您当前的位置:首页 > 发表论文>论文发表

大坝管涌论文范文

2023-02-28 11:53 来源:学术参考网 作者:未知

大坝管涌论文范文

1关于堤坝工程出险种类及其应用措施的分析
1.1在水利工程建设过程中,提防渗透破坏险情主要分为,堤身工程的内部险情,比如由于堤身的自身性质而引起的问题,比如堤坝的构成物质不稳定性。比如有些堤坝的壤土是粉细砂、孔洞、裂缝等,具体体现在堤坝的漏洞问题、跌窝状况。特别是堤身及其堤基的接触,其堤身、堤基的接触物质比较广泛,堤基的险情出现在大堤的基础层面,比如砂层、土层对于大堤基部的影响。为了解决现实问题,在水利工程施工中,需要保证提防防渗施工体系的健全,保证堤身的防渗处理层次的优化,这就需要采用多种防渗方案,比如进行截渗墙、劈裂灌浆防渗体等的利用,更好的进行堤身的加厚及其堤身的填筑。在提防截渗墙的利用过程中,可以进行薄墙及其廉价材料的利用,保证工程造价的降低。目前来说,水利工程比较常见的堤坝防渗加固方法是深沉法、开槽法等。
1.2为了最大化的提升水利工程的堤坝防渗加固效益,需要保证成本效益。在这其中深沉法的造价比较低,在一定的墙深状况下,高喷法的造墙成本比较高,但是比较适合一些比较狭窄的施工场地,特别是面临着较多的地下障碍物的时候,其具备非常高的适应性。针对一系列的砂卵砾石的地层,可以进行冲击钻的利用,进行相关开槽方式的配合,更好的进行造墙成本效益的提升,需要针对提防工作的特点,做好地层防渗工作。
2堤坝工程防渗加固方案的优化
2.1在堤坝防渗工作的处理过程中,需要遵守相关的原则及其方法。比如在我国的防渗工作中可以进行灌浆及其防渗墙的工作,保证对浸润线的处理,进行防滑桩的利用,通过对各种措施的协调,保证其整体抗滑稳定性安全系数的提升。但是在实践过程中,我们需要了解到滑坡处理程序的复杂性,需要认真的对待滑坡的起因,保证对于坝体浸润线及其土体强度指标的利用。保证对于水工合成材料的利用。通过对土工膜及其复合土工膜防渗等的利用,来保证大坝土体稳定性的提升,更好的解决坝基的渗漏问题,保证其渗漏量的控制。在大坝防渗处理环节中,劈裂式帷幕灌浆法扮演着重要的角色,这种处理方式重视对堤身渗漏的处理,通过对堤身的加固,更好的应对堤坝的曲直情况进行处理。在这个方式中,利用钻机进行布孔方式的利用,保证堤坝轴线处理原则的遵守,保证对孔距的利用,孔深需要针对一定的情况需要,进行堤身填土的钻头,进行堤身的钻入控制。在灌浆过程中需要保证灌浆的顺序及其频率,要控制好灌浆的压力问题,保证对灌浆过程中的滑坡情况、冒浆情况等进行良好处理。
2.2在大坝实践过程中,低压速凝式灌浆法是比较常见的方法,其适合于一般高危水位的管涌处理工作,在它的处理过程中,需要针对管涌的具体地质情况进行分析,可以进行不同型号的钻机的钻孔,进行孔内的浸水,保证对合理压力的利用,向孔内进行水泥浆的灌入,进入一定膨胀物质的应用,进行管涌内部阻力的控制,避免泥浆的过分流出。在大坝基础灌浆过程中,高压填充法是比较常见的灌浆法,其也比较适合对溶洞等地质缺陷的填充,可以满足人们对于基础灌浆工作的需要,这就需要进行一定型号的工程钻机的利用,保证对堤顶钻孔的工作,保证对孔距的控制,要保证其合理的孔深,保证砂层的合理钻入,要实现其灌浆过程中的压力控制,这种处理方法非常适合于基础处理方法不良而引起的管涌情况,需要认真的对待这种问题。灌浆时,须用50m工程钻机在需灌的堤段从堤顶钻孔,孔距1.5~2.0m,孔深以钻入基础穿过砂层进入砾石层2m左右为宜。
2.3在堤坝加固环节中,通过对灌浆加固防渗体的建立,可以保证浆砌石重力坝的合理应用。这就需要进行大坝上游面的灌浆的合理应用,进行漏洞及其缝隙的合理堵塞,进行坝体的加强,保证其整体防渗性能的提升,保证坝体的整体承载力的提升。在大坝的下游可以进行固结灌浆模块的优化,针对其下游的坝面进行浆管的埋注,保证灌浆的合理英语,从而进行漏水通道的堵塞,保证对坝体孔洞、裂缝等的堵塞,保证对坝体的加固,从而全面提升坝面的稳定性,保证其整体抗冲刷能力的提升。这就可以进行反向灌浆工艺的英语,保证拱坝等工作的良好开展。在重力坝的工作过程中,需要进行压力的控制,可以进行排水孔的设置,保证大坝的良好的处理。保证坝面的整体防渗能力的提升,实现坝体的整体稳定性的提升。在大坝处理过程中,进行高压喷射防渗墙的应用是必要的,这就需要进行高压射流冲击扰动的应用,进行坝基覆盖面的控制,进行一定水泥浆的灌入,保证其防渗墙的应用。在大坝建设过程中,自凝灰浆防渗墙也是比较常见的方法。其需要进行水泥、膨润土的合理英语,这就需要进行凝固的准备工作,保证其墙体的防渗补强作用的控制。在垂直铺塑过程中,进行挖槽机的利用是必要的,保证其链条的利用,保证其泥浆固定性。
2.4在水泥土搅拌桩防渗处理过程中,进行深层搅拌桩机的应用是必要的,这需要保证水泥浆的合理喷入,保证土体搅拌的良好应用,保证土体及其水泥的良好混合,实现长江提防防渗工作的良好处理,保证共造墙的良好工作,其具备良好的造价效益,其设备比较轻便,用起来也比较方便,这就需要保证一定范围内的墙体完整性,保证对砂砾石层的合理应用,这就需要保证帷幕灌浆体系的健全,实现其内部各个模块的协调。帷幕灌浆是把一定配合比的具有流动性和胶凝性的浆液,通过钻孔压入岩层裂隙中,经胶结硬化后提高岩基的强度,改善岩基的整体性和抗渗性。我国常采用孔口封闭灌浆法,随着二滩、小浪底工程的建设,国际上一些高效率的施工方法,如GIN灌浆法自下而上纯压式灌浆法等引进我国,促进了我国灌浆技术的发展GIN法是前国际大坝会议主席、瑞土学者隆巴迪首先提出的。在日常工作中,GIN法的应用范围是比较广泛的,其主要进行能量消耗的控制,进行任意孔段的灌浆英语,将其能量的消耗状况控制在一个合理的范围内,通过对灌浆压力及其注入浆液的体积状况,保证灌浆的合理强度行,更好的满足裂隙岩体的灌浆效益,其对于大小裂缝的处理方式也是不同的,比如针对大裂缝其压力比较小。如果在各个灌浆段的全部灌浆过程中,都控制GIN为一常数,就可以自动地对开敞的宽大裂隙限制其注入量,对可灌性差的致密地段提高灌浆压力。GIN法灌浆自动考虑了岩体地质条件的实际不规则性,使得沿帷幕体的总注入浆量合理分布。
3结束语
通过对水利工程堤坝防渗加固体系的健全,可以解决人们水利工程工作的一些麻烦,更好的保证基础经济建设的良好运行。
水利工程思政课实践教学设计论文农田水利工程施工质量管理论文水利工程安全隐患管理水利工程环保设计论文水利工程防渗施工技术论文水利工程安全管理论文农村农业灌溉论文影响水利工程的社会环境论文水利工程资料管理论文水利工程风险管理论文

