类步骤(Stage).从1~3表示聚类的先后顺序。

2、个案合并(ClusterCombined)。表示在某步中合并的个案,如第一步中个案1叶县田庄盐矿段和个案2叶县马庄盐矿段合并,合并以后用第一项的个案号表示生成的新类。

3、相似系数(Coefficients).据聚类分析的基本原理,个案之间亲密程度最高即相似系数最接近于1的,最先合并。因此该列中的系数与第一列的聚类步骤相对应,系数值从小到大排列。

4、新类首次出现的步骤(StageClusterFirstAppears)。对应于各聚类步骤参与合并的两项中,如果有一个是新生成的类(即由两个或两个以上个案合并成的类),则在对应列中显示出该新类在哪一步第一次生成。如第三步中该栏第一列显示值为1,表示进行合并的两项中第一项是在第一步第一次生成的新类。如果值为O,则表示对应项还是个案(不是新类)。

5、新类下次出现步骤(NextStage)。表示对应步骤生成的新类将在第几步与其他个案或新类合并。如第一行的值是11,表示第一步聚类生成的新类将在第11步与其他个案或新类合并。

6、解析图DendrogramusingAverageLinkage(BetweenGroups)RescaledDistanceClusterCombine聚类树状图(方法:组间平均连接法)图清晰的显示了聚类的全过程。他将实际距离按比例调整到0~25之间,用逐级连线的方式连接性质相近的个案或新类,直至并未一类。在该图上部的距离标尺上根据需要(粗分或细分)选定一个划分类的距离值,然后垂直标尺划线,该垂线将与水平连线相交,则相交的交点数即为分类的类别数,相交水平连线所对应的个案聚成一类。例如,选标尺值为5,则聚为3类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。若选标尺值为10,则聚为2类:叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。

四、结论

对平顶山市5个盐矿区进行经济区划分,究竟划分为几个区合适,既不是越多越好,也不是越少越好。划分经济区的目的,就是要根据各盐矿经济区资源特点、勘察、开发的不同,分类指导经济活动,使人们的经济活动更加符合当地的实际,使各经济区能充分发挥各自的优势,做到扬长避短,趋利避害,达到投人少、产出多,创造良好的经济效益和社会效益之目的。分区太多,就失去了分区的意义,分区太少,则分类指导很难做到有的放矢。综合以上聚类分析结果,我们可以得出三个方案。其中两个方案比较合适,可供选择。方案一:(当比例尺为5时,分为3类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段为一类,叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案一。方案二:(当比例尺为10时,分为2类)叶县田庄盐段、叶县马庄盐矿段为一类,叶县娄庄盐矿、叶县五里堡盐矿段、叶县姚寨盐矿为一类。从聚类分析中看出平顶山市盐矿区分类图方案二。平顶山市盐矿区分类图方案2聚类分析的原理就是将矿石质量、资源储量、勘查阶段、利用状况相近或相类似的矿区聚合在一起,其分析结果也是直观易见的。在此结合平顶山市实际行政区划以及矿山企业特征我们对铁矿区划分做一个调整使其理论与实际能够结合的更紧密使其更好的指导实践。

1、叶县田庄盐段、叶县马庄盐矿段为一类,这一类属于矿床规模相当,资源储量接近,勘查开发阶段接近,利用程度相当,故,可以分为一类。

2、叶县娄庄盐矿、叶县五里堡盐矿段为一类,这一类属于勘查开发阶段处于同一阶段。

3、叶县姚寨盐矿为一类,这一类属于储量较高,盐矿品位较高,故其勘察开采规划有别于其它两类。总的说来,运用聚类分析是基本成功的,大部分的分类是符合实际的。综合以上论述盐矿区划分如下表所示:当然聚类分析有其优点也有其缺点:(1)优点:聚类分析模型的优点就是直观,结论形式简明。(2)缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试问内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

算法与程序设计论文2000字

数学上的算法已是头绪纷繁———加法,减法,乘法,除法,平方,开方,对数┉┉一连串的读下来,已经让人头痛,那人生呢?如果我再问你人生的算法是什么呢?
人生中种种悲欢离合,喜怒哀乐,复杂至极,但我始终认为,人生的算法应该是最基础最平实的加法,是我们每个人对于算法最初的映象,人生应该是一个加法算试。
做加法,需要我们向人生的算式中加入责任的数值,这是算式最基础的几个决定结果“份量”的大数字,你的人生会输出一个两位数,三位数还是四位数甚或以上的结果,决定于这个最“压秤”的数值。
5.12汶川大地震后,网上渐渐开始痛批“范跑跑”,这名“老师”在地震到来时抢先冲出教室不管学生安危的做法激起人们强烈的反感。而当他在网上颇有几分得意的宣扬那引人唾弃的“正常人都会这么做”理论时,在北川,一位悲恸的妇人正在丈夫灵堂上痛哭失“我听人说有个老师扑在四个学生身上……死了……我就想可能是你……”这两位老师,品行高下一望便知,他们人生的最后价值,取决于他们在算式中累加了多少责任,人民教师的职责的份量,使得一个人的生命重于泰山;而另一个,人生的结果只会约等于零。
做加法,还需要我们在算式中累加爱的数值。每一分每一秒的积累,在一个微笑,一次谅解,一个怀抱,一个亲吻里寻 它的影子,为自己也为他人叠加爱的份量,那么到最后,当人生算法即将穷尽时,就一定可以得出爱的真谛与生的喜悦。
哪位先哲说过“无论什么样的爱,无论多么微小和难以察觉,都是伟大的。”在生命中积蕴爱的温暖,对爱人,对亲人,对朋友,乃至对每一朵漂亮的花儿,每一片金黄的叶,每一次的晨曦与晚霞。人生的算式,会有很大的变化,会有更美丽的过程与更深刻的结果。
做加法,不是让人生加上压力,金钱,权势这些“虚数”,而是去发现和探索生活的美好,去恪守和尊重自己的职责,去不断用真正的“实数”完善,填充这个算式,那么到生命的尽头,就会获得一个很重的结果和一个很轻很轻的美丽心灵。
请尝试着,在人生中做加法吧!那一个个不起眼的小小加号里,有最深刻的内含和最朴素的美丽。

数据挖掘的算法及技术的应用的研究论文

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

4.1市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

4.2金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

一篇关于自学高中数学算法初步章的小论文,该怎么写?

