您当前的位置:首页 > 发表论文>论文发表

滑坡体检测论文

2023-03-02 16:44 来源:学术参考网 作者:未知

滑坡体检测论文

摘要:近年来,随着铁路、公路的不断扩建、增建和城市旅游开发等建设,在某种程度上破坏了原生地质、地貌,尤其是乱伐森林、乱开采地下矿产资源,导致水土大量流失,地质灾害频繁发生,泥石流、高边坡滑坡事件屡见不鲜。为遏止此类现象的发生,开展地质高边坡滑坡治理工作,就显得尤为迫切和重要,笔者拟就地质高边坡滑坡(灾害)治理施工及其安全管理作一简述。

精心勘测,合理布局,高速公路、铁路、城市、旅游开发的工程建设和施工设计是按照国家(当地政府)审批的统一规范进行的。为了避免地质灾害和浪费土地,高速公路、铁路、城市、旅游开发的选择和定向,都要以达到全新发展效果为目的。在实施各项内容的开发建设中,一些基础性开发容易产生新的高边坡滑坡和泥石流。 第一,在地质灾害治理工作中,应首先做好施工前期的准备工作,由领导、专业技术骨干组成前勘小分队,前往易于发生地质灾害、高边坡滑坡治理区域范围进行实地踏勘,获取施工进场的第一手资料,根据滑坡的地形地貌,拟定出进场后施工的可行性方案。 第二,做好施工前期的安全教育工作。根据高边坡滑坡治理的难度和存在的安全问题,拟订《生产安全事故应急预案》,在施工场地张贴公告。与此同时,还要对进场施工的所有从业人员进行岗位安全技术交底,说明危险程度和具体防范(护)要求。 第三,做好后勤保障工作。严格执行建设部颁布的《施工现场临时用电安全技术规范》(JGJ46-2005)的要求,建立健全“临时用电设计”,在现场勘察用电内容中的计划需用设备与该项目工程施工组织设计中的设备数量(容量)必须相匹配,提高用电效率,确保施工现场用电质量与用电安全。 因地制宜 防止坍塌 高边坡滑坡是地质、地貌受到严重破坏,原生地质、地貌结构产生变化,新鲜土壤裸露后造成整个山体滑坡或坡面岩块脱落的现象。实施地质高边坡滑坡的治理,是消除高边坡滑坡危害、动态治理的最佳途径。为避免施工从业人员在治理过程中发生事故,在施工过程中应采取以下具体措施。 (1)进入高边坡滑坡治理前,首先应在被治理的山顶设计开挖一个宽12m的呈“∩”字型的沟,作为坡顶排水系统(注:可以是明沟,也可以是暗沟),使自然降雨不渗透到整治区域内,防止雨水通过滑坡间隙的渗透导致危岩和风化带的再次坍塌。 (2)高边坡滑坡治理,属高处作业,一般的高边坡滑坡治理项目,少则高15m,多则高几十米甚至几百米,坡面大都在65°~75°,施工难度大、工期短、技术要求高。为了减少从业人员在高架施工过程中动作重复,在锚杆、锚钉和加固作业期间,钻探设备方面建议使用反巡回潜孔锤“全孔钻进、不取岩心”工艺,既可以保证对孔进度,又可以保证中孔质量,达到事半功倍的效果,减少施工从业人员在高架作业重复搬运各种钻具而导致的危险。 (3)监控手段要实行科技与传统相结合的办法。在对高边坡滑坡治理期间,可利用现代安全报警传感器对施工治理区域实施24h监控和测试,做到预警在前,掌握高边坡滑坡体的运动规律,从而采取有效监控;同时,也可以采取传统的监测手段进行监控,及时有效地掌握高边坡滑坡体的静动变化。具体做法是,利用废旧玻璃、麻线等易于断裂的物品(注:旧玻璃和麻线可根据裂隙的间距定长短),将其搁放在岩体断面口之间,用水泥将两端粘接固定,作为静态观察。当玻璃、麻线出现断裂或脱落,则说明正在治理中的山体滑坡仍在运动之中;反之,危岩体处于静态之中。由此,可有效确定施工人员是否处于安全作业区域内。
保证安措费的投入 加强领导和保证资金投入,是地质高边坡滑坡治理安全施工的重要前提和条件。各级领导应依法落实施工项目与安措资金的比配,确保安措资金的投入。有计划、定专款、按比例,逐项落实。严格按照工程货币总量3‰~5‰的比例安排使用安措费资金,保证资金及时到位。对施工从业人员所需防护用品要具体落实到个人,做到“安全防护保障有力、防护产品合格优良”。地质高边坡滑坡治理是一项危险的高处作业,除依法为施工从业人员进行意外和工伤保险外,务必配置相应的防护用品和必须的安全设备,例如锚固卷扬机、钢绳、缆绳、管架、扣件、大小滑轮盘、防尘过滤面罩、安全网、安全带、安全帽、防滑鞋、手套、防尘镜、各类安全标志牌,以及交叉立体施工作业所需的隔离木板和跳板等。还要随时收听、收看当地的天气预报,禁止在雷电和大风、大雨天气进行高架作业。雷阵雨后,务必先检查、后施工。 高架敷设科学化 设备移位规范化 地质高边坡滑坡治理工程中的基础工作就是管架敷设,然而管架敷设的好坏直接影响到施工从业人员的人身安全。因此,必须严格执行建设部颁布的《建筑施工扣件式钢管脚手架安全技术规范》(JGJI30-2001)的规定。 (1)高边坡管架敷设,务必实施“满堂架”,必须由持有钢管架上岗证的从业人员进行敷设,横竖宽窄、支撑、方向绳、避雷设施等各环节都要规范实施,保证管架敷设质量的牢固性、可靠性、稳定性、安全性。 (2)保证钢管质量,拒绝假冒伪劣产品。地质高边坡滑坡治理的管架具有特殊性,它不仅要负载施工从业人员,而且还要负载钻探设备和机械附属配件的重量。所以,在购买(租赁)钢管、扣件时要认准钢管、扣件的有效期限、厂名、产品质量合格证、新旧程度、有无破损等质量问题,实行钢管、扣件(购买)租赁验收责任制,保证钢管、扣件的质量。 (3)架设好每一根管,敷设好每一块板,是施工从业人员安全的保障。地质高边坡滑坡治理过程中,多数为立体交叉作业施工,所以,在搭架跳板和施工平台时,务必做到管扣要牢,平台要宽,跳板有边就要有栏,有路就有安全通道。铺板必须要实,切忌虚实不一,有效圈定出危险区域和安全通道,管架上下不留隐患。 (4)设备移位务必规范化。地质高边坡滑坡治理中全部所需要的设备都搁放于高架平台上,为了尽量减少高架的载重负荷和人为的施重,要求做到管架上所有钻探设备操作务必规范,移动设备务必坚持分零移动标准化、运输设备程序化,切忌钻机冒险自掉移动和蛮干拖拉各类钻探附件设备。 严格执行操作规范和技术指标 地质高边坡滑坡治理施工涉及各类规范较广,如钢管、扣件质量、管架敷设规范;建筑施工规范;钻机、钻探操作规范;空压机操作规范;电缆、电线敷设、配电输出输入规范;焊工操作规范;塔吊施工规范;高处作业规范以及灌浆、混凝土搅拌的各类国家及行业标准参数等,都要严格执行,把好安全生产环节关,营造“安全重于效益、质量重于数量”的安全管理氛围。要树立实事求是的思想,在履行和签订地质高边坡滑坡施工合同时,务必做到安全生产实施和工程质量及工作数量的正确评估,避免签约后给施工从业人员带来心理压力,留有宽松的余地,抓好安全管理与安全生产各个环节,切忌签工程时间和工作数量与安全管理相悖的供需矛盾的合同,如出现时间紧、工期短、任务重、技术要求高、无安全措施费等与实际工作脱节等问题,从源头上消除安全隐患。要切实加强地质高边坡滑坡治理安全工作,定岗、定员和落实制度。有效地发挥各类技术人员的管理能力和聪明才智,强化由静态管理变动态管理。只有通过人 科技改造 岗位制度 督促检查 隐患整改 宣传教育等综合手段,才能有效遏制在地质高边坡滑坡治理施工中各类事故的发生,把事故隐患消除在萌芽状态。
参考文献:<中国滑坡防治> 王恭先 2008-8-6