更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

浅谈土石坝防渗变形的处理措施论文

浅谈土石坝防渗变形的处理措施论文

土石坝在我国水利工程施工中由来已久,它的主要材料是由本地的土料、石材以及土石混合材料构成,经过有序的碾压、回填等方式筑成的挡水大坝。由于使用的材料不同,土石坝可以分为以下几种:石坝、土坝以及土石混合材料铸成的混合型大坝。随着我国经济的发展,水利工程的发展也有了较大的进步,由于受到各方面环境条件的限制,在一些情况下,因为土石坝的渗漏问题,如果不及时处理,有可能会对人们生命财产安全造成严重危害,所以,必须采取有力措施,防止土石坝渗漏。

1土石坝渗透变形的含义及危害

土石坝由于长期在水中受到浸泡和冲刷,周围土体在渗透作用下发生浮动变形,当土体的质量小于浮容重时,土石坝的土石就会逐渐被带走,从而使土石坝发生变形。刚开始的大坝渗透能力不会造成土石流失,但是,如果不及时治理,日积月累,成年累月的冲刷,就会发生较大的土石坝滑坡或重大事故。

要根据土石坝出现渗透变形各个部分的实际情况进行分析,如果大坝下游坝坡的边缘,发生的危害就大,如果在大坝的坝基里面发生涵洞,就会出现建筑物下陷,有时候还会出现塌陷等严重后果。