【中文摘要】随着信息社会和科学技术的发展
,
计算机在日常生
活中起着越来越重要的作用。而算法是计算机工作的基础
,
了解算法
知识及其思想成为现代社会每一个公民所应具备的基本素养。
在许多
发达国家
,
算法知识早已成为中学教材的重要内容。
2003

4
月教育
部颁布《普通高中数学课程标准
(
试验
)

,
新课程开始陆续实施。作
为新课程中首次出现的内容之一
,
算法的教学问题被人们所关注。湖
北省于
2010
年才第一次进行必修
3(
含算法初步的内容
)
的教学。由
于算法内容对刚实行新课改地区的中学数学老师来说是比较陌生的
,
心理上存在着畏惧情绪
,
在实际教学中缺少有效的教学指导
,
因此给
他们的教学带来了全新的挑战。
本文研究了国内外关于算法教学的研
究及教学设计理论的发展
,
重点是国内的“双主”教学设计与“以活
动为中心”
的教学设计
,
对高中数学算法初步的内容进行了功能分析。
结合教学实际
,
对算法初步的部分内容进行了教学设计。旨在为自己
及同行的教学提供一个有益的探索与尝试。
本文所给出算法设计方案
只是初步的
,
有待于在今后的教学实践中进一步检验完善。

【英文摘要】
Algorithm is an ancient concept,with the
development
of
computational
science,algorithm
has
become
more
and more important.The idea of Algorithm has already become a
mathematical quality for modern citizens. In many developed
countries, Algorithm has become an important part in senior

教研专区全新登场
教学设计教学方法课题研究教育论文日常工作

high
school
teaching.In
April
2003,
The
Mathematics
Curriculum
Standard
of
High School
began
to
be
carried
on in our
country,
and algorithm has appeared in the text-books of high school
mathematics. But the problem of teac...
【关键词】算法

功能分析

教学设计

【英文关键词】
algorithm function analysis instructional
design
【目录】高中数学算法初步的功能分析及教学设计
摘要
4-5
ABSTRACT
5
1
绪论
8-11
1.1
研究问题的提

8-9
1.2
研究意义
9-10
1.2.1
研究的理论意义
9
1.2.2
研究的实践价值
9-10
1.3
研究方法
10-11
2
研究综述
11-18
2.1
算法的研究综述
11-14
2.1.1
国外的算法研究
11-13
2.1.2
国内的算
法研究
13-14
2.2
教学设计的相关研究综述
14-18
2.2.1
国外教学设计理论的发展
14-16
2.2.2
国内教学设计理论的发展
16-18
3
算法初步的功能分析
18-20
3.1
有助于提高学生的信息素养
18
3.2
有助于
培养学生的逻辑思维与创造性思维
18-19
3.3
有助于发扬优
秀的算法传统
19-20
4
算法初步的教学设计
20-40
4.1
算法初步的教学设计策略
20-21
4.1.1
以内容分析和学情分
析为起点
20
4.1.2
以现代信息技术为辅助手段
20
4.1.3
以思维训练为目的
20
4.1.4
以数学文化为

驱动力
20-21
4.2
算法初步的教学设计案例
21-40
4.2.1
算法概念的教学设计
21-24
4.2.2
程序
框图与算法基本逻辑结构的教学设计
24-29
4.2.3
基本算法
语句的教学设计
29-32
4.2.4
循环语句的教学设计
32-35
4.2.5
秦九韶算法的教学设计
35-40
5
教学建
议及需要进一步研究的问题
40-42
5.1
教学建议
40-41
5.2
需要进一步研究的问题
41-42
参考文献
42-45
附录
A
:攻读硕士期间发表的论文
45-46
附录

B
:听课笔记节选
46-50
致谢
50

目标检测算法经典论文回顾(一)

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation

提出时间:2014年

论文地址:

针对问题:

从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。

创新点:

RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。

参考博客: 。

论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

提出时间:2014年

论文地址:

针对问题:

该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。

创新点:

在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。

参考博客:

论文题目:Scalable Object Detection using Deep Neural Networks

提出时间:2014年

论文地址:

针对问题:

既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。

创新点:

本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。

参考博客:

论文题目:DeepBox: Learning Objectness with Convolutional Networks

提出时间:2015年ICCV

论文地址:

主要针对的问题:

本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。

创新点:

本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。

参考博客:

论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection

提出时间:2015年ICCV

论文地址:

主要针对的问题:

对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢?

创新点:

通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。

参考博客:

论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

提出时间:2014年

论文地址:

针对问题:

如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。

创新点:

作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。

参考博客 :

论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model

提出时间:2015年

论文地址:

针对问题:

既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。

创新点:

作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。

参考博客 :

论文题目:Fast-RCNN

提出时间:2015年

论文地址:

针对问题:

RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢?

创新点:

作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。

参考博客 :

论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

提出时间:2015年

论文地址:

主要针对的问题:

本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。

创新点:

作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。

论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

提出时间:2015年NIPS

论文地址:

主要针对的问题:

由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢?

创新点:

将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。

参考博客 :

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页