运用地理信息系统新技术进行滑坡稳定性三维评价和滑动过程模拟研究

译自 Environment Geo1ogy,2003(43):503~512。

Mowen Xie1Tetsuro Esaki1Guoyun Zhou1Yasuhiro Mitani1著

张晓娟2译 罗靖筠2校 朱汝烈2复校

(1Environmental System Institute,Kyushu University,Hakozaki 6-10-1,Higashi Ku,Fukuoka,Japan;2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)

【摘要】本文在传统的边坡稳定性三维分析模型的基础上,提出了一个全新的基于GIS的边坡稳定性三维栅格分析模型。在这个模型中,假定初始滑动面就是椭球底面,采用蒙特卡洛(Monte-Carlo)随机模拟方法,在求取最小安全系数法的同时,确定出最危险滑动面。运用GIS栅格模型和GIS数据模拟滑坡滑动过程时,滑坡体将沿主滑方向滑动,直到其安全系数上升到1为止。所有的计算均可通过一个称为三维边坡地理信息系统(3DSLOPGIS)的计算程序来完成,该程序主要利用GIS的空间数据处理分析功能。

【关键词】确定性模型 地理信息系统(GIS) 蒙特卡洛(Monte-Carlo)模拟 滑动模拟 三维边坡稳定性

1 引言

滑坡不稳定性和风险评价不但已成为地学家和工程专家们感兴趣的主要课题,同时也成了世界各地政府部门和管理者关注的焦点。据统计世界上每年约有600人葬身于滑坡灾害中。在许多发展中国家,自然灾害所带来的经济损失,占总国民生产总值的1%~2%。

近年来,由于地理信息系统具有强大的空间数据处理功能,被广泛运用于自然灾害评价领域。GIS是由硬件和软件组成的系统,它可以实现数据采集、输入、操作、转换、可视化、组合、质疑、分析、建模和输出等过程。GIS对空间数据具有强大的分析和处理功能。同时,基于GIS的地质技术分析模型,可以简便而有效地分析滑坡稳定性。目前它已经被广泛地用于土木工程和地质工程中,进行边坡稳定性的分析。

我们通常认为一个传统的模型无论是对均质滑坡还是非均质滑动都是适用的。稳定性指数是被广泛应用的、基于岩土工程模型和物理力学参数的安全系数。安全系数的计算需要几何数据、剪切强度数据及孔隙水压力数据,正确的结果取决于可靠的数据和恰当的模型。尽管输入的数据会较大程度地影响安全系数,但一个可靠的确定性模型对于取得可靠结果则更为重要。确定性计算可在GIS系统内执行,也可利用其他程序完成。若使用其他程序计算,则GIS只作为一个空间数据库用来存储、显示、更新输入数据。此方法主要优点是利用外部模型计算可以节约时间;而其缺陷是对从外部模型获得的数据进行转化时较为复杂。因为每一个程序都有其自己的数据格式和数据结构,数据转换成为一个主要的问题。有些程序的输入模块只允许人工输入数据。只有当这些程序所默认的数据格式都是 ASCII码时,数据转换才可直接进行。运用外部模型的另一个缺点是计算结果通常不是按GIS的空间分布模式来表达,而是以点或线的形式表述的。因此,改变这种计算结果的表达形式也是个主要的问题。

用来计算安全系数稳定性模型的边坡是二维或三维的。因为一个地区包括很多边坡,而且必须分别对每个边坡做分析,所以利用这些模型计算安全系数的空间分布非常花费时间。要克服数据转换的困难,可以利用GIS内部确定性计算模型来实现。然而这一方法也有缺点,那就是由于应用复杂算法、迭代过程及在常规二维 GIS中的三维体积等复杂局限性,使得只有简单的模型能较容易实现。当前,只有基于GIS的无限边坡模型能分别计算出每个像元的安全系数。研究表明,只有当越来越多的成熟的三维模型和GIS系统得到使用后,才能彻底解决这类问题。

从近来对 GIS用于边坡稳定性分析的调查中发现,大部分研究者潜心于运用统计学方法来确定边坡破坏与影响因素之间的关系。尽管GIS能对区域数据进行了准备和处理,但是只有极少量的研究者运用了GIS的集成功能和边坡稳定性的确定性模型。