2土石坝渗透变形的成因

土石坝渗透变形有以下几种形式:泥土受到冲刷后发生流失、管涌以及接触性流土。因为泥土的颗粒的大小不同以及渗透程度的不同使土石坝发生渗流变形,主要是因为:(1)坝基的不透水层没有和土石坝下面的截水槽相连,对于不稳定的地基没有很好的.处理,都会使坝基出现渗流,如果任其发展,就会使坝基变形或出现空洞甚至溃坝。(2)因为选用的土石材料在力学方面没有认真思考,在建成土石坝工程时进行储存水源时,对浸润线的设置不合理,以至于土石坝的渗漏流出的水流从下游的坝坡斜面流出,使下游坝坡极不稳定。(3)在进行输出水的涵洞和施行工程施工中,使用的浆液不均匀、混凝土比例配合没有按照一定的标准,周围的黏土夯实不严密,有时候在回填时不结实,也会使土石坝出现涵洞,从而引起渗透变形发生。(4)土石坝渗流的出现一般在大坝的坝心墙和斜面墙等处非常容易出现裂缝或者发生管涌,以至于引发坝体渗漏变形,破坏非常严重的有可能会出现坝体坍塌或者崩坝。(5)对水文地质条件和工程及其基础防渗处理不重视,误以为土石坝不需要高标准的基础,造成基础漏水,导致土石坝变形。

3土石坝渗透变形的形式

我国的许多地区,特别是南方,使土石坝渗漏并发生变形的原因主要有机械作用及化学作用,由于土石的这些作用,使坝体的某些部分发生破坏。依据土石坝的土质的不同以及涂料的质量的差别、防止渗漏和排除渗流的方法不同、水流的基本条件的不同,土石坝渗流存在以下四种情况:

3.1流土

由于土石坝渗流时泥土颗粒因为渗流逐渐加大,出现被带走,并且坝体表层出现隆起或者冲出现象,这种渗流经常在土粒粗细比较均匀的黏性土壤和黏性不大的土体中出现。因渗流而发生土体断裂、凸起和掉落。

3.2管涌

管涌经常出现在土石坝下方的地基和下游坝坡表层出现渗流的流出的地方。非黏性土壤的微小土粒在泥土小石块的渗透影响下,持续的从孔洞中被冲出,当土壤中的微小颗粒到了某一速度时,泥土颗粒就被冲刷走,如果时间过长,坝体中的土壤颗粒被冲走的越来越多,空洞就会越来越大,这样,土石坝的内部结构就会发生很大的改变,土石坝由于渗透发生变形。

3.3接触流土

由于土石坝在相互相邻的土层中的接触面,会发生渗透系数较小的土层向较大的土层渗入,这种接触性流动的土壤,对土石坝危害极大。

3.4接触冲刷

接触冲刷对土石坝的损坏程度,直接影响着土石坝经久耐用的年限。在坝体渗流经过地基相接触的地方,以及和建筑物等接触系数有很大差别的土层相接触的时候,小的土石颗粒就会被冲刷流走。

土石坝渗透变形的形式在接触冲刷中会较为单纯,在一些特殊情况下,有可能出现两种或两种以上的情况,依据各不相同的渗透坡降情况、位置的差别、该地方的土料状况等进行具体情况进行具体分析,进而制定出有效的保护措施。

4治理土石坝防渗变形的措施

4.1水平防渗

水平防渗的方法非常简便易行,一般采取人力把黏土进行填埋或者使用自然的黏土进行填筑,这种方法非常简便,也能够因地制宜,花费时间短,施工作业面很大、造价低廉,不需要任何的设备和器材。但是在施工过程中要认真依照设计图纸和有关要求,使土石坝的稳定性得到有效的控制,但如果渗透量加大,在土石坝基部有可能还会出现坡降现象。因此,必须通过防渗的方式实施水平盖铺,与下游的减小压力,增加排水量的工程实施有机地联系在一起。

4.2垂直防渗

在坝基透水层较薄并且隔水层厚度不大的前提下,应该使用垂直防渗的方法,并用封闭式防渗帷幕进行施工,从而使所有由于渗透变形的情况得到了彻底治理,这样从根本上解决了土石坝的坝体和坝基的渗漏。通常用的防渗方法有以下三个方面:

4.2.1高压喷射灌浆防渗。依据施工设计要求,在受到破坏的坝体周围用钻机实施钻孔,然后把高压喷射管放入钻孔中,对钻孔内的土体使用高压水流冲刷,破坏里面的土体结构,然后冲入水泥浆液,并且和周围土体充分混合、渗透、搅拌,然后逐渐提起喷嘴,待浆液凝固后,根据设计要求,确定好喷浆后的混凝土深度和厚度,从而与坝基紧密凝结在一起,很好地发挥防渗变形的优势。

