您当前的位置:首页 > 发表论文>论文发表

氨氮检测论文

2023-03-02 02:46 来源:学术参考网 作者:未知

氨氮检测论文

纳氏试剂比色法测水中氨氮常见问题探讨论文

摘要: 纳氏试剂比色法测定水中的氨氮,因方法简便、快速、灵敏度高而广泛应用于水中氨氮检测。文章初步探讨了纳氏试剂比色法测定氨氮的几个应注意的问题:预处理方法的选择;水样中干扰的消除;配制酒石酸钾钠溶液及纳氏试剂应注意的问题以及显色条件的控制等等。

关键词: 纳氏试剂比色法,预处理,纳氏试剂,显色条件

1预处理方法的选择

水样带色或浑浊以及含其他干扰物质,影响暗淡的测定,因此需要相应的预处理,对于较清洁的水样可采用絮凝沉淀法[1],对严重污染的水或工业废水,则用蒸馏法[1]预处理以消除干扰。其中因前者更简单快捷,成为首选的方法。

1.1絮凝沉淀法及改进

1.1.1仪器

100ml具塞量筒或比色管

1.1.2试剂:

(1)10%硫酸溶液

(2)25%氢氧化钠溶液

1.1.3步骤

取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和2~4滴25%氢氧化钠溶液,调pH值10.5左右,混匀,静置使沉淀。取适量上清液备用。在此处有一方法的改进,就是没用滤纸过滤,而是取静置后的上清液。静置的时间视取样时不能取到絮状物为准。

1.1.4讨论:《在水和废水监测分析方法》第四版中,经絮凝沉淀后的水样使用无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml后的滤液。有实验表明,不同滤纸或同种滤纸但不同张之间铵盐含量差别很大,有些含量较高的滤纸虽多次用水洗涤,但仍达不到实验要求。因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次。也有研究发现滤纸中约有0.25%的可溶物和滤纸平均失重0.58%,这些可溶物将影响到分析结果的准确性。直接取上清液避免了这一弊端。

2水样中各种干扰的消除:

在实际工作中,由于样品千差万别,干扰物复杂多样,有时会出现样品经絮凝沉淀预处理后显色溶液浑浊的现象,严重影响透光率,造成结果偏高,这时要用蒸馏预处理法。方法参见《水和废水监测分析方法》(第四版)

2.1色(浊)度干扰的消除。

取50mL水样于50mL比色管中,加1.00mL酒石酸钾钠溶液,加1.00mL15%氢氧化钾溶液,测量吸光度(校正吸光度),水样经纳氏试剂比色后测得吸光度减去校正吸光度。

2.2金属离子干扰的消除。

在碱性环境中,金属离子容易发生水解,一般加入酒石酸钾钠络合;含有汞盐可加少量硫代硫酸钠络合而掩蔽;含有Mn2+时,用50%酒石酸钾钠1.00mL+2%Na2EDTA1.00mL代替纯酒石酸钾钠能掩蔽Mn2+干扰[2];含有大量Cu、Fe等金属离子,采用蒸馏法进行预处理后,再测定。

2.3有机物干扰的消除。

水样中含有甘氨酸、肼和某些胺类等有机物时,调节水样pH值到9.5左右,对其进行蒸馏处理;含有酮类、醛类和其他胺类时,在pH值较低情况下,用煮沸方法除去。

2.4显色溶液浑浊的应对措施

用絮凝沉淀法预处理后取上清液,加入酒石酸钾钠溶液和纳氏试剂后,有时会出现浑浊现象,严重影响透光率,误差非常大。笔者在测污水处理厂的'出水水样是经常会遇到此情况,不加酒石酸钾钠显色溶液不浑浊,由此可见是酒石酸钾钠的问题,可用(3.1)方法提纯后的酒石酸钾钠溶液,再不行就用蒸馏法预处理后测定。

3试剂配制应注意的问题

药品的纯度及试剂的配置方法都影响到实验结果。

3.1酒石酸钾钠纯度直接关系到测定结果,导致实验空白值高和引起实际水样浑浊,影响测定需要对其溶液进行提纯,以去除其中的铵盐。实际工作中,有两种处理方法。

①采用纳氏试剂对酒石酸钾钠溶液(50%)进行提纯,纳氏试剂加入量为酒石酸钾钠溶液体积2%,空白吸光度最小且基本稳定;