即使在很短的距离范围内,边坡破坏在空间上都有其不同的几何结构。因而,运用三维模型分析边坡稳定性是合理的。从20世纪70年代中期以来,三维稳定性模型的发展和运用日益受到关注。在地质力学的著作中提到了几个三维分析方法。

上面提到的大部分方法都用到了柱状图法。这些方法将柱体之间的作用力,或者说作为三维安全系数计算的假定前提,都忽略不计。因为所有与斜坡相关的GIS数据都可转成栅格数据,所以这些基于三维模型的柱体,就可能借助于使用GIS栅格数据用来进行三维稳定性的计算。然而,长期以来大家习惯采用人尽皆知的“一维模型”——“无限斜坡”模型,来描述滑动面与地面平行的长期天然边坡的潜在危险性。这样的模型仅仅可以用于浅层斜坡失稳分析和一些存在深层滑坡的区域性研究。

由于算法复杂、步骤重复和三维数据在二维GIS中难于表达,早期的文献中并没有提及三维确定模型的应用。为了克服 GIS数据的外部转换和GIS内部算法复杂等困难,此次研究中,在GIS软件组件(a GIS component)中使用了Visual Basic程序。三维因子的计算和滑动过程的模拟由计算机内的三维边坡地理信息系统(3-DSLOPGIS)的计算程序完成。在这个系统中,GIS组件(ESRI公司生产的MapObjects2.1)可以完成所需的GIS功能,就像普通的GIS软件一样,它可以有效的管理和分析所有与滑动相关的数据。所有用来计算三维斜坡安全系数的数据都采用GIS的数据格式(例如矢量和栅格数据层),因此,没必要在GIS数据格式和其他程序的数据格式之间进行数据转换;同时,复杂算法和三维问题的交互程序也可以理想的实现。

在此次研究中,将基于GIS栅格数据和基于柱状图的三维边坡稳定性分析模型相结合(Hovland,1977),演绎了一个新的基于GIS栅格的三维确定性分析模型。

运用蒙特卡洛随机模拟方法求最小安全系数值,从而确定临界滑动条件。假定基本滑动面是一椭球体的较低部分,临界滑动则受不同地层受力情况和不连续界面状况的影响而变化。客观事物的这种变化引出最小三维安全系数。

如果滑坡的三维安全系数小于1,滑坡就有滑动的危险,那么评估滑坡灾害的规模和影响范围是非常重要的。因此,在此研究中,采用基于GIS三维栅格数据模型和GIS栅格数据来模拟滑坡滑动过程的目的,就是评估滑坡危险性和预测其影响范围。

2 基于GIS的三维模型

利用GIS的空间分析功能,所有与三维安全系数计算有关的输入数据(如高程、倾向、坡度、地下水、地层、滑动面和力学参数等)都有其对应的栅格元,而所有与斜坡相关的数据都是栅格化的。当这些数据输入到确定的边坡稳定性模型中时,就可计算出一个安全系数值。下面在Hovland模型的基础上,详细介绍基于GIS的三维模型。在这个模型中,考虑了孔隙地下水压力,所有输入数据都能简单地转换成栅格数据。

图1是具有潜在滑动面的滑体的三维几何示意图。滑坡的稳定性与地质岩层、地貌、地质力学参数和水动力条件有关。

图1 边坡坍塌三维景观

图2所示是土壤(或岩石)小柱状研究体物质的离散性。所有与滑坡相关的数据都可用如图2所示的柱状三维可视图来表示。假定每一个柱体单元的垂面均为无摩擦面(柱体单元的垂面不受其他边界影响,或其影响可忽略不计),三维安全系数可用公式(1)表示:

地质灾害调查与监测技术方法论文集

式中:F3-D为三维斜坡安全系数,W为一个柱体的重量,A为滑动面面积,c为内聚力,φ为内摩擦角,θ为滑动面的角度,而J、I为在斜坡破坏范围栅格内的行列数和柱体数。如果没有GIS,则基于柱体模型的三维安全系数的计算将是冗长且耗时的工作,数据的更新和增加也极其不便。然而,在GIS中,通过运用GIS空间数据处理与分析功能,整个研究区的边坡稳定性相关数据可用如图3所示的矢量图层来描述;而对于每一层,则可通过GIS空间数据处理与分析功能得到栅格数据,其像元大小可根据精度需要而定。

图2 滑动面和三维棚格柱状图

现在,将斜坡破坏划分为基于栅格数据的柱体。参考图2,诸如地表、地层、地下水、裂缝和滑动面之类的空间数据均可从栅格数据层中得到。因为与斜坡相关的数据量非常大,所以不能高效的管理所有的栅格数据集。因此,在三维边坡地理信息系统中,有一个专门储存这些栅格数据的点数据库,其中,有一个属性表用来链接所有与滑动相关的数据。每个栅格柱状图的中心点设置点类型,其他区域则设置与滑坡相关的一些数据(例如地面高程、地层和裂缝的高程、地下水、滑动面的深度等等)。表1所示即是属性表的一个实例。

图3 边坡稳定性分析GIS图层

表1 点数据库的实例描述

另一方面,为了控制滑坡边界和有效管理空间数据并进行分析,滑坡的边界线被定义为多边形类型文件。

基于这种点数据库,公式1可以改成基于GIS的方程。这里所有的阻力和滑力都是沿着滑动方向的,而不必如 Hovland的模型所用的Y轴方向。在本研究中,假定斜坡区域的主要倾斜方向为可能滑动方向。根据图4,滑动表面面积可由公式(2)得到。

地质灾害调查与监测技术方法论文集

从图4推导出如下公式:

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

接着,x和y轴的倾角推导如下:

地质灾害调查与监测技术方法论文集

记α=cellsize/cosθxz和b=cellsize/cosθyz,则一个栅格柱状图的滑动面面积为:

地质灾害调查与监测技术方法论文集

滑坡范围主滑动方向的倾角计算公式如下:

地质灾害调查与监测技术方法论文集

至此,三维边坡水平滑动方向安全系数可以用下面的公式计算:

地质灾害调查与监测技术方法论文集

图4 三维安全因子推导公式的一个栅格柱状图

这里,对于每个栅格,Zji,zji分别为地表高程和滑动面高程,uji为在滑动面上的孔隙水压力,而 γ′为单位重量。

为了检验基于栅格的GIS三维稳定分析模型,我们运用这个模型做了一个实例计算。实例问题为一个均质的粘土滑坡,具有球形滑动面,其他各种参数如图5所示。在图5中,c为内聚力,φ为摩擦角,R为瞬时摩擦力,γ为土的单位重量。运用封闭式(closed-form)算法得出三维安全系数为1.402。运用CLARA模型算得安全系数为1.422。同样的问题运用三维边坡模型算得三维安全系数范围为1.386到1.472,它取决于用于被分离的边坡柱体的数量。

图5 实例问题验证

运用基于GIS栅格的三维稳定分析模型(图5),并将格网尺寸定为0.5m时,算得三维安全系数为1.386;而当格网尺寸为0.6m时,算得安全系数为1.388。很明显,与封闭式算法相比,基于栅格模型的GIS可有效的用于三维边坡稳定性评估。

3 确定临界滑动表面和蒙特卡洛模拟

滑动面只能通过岩土工程调查来确定,由于地质调查的费用比较昂贵,因此滑动面通常是很难确定的。因此,边坡稳定性评价对临界滑动面的确定是非常重要的。

为了判定三维临界滑动情况,利用蒙特卡洛随机模拟方法来计算三维安全系数最小值。假定最初的滑动面是一个椭球体的较低部分,边坡表面则根据不同地层受力情况和不连续界面条件而改变。最终得到危险滑动面,同时可得到相关三维安全系数的最小值。

4 椭圆坐标转换

假定最初的滑动面是一椭球体的较低部分,椭球体的倾斜方向设置为与研究区主要的倾斜方向一致;将椭圆的倾角基本上设定得与研究区起伏变化的倾角接近。其主倾向为α,主倾角为β,它们是由边坡破坏区域主要栅格像元的值确定的。假定倾向和倾角属正常分布,则将主倾向α和倾角β代入分布模型中:

地质灾害调查与监测技术方法论文集

运用公式(10)和(11)完成坐标转换。图6显示了坐标转换过程。

图6 坐标转换过程

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

式中:x、y、z为全球大地坐标, 为当地坐标,x0、y0、z0为椭球体中心点坐标。

5 Z值的确定和滑动面的倾斜度

滑动面上“B”点的Z值是根据直线 AB和椭圆,由公式(12)计算的结果确定的(见图7)。

地质灾害调查与监测技术方法论文集

对于每个栅格像元,滑动面的倾向和倾角可通过下面的公式计算得出,像元(j,i)的倾角可以通过图8中点1~4的Z值来确定。点1~4的值由公式(13)(14)(15)算出,滑动面的倾向和倾角由公式(16)算出。

图7 确定滑动面上的Z值

图8 滑动倾角的计算

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

这里,Z(j,i)为像元(j,i)的Z值,θ为倾角,β0是相对于X轴的倾向。在GIS中,倾向是与 Y轴之间的夹角。因此,当最高点是点3时,倾向是90-β0;当最高点是点4时,倾向是90+β0;当最高点是点2时,倾向是270-β0;当最高点是点1时,倾向是270+β0。

6 随机模拟

为了确定临界滑动面,蒙特卡洛模拟通常用于为三维边坡稳定性分析选择变量。这些变量是椭球体的中心点、几何参数和倾角。椭球体的中心点作为研究区的中心点需要首先确定,然后在一个确定的范围内随机选择。

椭球体的几何参数a、b、c是由用户在一定范围内随机设定的,确定范围如公式(17):

地质灾害调查与监测技术方法论文集

假定a,b,c都均匀分布,则蒙特卡洛模拟的随机变量由公式(18)和(19)来算出。

在[0,1]范围内平均分布的随机变量可通过全等乘积方法得出:

地质灾害调查与监测技术方法论文集

地质灾害调查与监测技术方法论文集

式中:ri为在[0,1]范围内平均分布的随机变量。在[a,b]范围内平均分布的随机变量可由公式(19)计算得出。

地质灾害调查与监测技术方法论文集

式中:xi为在[a,b]范围内平均分布的随机变量。

椭球体的倾角设定为平均分布的一个随机变量。平均分布范围为主倾角及其在一个确定的波动范围之内变化的变量。

7 计算三维安全系数最小值的过程

整个研究区(或边坡破坏范围)可以被均分为若干小矩形栅网,如同基于栅格的GIS一样。关于基于栅格的三维边坡稳定性分析的数值计算,所有的计算过程都可以通过前面提到的Visual Basic(利用GIS组件)来完成。这个软件叫三维边坡地理信息系统,是运用 Visual Basic 6.0和ESRI公司生产的MapObjects 2.1开发的。MapObjects作为GIS的一个组件,用来对GIS数据进行组织和空间分析。计算三维安全系数的过程如图9所示。

图9 三维安全因子最小值计算过程

在这个过程中,数据模块的功能用来获得所有与边坡相关的地质、地貌、水动力学数据和地质力学参数;随机变量参数模块用来随机选择蒙特卡洛模拟的实验滑动面;三维边坡稳定性模块可用于计算三维安全系数;而危险滑动面及其安全系数可以通过一些实验计算得出。在图9中可以看到,关于GIS空间分析功能的所有模块可以通过GIS组件来实现。因为一个GIS组件是在三维边坡地理信息系统系统中完成的,所以可以有效地计算三维安全系数;同时利用与边坡相关的GIS数据,所有的相关数据和结果可以在三维边坡地理信息系统系统中实现可视化。

实例剖面如图10所示。在这个实例中考虑的因素有:4个地层、地下水和破坏面;其物理和力学参数如表2所示。

表2 研究实例的物理和地质力学参数

图10 断层面研究实例

图11 计算次数与最小三维安全因子实验

为确定临界滑动面,对蒙特卡洛随机计算次数进行了实验,总共计算次数达到了1000次。每次实验计算的三维安全系数最小值的结果如图11所示。图中明确显示在实验计算了300次后,得到的安全系数最小值。这300次实验的结果见图12,这些计算结果差别不太大,其最小值为1.34,最大值是1.68。这个临界滑动的研究程序是建立在最小安全系数的计算基础之上的。而最小安全系数的计算结果取决于参数的随机选择。有关这一临界滑动实例的三维可视图见图13。通过三维模型与二维模型结果的比较,用Janbu法确定临界滑动面时,使用的是图10所示的二维模型和表2所列的参数,通过这种二维模型计算出的安全系数为1.18,这要比用三维模型计算出结果的极小值(1.346)略小一点。