②向酒石酸钾钠溶液中加少量碱液,煮沸蒸发至50mL左右,冷却并定容至100mL。试验表明:经以上两种方法提纯后空白值也能满足分析测定要求。

3.2纳氏试剂的配制

了解纳氏试剂测氨氮的显色原理有利于理解纳氏试剂的配制方法,原理如下:2K2[HgI4]+3NaOH+NH3→NH2HgIO+3NaI+4KI+2H2O

纳氏试剂的配制有两种方法,均能产生显色基团[HgI4]2—,第一种配制方法用氯化汞和碘化钾,关键在于把HgCl2的加入量,这决定着获得显色基团含量的多少,进而影响方法的灵敏度。但方法未给出HgCl2的确切用量,需要根据试剂配制过程中的现象加以判断,经验性强,因而较难把握。有人据经验总结出HgCl2与KI的用量比为0.44∶1时(即8.8gHgCl2溶于20gKI溶液),效果很好。在此不再赘述,第二种方法用碘化汞和碘化钾:称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。另称取7g碘化钾和10g碘化汞溶于水,将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml。在此尤其要注意碘化汞与碘化钾的比例,I—不能过量,否则反应会逆向进行,显色基团[HgI4]2—减少,纳氏试剂颜色变浅,用此纳氏试剂做出的氨氮工作曲线低点显色不灵敏,几乎没有差别,线性很差,实验失败。碘化汞微溶于水,溶液中存在I—的碱性溶液中反应生成[HgI4]2—红色沉淀才消失,过量时以红色碘化汞沉淀的形式存在,不会使显色反应逆向进行,因此在实际工作中应使碘化汞稍稍过量,配制好的的纳氏试剂静置后弃去沉淀,小心倒入聚乙烯瓶中,密塞,低温保存。

4显色反应条件的控制

4.1 反应温度、时间。实验表明:反应温度为25℃时,显色最完全,反应时间为10~30min,溶液颜色较稳定。实际工作中,显色温度控制在20℃~25℃,时间控制在10min左右,快速测定,以确保监测数据准确可靠。

4.2反应体系pH值。水样pH值的变化对显色有显著影响,水样呈中性或碱性,测定结果相对偏差符合分析要求,水样呈酸性无可比性。实验发现[3],当水样呈酸性时测定值为0.24mg/L ,呈碱性时测定值为1.03 mg/L ,呈中性时测定值为0.92 mg/L。实验表明[4]:当溶液pH<11时,不能使溶液中nh4+全部转化为nh3,使测定结果偏低;当ph>11时,99%以上NH4+ 转化为NH3。在测定水样时先调整pH至中性,加入纳氏试剂后体系pH值在11.8~12.4为宜。实际工作中,配制较强缓冲能力的氢氧化钾-酒石酸溶液(浓度比为2.54:1),能够更好地控制体系pH值。

结论:纳氏试剂比色法测水中氨氮,灵敏度高,操作简便,易于推广,对于不同的水样要选择不同的预处理方法,否则会给结果带来很大误差,对于相对清洁,干扰较少的水样可采用简单省时的絮凝沉淀法,采用此法时可用取上清液的方法,以避免滤纸过滤引进的氨氮污染。对于污染严重,干扰物较多的水样应用蒸馏法予以预处理。针对不同的干扰物应分别采取相应的消除措施。试剂的配制也很关键,对市售酒石酸钾钠予以提纯以消除高铵盐带来的误差,纳氏试剂的配制碘化汞应稍稍过量,出现少量的红色沉淀不影响实验结果,相反,碘化钾过量会导致显色不灵敏,实验失败。控制显色的时间、温度及反应体系的pH值也结果准确可靠的重要条件。

参考文献:

[1]国家环境保护总局,《水和废水监测分析方法》编委会.水和废水监测分析方法.—4版. [M]北京:中国环境科学出版社 2002

[2]丁建森,李 凌. 饮用水中锰对氨氮检测影响的探讨[J] 上海预防医学杂志,1997 ,9 (10) :474 – 475

[3] 苏爱梅,王俊荣. 氨氮测定过程中有关问题的探讨[J] 干旱环境监测,2003,17(2):123-125

[4] 陈国强,卢明宇. 应用离子选择电极法测定生活污水中的氨氮[J].重庆环境科学,1998 ,20(3):58-90

实验室测定氨氮最简方法

最简方法:
  ①水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL。
  采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水扬酸—
  次氯酸盐比色法时,改用50mL 0.01mol·L-1
  硫酸溶液为吸收液。
  ②标准曲线的绘制:吸取0、0.50、1.00、3.00、5.00、7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。加1.5mL纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度。
  由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。
  ③水样的测定:
  a.分取适量经絮凝沉淀预处理后的水样(使氨氮不超过0.1mg),加入50mL比色管中,稀释至标线,加0.1mL酒石酸钾钠溶液。以下同标准曲线的绘制。
  b.分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol·L-1氢氧化钠溶液,以中和硼酸,稀释至标线。加1.5mL纳氏试剂,混匀。放置10min后,同标准曲线步骤测量吸光度。
  ④空白试验:以无氨水代替水样,做全程序空白测定。

关于氨氮在土壤中的影响因素论文的提纲

1.氨氮的作用;
2.土壤中氮的循环过程,有机氮,氨态氮,硝态氮;
3.氨氮的来源(施肥、雷电、生物固氮等),对土壤中的植物、微生物以及环境的影响和危害;
4.回头再增,有事先撤了

饲料蛋白含量对幼参生长、耗氧率和排氨率的影响论文

饲料蛋白含量对幼参生长、耗氧率和排氨率的影响论文

仿刺参又称刺参,隶属于棘皮动物门海参纲,具有很高的食用、药用及科研价值,已成为我国重要的养殖种类( 张群乐等,1998; 王熙涛等,2014) .随着养殖业的快速发展,关于刺参幼参饲料方面的研究逐渐深入( 王维新等,2012) .朱伟等( 2005) 、Sun 等( 2004) 、王吉桥等( 2007) 、王庆吉等( 2014)和周玮等( 2010) 对幼参营养需求方面进行研究。呼吸和排泄是动物能量代谢基本生理活动,很多学者对温度、盐度、光谱和体质量等方面对幼参耗氧率和排氨率的影响进行研究( 吕航等,2013; 袁秀堂等,2006; 隋佳佳等,2010; 薛素燕等,2009) .对于不同蛋白水平对幼参耗氧率和排氨率影响的研究较少,试验通过以鱼粉为蛋白源,配制不同蛋白水平的饲料对幼参进行投喂,研究蛋白水平对幼参生长、耗氧率和排氨率的影响,期望为刺参配合饲料的优化和深入研究提供理论基础。

1 材料与方法

1.1 试验材料

以鱼粉为蛋白源,玉米面粉、鼠尾藻、复合维生素和复合矿物质为原料,分别配制蛋白水平为6% 、13% 、20% 、27% 和 34% 5 种等能饲料,饲料配方见表 1.鱼粉和鼠尾藻分别来自于市售秘鲁鱼粉和鼠尾藻原粉。复合维生素含有维生素 A、D、E、K3、B1、B2、B12、C、生物素、肌醇、叶酸、泛酸钙、胆碱和烟酸。复合矿物质含有硒、铁、钴、碘、锌和铜。将饲料原料按比例混合,加水混匀,制成粒径为 2 ~3 mm 颗粒状,在 65 ℃烘干至恒质量,4 ℃条件下贮存。

1.2 饲养试验

幼参由大连市金州区陆源海产科技园提供,驯化结束后试验开始前禁食 48 h,将 90 只平均体质量为 3. 79 g 的刺参平均放在 15 个塑料水槽中,每水槽放入 6 只,每 3 个水槽为 1 个处理,共 5 个处理,分别投喂不同蛋白水平饲料。试验期 40 d.

养殖容器为 45 cm × 35 cm × 35 cm 塑料水槽,内置石块作为刺参附着基。试验海水为经沉淀和沙滤的天然海水。试验过程中,连续冲气,每天下午换水 1/2,并清除残饵粪便,每天下午 16: 30 按刺参体质量5%投喂1 次。水温( 14 ±0. 5) ℃,溶氧大于 8. 0 mg/L,pH 8. 0 ~8. 2,盐度 31 ~33.