图12 三维安全因子分布曲线

8 滑坡滑动过程模拟

基于GIS栅格三维边坡稳定性分析模型和GIS栅格数据,对滑坡滑动过程进行了模拟,直到三维安全系数大于1为止。滑动方向按滑动面的主滑方向确定。图14中展示了由滑动面确定的八个滑动方向。例如,若滑面方向的倾角在22.5°~67.5°之间,则滑坡将要滑动的方向恰在该图的右上方(即“5”方向)。

图13 临界滑动面三维展视图

图14 滑动面的滑动主倾向

图15 滑坡滑动过程模拟流程方框图

滑坡滑动过程的模拟流程见图15。首先,要计算滑坡初始状态时的三维安全系数,以确定其滑动的可能性。若其安全系数小于1,则接着进行下一步滑动过程模拟。先沿着由滑面主倾向确定的滑动方向移动滑坡多边形;接着,在新的滑坡多边形范围内,分步(每一步等于一个栅格大小)计算每一个栅格的DEM和滑动的变化,并再次计算下一步滑动的新滑动方向。并在新的DEM数据和滑动多边形范围的基础上,计算出新的三维安全系数。如果三维安全系数仍然小于1,则进行以下的新滑动步骤模拟。

在这种滑动模拟模型中,假定滑动面内摩擦角不改变,但除了在初始三维边坡安全系数的计算过程之外,假定滑动面没有内聚力(即内聚力为零)。

仍然用同样的实例(如图5所示),用不同的两种动力学参数进行滑坡滑动过程模拟:

情况1:c=4kN/m2,φ=110,y=23kN/m3

情况2∶c=6kN/m2,φ=10.5°,γ=23kN/m3

第一种情况下,初始边坡安全系数为0.82,在进行7步滑动之后,滑坡体开始趋于稳定,其安全系数是1.04。部分滑动步骤剖面及三维视图变化如图16所示。在此图中,DEM的改变及滑坡体移动过程一目了然。运用三维边坡地理信息系统,也可将可视滑动过程表现为GIS地图和剖面图的形式。滑坡体沿水平方向的最终滑动距离为3.0m。

图16 不同滑动阶段的地表和剖面三维视图

第二种情况下,滑坡体将一直向下滑动到平坦地区,水平方向滑动距离为14m。滑坡体最后停止滑动位置的三维展视图如图17所示。

图17 滑坡体最后停止位置

9 讨论和结论

在三维边坡稳定性柱状分析模型的基础上,开发了一个全新的基于GIS栅格的三维确定性模型,并且通过一个问题实例证实了其正确性。在三维边坡稳定性分析模型中,假定其初始滑面为一椭球面;其三维临界滑面,是利用蒙特卡洛随机模拟求取最小三维安全系数而确定的。基于GIS的栅格三维模型,滑坡滑动过程模拟用于判断滑坡灾害和预测滑动距离。已开发了作为计算程序软件的三维边坡地理信息系统,它足以完成一切有关三维边坡问题的计算,其中的GIS组件用于实现GIS的空间分析功能和有效数据的管理。因其具有空间分析、数据管理和与边坡相关的综合数据的GIS可视化等优点,所以三维边坡稳定性问题已经比较易于研究。自打全新的基于GIS栅格三维边坡稳定性分析模型问世,就为惯于使用传统数学方法研究边坡稳定性的工作者拓展了一个新的研究领域和数据库方法。

浅议三峡库区地质灾害预警工程常用监测方法及应用

王爱军1,2薛星桥1,2

(1中国地质大学(武汉),湖北武汉,430074;

2中国地质调查局水文地质工程地质技术方法研究所,河北保定,071051)

【摘要】长江三峡库区地质灾害预警监测是服务于地质灾害防治、保障三峡工程建设安全的主要基础工作。开县、万州区、巫山县的38个滑坡灾害专业监测点,采用大地形变监测、深部位移钻孔倾斜仪监测、地下水动态监测、滑坡推力监测、地表裂缝相对位移监测、GPS全球卫星定位系统监测、TDR时间域反射监测和宏观监测等综合系列监测方法。每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表内部变形或受力变化;重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。对滑坡监测及监测成果统计分析,多种监测数据成果具有明显的一致性和相关性,反映了滑坡体的变形情况和特征,证实监测方法合理有效,监测成果将为地质灾害预警工程和地质灾害防治工程提供可靠依据。

【关键词】三峡库区 地质灾害 预警工程监测方法 应用

1 前言

长江三峡库区自然地质条件复杂,是地质灾害的多发区和重灾区。三峡工程的兴建和百万移民工程,在一定程度上改变了原有地质环境的平衡状态,加剧了地质灾害的发生。随着三峡工程建设的不断推进,库区地质灾害对三峡工程和库区人民生命财产安全的影响日益增加,及时有效地防治库区地质灾害已成为三峡工程建设的重要任务之一。地质灾害预警监测工作是实现地质灾害防治的主要基础工作。

三峡库区共有38个滑坡灾害专业监测点在进行专业监测工作,其中重庆市开县14个、万州区14个、巫山县10个。

2 监测方法

2.1 大地形变监测

采用全站仪监测。在滑坡体外选取地质条件较好、基础相对稳定的点位作为监测基准点,在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩。

2.2 深部位移监测

采用钻孔倾斜仪进行监测。在滑坡体上选择有代表性的点位布置测斜钻孔,分别在其主滑方向和垂直主滑方向上进行正反两回次自下而上的测读,监测点间距0.5m,使用移动式“CX-01型重力加速度计式钻孔测斜仪”,监测数据稳定后自动记录,每期监测共记录4组数据。

2.3 滑坡推力监测

在滑坡体上选择有代表性的点位布置钻孔,在钻孔中选择适当的深度部位,预置一系列滑坡推力传感器,用传导光纤连接至地面,每次监测采用“BHT-Ⅱ型崩塌滑坡推力监测系统”测量记录各点数据。

2.4 地表裂缝相对位移监测

在裂缝的两侧适当部位安置数套裂缝计,进行原位裂缝相对位移监测。机械式监测具有干扰少、可信度高、性能稳定特点,监测记录数据可直接做出时间—位移曲线,测量结果直观性强。仪器一般量程范围在25~100mm间,读数器的分辨率为0.01mm,操作温度在-40℃~+105℃之间。

2.5 地下水动态监测

在滑坡体上选择有代表性的点位布置钻孔,对地下水水位,孔隙水压力、土体含水率、温度等参数监测,采用自动水位记录仪、孔隙水压力监测仪等仪器监测。其中孔隙水压力监测仪的孔隙水压力量程为-80kPa~200kPa,分辨率0.1kPa,精度0.5%F·S;土体含水率量程为0至饱和含水率,分辨率1%;温度量程为0~70℃,分辨率0.1℃,精度1%F·S。

2.6 GPS全球卫星定位系统监测

在滑坡体外选取地质条件较好,基础相对稳定的点位,作为监测基准点;在滑坡体上选择有代表性的点位作为监测点,标志点全部采用混凝土强制对中监测墩,观测时采取多点联测。GPS监测方法,可进行全天候监测,不受通视条件限制,同时监测 X、Y、Z三维方向位移量,方便灵活,并可监测灾害体所处地带的区域地壳变形情况。采用的美国 Ashtech公司生产的UZ CGRS型GPS,最小采样间隔1s,最少跟踪和接收12颗卫星,使用Ashtech Solution 2.6软件解算,精度可达水平3mm+1ppm,垂直6mm+2ppm。

2.7 时间域反射测试技术(TDR)监测

即采用电缆中的“雷达”测试技术,在电缆中发射脉冲信号,同时进行反射信号监测。在滑坡体上选择有代表性的点位布置监测钻孔,将同轴电缆埋入监测孔,地表与 TDR监测仪相连接,把测试信号与反射信号相比较,根据其异常情况判断同轴电缆的断路、短路、变形状态,推断出电缆的变形部位,进而推算滑坡体地层的变形部位和位移量。TDR监测采用了固定式预置同轴电缆,成本低,可进行自上而下的全断面连续监测,量程范围大。

2.8 宏观监测

以定期巡查方法为主,对变形较大的滑坡体,据其变形特征布置一定数量的简易观测点进行定期观测,及时掌握其变形动态。

对于每个滑坡灾害点,采用2种以上监测方法,分别监测滑坡体地表变形和滑坡体内部变形或受力变化,重要灾害点采用4~5种方法同时进行监测,以便进行对比和综合分析。监测点的布置应重点突出,控制滑坡的重点部位;照顾全面,力求能反映滑坡体整体变形情况。钻孔孔口周围用混凝土浇筑,布置精确监测点位。

3 监测效果分析

根据2003年7月至12月滑坡灾害专业监测数据资料,初步分析三峡库区地质灾害预警工程监测方法及应用效果。

3.1 大地形变监测

大地形变监测,开展了开县大丘九社和巨坪九社滑坡、巫山县狗子包滑坡和板壁塘滑坡,共4个滑坡的监测。以下以开县大丘九社滑坡为例简述监测效果。

大丘九社滑坡位于开县镇东镇大丘九社斜坡上,滑坡平面形态近似矩形,剖面上呈凹型;分布高程205~300m,滑体长约250m、宽约300m,面积710万m2,估计厚度20m,体积约140万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及砂岩互层组成的平缓层状斜坡中,滑坡体的物质组成主要为砂岩及砂岩碎块石土,表层为松散土壤,局部出露砂岩碎块石,为崩滑堆积体滑坡。

图1 开县大丘九社滑坡累计位移量曲线图

(a)X方向(b)Y方向(c)H方向 D1——监测点编号

大丘九社滑坡体上布置了3排监测点,每排3个共计9个监测点,滑坡体对面斜坡上布置了2个基准点,分别在2个基准点进行监测。监测网布置既控制了整体滑坡体又突出重点,采用前方交汇法施测。

8月5日进行了首次测量,9月21日进行D1第二次测量成果与之对比,表明变形趋势明显,滑体向 NEE向滑移。10月24日监测成果表明各监测点的变形趋于缓和。11月和12月监测成果表明各监测点无明显变化(见图1)。监测数据与宏观调查定性分析相一致。

利用全站仪进行大地形变监测,其特点为监测方便,可随时对一些危险滑坡监测,既可以在滑坡体上设置永久性监测桩,又可以设置临时性监测桩;监测精度高,测点中误差可达到3.5mm;不仅能测定相对位移,而且能监测绝对位移;在满足测量条件下可进行连续监测,监测滑坡滑移的全过程,不存在量程限制。但该仪器监测受天气因素和光线条件制约,难以在雨雾条件和夜间实施监测,且受地形和通视条件制约,施测以人工操作为主,不易实现自动化监测。

3.2 深部位移钻孔倾斜仪监测

深部位移钻孔倾斜仪监测点为开县6个滑坡、16个钻孔,巫山县5个滑坡、19个钻孔,万州区8个滑坡、24个钻孔,共计19个滑坡、59个钻孔。以下以开县虎城村滑坡为例简述监测效果。

虎城村滑坡为堆积层滑坡,位于开县长沙镇虎城村斜坡。该滑坡在平面近似矩形,剖面为凹形,分布高程330~400m,纵长约300m,横宽约500m,滑体估计平均厚度12m,面积15万m2,体积180万m3。滑坡发育于侏罗系中统沙溪庙组(J2s)紫红色泥岩及泥质粉砂岩组成的水平层状岩层斜坡上,滑体上部为崩坡积紫红色碎石土层。滑坡威胁居民400余人及其财产安全。该滑坡布置了3个深部位移钻孔倾斜仪监测钻孔。

Kx-162钻孔位于滑体的中部。2004年10月,在9.5~10.5m测试深度处发生明显的位移变形,本月变形量5.56mm,变形方向247°。11月,没有增大趋势,累积形变4.58mm,略小于10月份累积变形量,变形方向253°(见图2)。

Kx-165钻孔位于滑体的下部。2004年10月,在15.0~16.5m测试深度处发生明显的位移变形(见图3),本月变形量5.45mm,变形方向241°。11月,没有明显的增大趋势,累积变形5.39mm,同10月份累积变形量相近,变形方向240°。

地质灾害调查与监测技术方法论文集

图2 开县虎城村滑坡 Kx-162钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

图3 开县虎城村滑坡Kx-165钻孔位移随深度变化曲线

(a)EW方向(b)SN方向

深部位移钻孔倾斜仪监测方法,可在滑坡体上一定部位布置的钻孔中,监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑移方向和相对滑动位移量;但在滑坡发生较大或急剧加速的位移变形时,由于钻孔和孔内测斜管变形、破坏,测斜仪探头不能送入钻孔之内,可能使钻孔失去监测价值。