1.3 测定方法

体质量测定: 试验开始前和试验结束后将刺参饥饿 48 h,阴干 15 min 称质量,用 MP - 120 型电子天平称初体质量和末体质量; 然后在 65 ℃ 条件下烘干至恒质量,用天平称量干质量。

耗氧率和排氨率测定: 饲养期结束后,将刺参饥饿 2 d,采用静水式呼吸瓶,每隔 6 h 采集水样 1次,对不同水槽中的刺参进行连续 24 h 耗氧率和排氨率测定。溶氧采用 Winkler 法测定,氨氮采用次溴酸盐氧化法测定( 隋佳佳等,2010) .

1.4 数据计算和分析

其中,OCR 为耗氧率/[μg/( g· h) ],AER 为排氨率/[μg/( g· h) ]; D0和 Q0为试验结束时对照瓶中溶氧的浓度和氨氮的质量浓度/( μg/L) ; Dt和Qt为试验结束时代谢瓶中溶氧的浓度和氨氮的质量浓度/( μg/L) ; V 为呼吸瓶体积/L; WW 为刺参湿质量/g; t 为试验时间/h.

试验 数 据 以 平 均 值 ± 标 准 差 表 示,使 用SPSS12. 0 软件对数据进行方差分析,并进行 Dun-can 氏法多重比较,以 P < 0. 05 表示差异显着。

2 结果与分析

2.1 不同蛋白水平饲料对幼参特定生长率的影响

不同蛋白水平饲料对幼参特定生长率的影响见表 2.饲料蛋白水平为 20% 的饲料组幼参末质量( 0. 53 ± 0. 03) g 与其他水平饲料组存在显着差异( P<0. 05) ; 饲料蛋白水平为 20% 的饲料组幼参特定生长率( 1. 27 ±0. 084) g 最高,显着高于饲料蛋白水平 6%、27%和 34%饲料组( P <0. 05) .

2.2 不同蛋白水平饲料对幼参耗氧率和排氨率的影响

从图 1 可见: 随饲料中蛋白水平的升高,幼参的耗氧率呈逐渐下降的趋势,当蛋白水平达到19. 48% 时下降趋势趋于平缓,此时幼参的耗氧率为21. 54 μg / ( g·h) .饲料蛋白水平为 6% 饲料组幼参的耗氧率显着高于饲料蛋白水平分别为 20%、27%和 34%饲料组( P<0. 05) .

幼参的排氨率随饲料蛋白水平的升高则呈先下降后上升的趋势,当蛋白水平达到 19. 48% 时,幼参的 排 氨 率 为 0. 37 μg/( g · h) .蛋 白 水 平 在5. 81% ~ 33. 18% ,各饲料处理组间幼参的排氨率差异均未达到显着水平( P > 0. 05) ,饲料蛋白水平分别为 20%、27% 和 34% 饲料组间差异两两均不显着( P >0. 05) .

2.3 不同蛋白水平饲料对幼参氧氮比( O∶N) 的影响

从图 2 可见: 在试验蛋白水平范围内,幼参的氧氮比为 37. 62 ~ 69. 91,随饲料蛋白水平的升高,幼参的氧氮比呈逐渐下降趋势,当蛋白水平达到19. 48% 时下降趋势逐渐平缓,此时幼参的氧氮比为 50. 01.饲料蛋白水平为 6% 饲料组幼参的耗氧率显着高于其他饲料蛋白水平( 20%、27% 及 34%)饲料组( P<0. p="">0. 05) .

3 讨论

3.1 不同蛋白水平饲料对幼参生长的影响

饵料不同,刺参生长情况不同,饵料的种类和质量是影响动物生长的重要因素之一。试验中,饲料粗蛋白含量为 20%的饲料组投喂幼参,幼参的末体质量最高,显着高于其他蛋白水平饲料组,幼参的特定生长率最大,与其他对照组存在显着差异( P<0. 05) .说明以鱼粉为蛋白源,对于湿质量为3. 79 g 的幼参,其饲料最适粗蛋白含量为 19. 48% .