3.3 滑坡推力监测

滑坡推力监测共设有2个测点、4个钻孔:巫山县淌里滑坡钻孔2个,曹家沱滑坡钻孔2个。以下以淌里滑坡为例简述监测方法与效果。

淌里滑坡位于巫山县曲尺乡长江干流左岸斜坡上,滑坡在平面形态上呈不规则的圈椅状,前缘分布高程90m,后缘高程400m,平均坡度约30°~40°,纵长约800m,横宽150~250m,滑体厚20m,面积24万m2,体积490万m3。滑坡发育于三叠系巴东组(T2b)灰岩、泥灰岩、泥岩中,滑体物质主要为泥灰岩及泥岩碎块石土,表层多为松散土层,下部碎块石土结构密实。

Ws-t-tzk1推力孔位于滑体的下部,Ws-t-tzk2推力孔位于滑体的中部。其滑坡推力监测成果数据见图4、图5。推力监测曲线图表明,各次监测数据规律性强,基本一致,传感器没有发现明显的数值变化。滑坡推力监测结果与宏观监测结果和同时进行的钻孔倾斜仪监测结果相一致,说明此阶段滑坡暂时处于相对稳定的微变形状态。

图4 巫山县淌里滑坡 Ws-t-tzk1钻孔滑坡推力监测曲线图

图5 巫山县淌里滑坡 Ws-t-tzk2钻孔滑坡推力监测曲线图

滑坡推力监测方法属于固定点式监测,在钻孔中预置传感器,用传感光纤连接,在地面用滑坡推力监测系统采集传感信息,可在滑坡体上一定部位布置的钻孔中,自上至下监测滑坡体内垂直方向上的浅层、中层、深层、滑动带等滑坡推力变化量,可定期进行数据采集监测;在对采集和传输处理系统进行改进的基础上,可实现无值守自动化连续监测。

4 结论

(1)通过多手段的综合监测,掌握了被监测滑坡体的表面、内部自上至下滑移带的变形及受力情况,数据综合分析表明其反映了滑坡位移变化及动态特征,取得了进行灾害预警的重要基础数据资料,说明采用的监测方法合理有效。

(2)钻孔倾斜仪深部位移监测方法,当滑坡体发生一定量缓变位移后,部分钻孔不能再进行全孔施测,造成勘察监测资金浪费和滑坡体监测点及监测部位减少。

(3)目前一月一次的监测周期,难以保证在滑坡发生滑移险情时能进行有效监测。为此应在进行专业监测的同时,进行群测群防监测。特殊情况下,对危险滑坡灾害点,调整监测方案,进行加密监测或连续监测,使监测满足预警预报要求。

(4)从长远发展考虑,监测应以免值守、易维护、低成本、固定式、自动化快速连续采集传输和半自动化监测及人工监测相结合为方向,以建立起高效的地质灾害监测网络与地质灾害预警系统。

参考文献

[1]王洪德,高幼龙,薛星桥,朱汝烈.链子崖危岩体防治工程监测预报系统及效果.中国地质灾害与防治学报,2001,12(2):59~63

[2]王洪德,姚秀菊,高幼龙,薛星桥.防治工程施工对链子崖危岩体的扰动.地球学报,2003,24(4):375~378

[3]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究.中国地质灾害与防治学报,2001,12(2):64~66

[4]董颖,朱晓冬,李媛,高速,周平根.我国地质灾害监测技术方法.中国地质灾害与防治学报,2001,13(1):105~107

[5]段永侯,等.中国地质灾害.北京:中国建筑工业出版社,1993

应对山体滑坡的山区公路施工措施论文

应对山体滑坡的山区公路施工措施论文

摘要: 滑坡对工程建设的危害很大,常使交通中断,影响公路的正常运输,本文结合实际,重点阐述了应对山体滑坡的山区公路施工措施。

关键词: 滑坡;公路;措施

1 滑坡概述

斜坡上的部分岩体和土体在自然或人为因素的影响下沿某个滑动面发生剪切破坏向下运动的现象称为滑坡。滑动面可以是受剪应力最大的贯通性剪切破坏面或带,也可以是岩体中已有的软弱结构面。规模大的滑坡一般是缓慢的、长期的往下滑动,有些滑坡滑动速度也很快,其过程分为蠕动变形和滑动破坏阶段,但也有一些滑坡表现为急剧的滑动,下滑速度从每秒几米到几十米不等。滑坡多发生在山地的山坡、丘陵地区的斜坡、岸边、路堤或基坑等地带。滑坡对工程建设的危害很大,轻则影响施工,重则破坏建筑;由于滑坡,常使交通中断,影响公路的正常运输;大规模的滑坡,可以堵塞河道,摧毁公路,破坏厂矿,掩埋村庄,对山区建设和交通设施危害很大。

滑坡分类的目的在于对发生滑坡作用的地质环境和形态特征以及形成滑坡的各种因素进行概括,以便反映出各类滑坡的工程地质特征及其发生发展的规律,从而有效地预测和预防滑坡的发生,或在滑坡发生之后有效的进行治理。根据不同的原则和指标,各国学者和工程部门对滑坡提出了各种分类方案。对于一个滑坡,从不同的角度可以有不同的分类,但实践中,我们应该抓住问题的主要矛盾,根据突出因素对滑坡进行分类,分类的原则就是看对我们认识、防治和处理此滑坡是否有帮助。

2 滑坡机理分析

2.1在地质构造上,坡体表层为全、强风化岩层,岩性较软弱,岩石破碎,节理裂隙发育;

2.2路堑边坡开挖后,造成坡体岩层层面临空,使坡体上的岩土体失去平衡;

2.3路堑的开挖和削坡,破坏了坡体原有的平衡,同时坡体的卸荷,造成坡体节理裂隙张开,为坡体上水的入渗提供了通道,而灌溉水沟的存在又为坡体滑动提供了水源;

2.4下渗的水软化强风化板岩和其中的泥质,为滑坡的最终形成提供了有利条件。

3 滑动面参数取值

根据对该滑坡勘察所取得的地质资料及目前滑坡的滑动状态,采用反演分析方法,选取典型的横断面反算滑面的力学参数,并将此反演值作为滑坡处理设计时的参数值。地下水是诱发滑坡的因素之一,在滑坡稳定性分析中,均考虑了地下水的场应力。

4 某山区公路应对滑坡的设计方案

按照“安全、环保、舒适、美观”的原则,在满足安全和规范要求的前提下,考虑施工技术的可行性和经济上的合理性,同时根据场地地形、工程地质条件及本合同段现场实际情况,对滑坡体进行处理。

在某山区公路施工中,由于滑坡推力较大,故在2#滑坡西块滑体的上级滑坡布设一排预应力锚索抗滑桩,以抵抗滑坡的下滑力作用,桩中心距左线线路中线约18m。由于锚索孔与桥墩存在交叉,部分抗滑桩因锚索与桥墩无法避开而改为普通抗滑桩。共设抗滑桩15根,其中锚索抗滑桩12根,普通抗滑桩3根。

4.1主要施工流程

先施工抗滑桩,滑坡稳定后施工桥梁墩台。

锚索抗滑桩施工顺序为:测放桩位→清理并稳固桩孔附近坡面→施工抗滑桩锁口→开挖→节桩孔→绑扎护壁钢筋→支模→浇注护壁砼→开挖下一节桩孔→重复上面四道工序直到设计标高→封底→绑扎桩身钢筋→浇灌桩身砼至距桩头2m处,预留锚索孔位→浇注剩余砼。锚索孔钻孔→下钢绞线→注浆→张拉→锁定。

锚索与桩身工程可分别进行,先后顺序可根据实际情况确定,但应注意相互的配合与衔接。

4.2抗滑桩施工

4.2.1测量放桩

抗滑桩要按桩排方向及控制桩身的里程、坐标位置准确放线定位。

4.2.2普通地质情况桩身开挖

a.抗滑桩施工前应先将桩位附近边坡或表层易滑塌部分清除,并做好桩位附近地表水的拦截工作。

b.抗滑桩跳桩分节开挖,做好锁口盘和每节护壁。每节开挖深度不超过1m,开挖一节,做好该节护壁,当护壁砼具有一定强度后方可开挖下一节,护壁各节纵向钢筋必须焊接,禁止简单绑扎。

c.浇筑护壁砼时,必须保证护壁不侵入桩截面净空以内。桩坑开挖过程中应随时校准其垂直度和净空尺寸。   4.2.3特殊地质情况桩身开挖

2#滑坡西块滑体6#~15#地质为褐黄、褐灰、褐黑色亚黏土,顶部松散。滑坡地段地表水、地下水丰富,桩身开挖过程中渗水量大,土质流动性大,呈流塑状,桩身护壁四周坍塌严重,成孔困难。护壁后侧的部位空洞严重,已完成的护壁承受土压力极大,导致护壁变形、开裂,给工程施工安全带来极大隐患。

特殊地质抗滑桩护壁施工处治方案:

(1)已完成的护壁,由于变形、开裂严重,用φ108*6钢管做横撑做临时支撑,控制护壁变形。

(2)在已完成的护壁上开孔,由孔口处向护壁后空洞部分填充C25砼,直至护壁后空洞完全密实为止。护壁开孔由上往下,尺寸为30×30cm方孔,按2m间距梅花型布设,并在开孔处适当加设φ25Ⅱ级钢筋,使护壁、填充砼、桩周土体形成一体。

(3)护壁砼厚度由原设计的`20cm调整至40cm,护壁钢筋由原单层钢筋网调整为双层钢筋网。抗滑桩每节护壁长度控制60cm。

(4)为保证抗滑桩顺利施工,在滑动面地段布置超前小导管,超前小导采用L=2mφ42*4花管,间距为50×50cm梅花型布置,外插角30度,小导管超前有效长度为1.73m,可以分二个至三个循环进行开挖。小导管采用双液注浆机注双液浆,双液浆配合比为C:S=1:0.5水灰比为0.7:0.9,注浆压力为2.5MPa。小导管不仅固结已开挖段护壁四周背后松散体,还起到超前支护的作用。

(5)护壁开挖严重无法进行,下步开挖时,回填透水性材料碎石土至开裂处进行二次开挖。

4.2.4抗滑桩锚索施工

a.锚索孔位测放应准确,偏差不得超过±3口,倾角允许误差小于锚索长度的3%;考虑沉碴的影响,为确保锚索深度,实际钻孔深度再大于设计深度1.0m。

b.锚索钻孔时禁止开水钻进,以确保锚索深度施工不致于恶化滑坡工程地质条件。2#滑坡锚索施工时,锚索孔眼时常发生塌孔,不能正常施工。处治方法为注双液浆固结松散体,钻机二次钻孔。

c.锚索张拉分五级进行,每级荷载分别设计拉力的0.25、0.5、0.75、1.0、1.1倍,最后一级需要稳定10~20分钟外,其余每级需要稳定5分钟,分别记录每一级钢绞线的伸长量。在每一级稳定时间内必须测读锚头位移三次。锚索张拉除考虑预张拉外还要交替分级张拉,交替张拉可保证各孔锚索受力均匀,张拉后若有明显的预应力损失,及时进行补张拉。

d.张拉到最后一级荷载且变形稳定后,卸荷至锁定锚索。锚索锁定后,按要求切除多余钢绞线,锚头及锚孔在桩身的锚孔部位补浆完成后,用C25砼及时封闭锚头。

5 结论

以上对滑坡的形态特征、影响边坡稳定性因素及滑坡形成条件、滑坡的防治措施做了简单的介绍。天然的或人工开挖形成的边坡到处可见,由于各种原因导致边坡失稳,引起各种规模的滑坡时有发生,给人们的生产生活带了巨大的灾难。因此,作为土木工程技术人员,我们有责任和义务去研究和治理滑坡,从而减少滑坡的发生和降低因滑坡造成的损失。相信通过我们研究的不断深入,滑坡现象将在一定程度上得到控制,我们的公路建设也会更加安全。

参考文献

[1]隆威,郝宇.关于某高速公路滑坡原因及处治措施分析.

[2]施凤彬.浅谈滑坡群抗滑桩施工技术.

[3]肖庆丰,孙连军,王火明.浅谈滑坡成因及防治措施[J].中国水运(学术版),2006,9.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页