刺参在自然条件下以沉积物中的微生物( 底栖硅藻、蓝藻、原生动物、细菌或有孔虫等) 和动物及植物的有机碎屑等为食( 张宝琳等,1995) ,适应于较低蛋白质含量食物。朱伟等( 2005) 研究表明稚参饲料中最适粗蛋白含量为 18. 21% ~24. 18%.刺参饲料蛋白质的营养需求量低于一般鱼类( 30% ~ 60%) ( 张文兵等,2000) 和虾蟹类( 28% ~ 60%) ( 邵庆均等,2000) .

3.2 不同蛋白水平饲料对幼参呼吸和排泄的影响

耗氧率和排氨率在一定程度上反映水产动物代谢水平的'高低及变化规律,是衡量水产动物能量消耗的一个指标。试验中随饲料中蛋白水平的升高,幼参的耗氧率呈逐渐下降的趋势,并且低蛋白水平下( 5. 81%) 幼参的耗氧率显着高于高蛋白水平( 19. 48% ~33. 18%) ( P < 0. 05) .说明低蛋白水平下幼参体内的生理活动较强,在低于最适需求的日粮蛋白质含量时,刺参可能通过加强自身体内的生理活动来维持其正常的生理代谢,其机制有待于进一步研究。氨是动物蛋白质代谢的主要产物,它的变化直接反映了蛋白质作为能量代谢底物的情况。试验表明在饲料蛋白水平 5. 81% ~ 33. 18%,各蛋白水平间幼参的排氨率差异不显着( P > 0. 05) ,说明饲料蛋白含量并不影响幼参的标准蛋白代谢。

3.3 不同蛋白水平饲料对幼参 O∶N 的影响

O∶N 比指消耗的 O 原子与排出的 N 原子间的比值,反映了海水中无脊椎动物能量代谢中的蛋白质的利用情况,可用来评估动物对营养物质利用特性。一般 O∶N 比大于 10 时,生物体以脂肪和糖类代谢为主,O∶N 比小于 10 时,以蛋白质代谢为主( 包杰等,2013) .O∶N 比值越小,说明呼吸时能量代谢底物中蛋白质所占比例越大,O∶N 比值越大,呼吸时消耗能量的底物中蛋白质的含量越少,较多的部分由脂肪或糖类组成。试验研究结果显示,在饲料蛋白水平 5. 81% ~ 33. 18%,幼参的 O∶ N 在37. 6 ~ 69. 91,说明在此蛋白水平范围内,幼参的代谢物质以脂肪和糖类为主,蛋白质次之,更多的蛋白质用于刺参自身物质的合成。试验中随饲料中蛋白水平的升高,幼参的 O∶N 呈逐渐下降的趋势,当蛋白水平达到 19. 48% 时下降趋势逐渐平缓。说明幼参在最适需求的日粮蛋白质水平之前,代谢物质以脂肪和糖类为主,蛋白质很少; 当达到最适需求的日粮蛋白质水平时,幼参蛋白质代谢相对增加,但仍以脂肪和糖类代谢为主。袁秀堂等( 2006)研究表明不同规格刺参 O∶N 比在 15 左右,脂肪和糖类主要提供刺参代谢所需要的能量,试验结果与其基本一致。

4 结论

以鱼粉为蛋白源,在饲料蛋白水平 5. 81% ~33. 18% ,蛋白含量为 19. 48% 饲料 SGR 最大,饲料最适蛋白质水平为 19. 48%; 幼参的氧氮比( O∶N) 在 37. 6 ~ 69. 91,在此蛋白水平范围内,刺参的代谢物质以脂肪和糖类为主,蛋白质次之,更多的蛋白质用于刺参自身物质的合成。

参考文献

[1]张群乐,刘永宏。 海参海胆增养殖技术[M]. 青岛:青岛海洋大学出版社,1998.

[2]王熙涛,徐永平,尤建蒿,等。 刺参饲料的使用与研究新进展[J]. 饲料工业,2014,35(21) :65 -69.

[3]王维新,白燕。 刺参营养饲料的研究开发现状与展望[J]. 科学养鱼,2012(8):71 -72.

[4]朱伟,麦康森,张百刚,等。 刺参稚参对蛋白质和脂肪需求量的初步研究[J]. 海洋科学,2005,29(3):54 - 58.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页