4.2.2建造混凝土防渗墙。为了使土石坝更加坚固,增强它的抗冲刷能力,可在土石坝坝体或土体的透水层和覆盖层中建立槽型孔,同时使用高压水泵把水泥浆液压入槽型孔内部,使孔内的残渣等物质被冲出孔外,接着再用直升套管向槽孔内部压入混凝土,连续不断的混凝土墙就这样形成了,充分发挥阻止防渗变形的作用。

4.2.3土工膜防渗。使用土工膜防渗,能够使渗透半径加大,坡降变小、渗漏量变低,但是不能使渗流全部阻断,并且此种防渗方法对坝体渗漏有一定作用,对多种渗漏的防治效果不大。

通过一系列防渗措施的实施,必须根据实际情况认真分析,防渗施工技术的提高是进一步加强土石坝稳定性的关键因素。因此,只有建立一支专业化、能力强、技术过硬、有丰富经验的施工技术队伍,才能保证工程质量。同时,还必须有足够的土石坝防渗施工基金作保障,并能及时修缮、维护,一旦发现问题迅速处理,使管理和综合利用有机结合起来,并且要积极学习一些国外防渗补漏的先进技术和经验,使土石坝防渗变形工程有新的突破。

管涌是怎么回事?

管涌又叫翻沙鼓水,是在渗流作用下,土体细颗粒沿骨架颗粒形成的孔隙涌出的现象.孔隙周围多形成隆起的沙环.管涌发生时,水面出现翻花,随着上游水位升高,持续时间廷长,险情不断恶化,大量涌水翻沙,使堤防、水闸地基土壤骨架破坏,孔道扩大,基土被淘空,引起建筑物塌陷,造成决堤、垮坝、倒闸等事故.

发生原因:

(1)堤坝、水闸地基土壤级配缺少某些中间粒径的非粘性土壤,在上游水位升高,出逸点渗透坡降大于土壤允许值时,地基土体中较细土粒被渗流推动带走形成管涌.

(2)基础土层中合有强透水层,上面覆盖的土层压重不够.

(3)工程防渗或排水(渗)设施效能低或损坏失效.

抢护方法:临截背导,导压兼施,降低渗压,防止渗流带出泥沙。

抢护方法:

(1)反滤围井.在冒水孔周围垒土袋,筑成图井.井壁底与地面紧密接触.井内按三层反滤要求分铺垫沙石或柴草滤料.在井口安设排水管,将参出的清水引走,以防溢流冲塌井壁.如遇涌水势猛量大粗沙压不住,可先填碎石、块石消杀水势,再按反滤要求铺填滤料,注意观察防守,填料下沉,则继续加填,直到稳定为止.此法适应于地基土质较好,管涌集中出现,险情较严重情况.

(2)养水盆:在管涌周围用土袋垒成围井,井中不填反滤料,井壁须水漏水,如险情面积较大.险口附近地基良好时,可筑成土堤,形成一个蓄水池(即养水盆),不使渗水流走,蓄水抬高井(池)内水位,以减小监背水位差,制止险情发展.此法适用于监背水位差小、高水位持续时间短的情况,也可与反滤井结合处理.

(3)滤水压浸台: 在大片管涌面上分层铺填粗沙、石屑、碎石,下细上粗,每层厚20cm左方,最后压块石或土袋。如缺乏沙石料,可用秸柳作成柴排(厚15-30cm),再压块石或土袋,袋上也可再压沙料,厚度以不使柴草压辱太紧为限。此法适用于管涌数目多, 出现范围较大的情况。如系水下发生管涌:切不可将水抽干再填料。 以免险情恶化。

流土为另一种渗透变形形式。在非粘性土中流土表现为颗粒群的同时运动,如泉眼群、沙沸、土体翻滚等最终被渗流托起;在粘性土中,表现为土块隆起,膨胀、浮动、断裂等险情。枪护方法与管涌同。

管涌、流土险情的发展,将导致堤身裂缝、沉陷。在抢护管涌的同时,应迅速枪护堤身险情。外侧闭渗,防洪水沿袭缝渗漏,加固加高堤身,防洪水没溢。

请大家帮我找一下重力坝失稳的实例 刚才百度了 根本就没有这样的例子

1895年4月,法国Bouzey重力坝失事。事后分析,失事的原因是该坝设计时未考虑作用于坝基上的扬压力。20世纪初建造的许多重力坝多未考虑扬压力,如印度的Khadakwasla等坝(Kulkarni,1994),均因不够稳定而采取加固。1959年法国Malpasset坝失事是拱坝第一次溃坝记录,经检查,坝的设计符合规范,施工质量良好。直到1987年,通过一次以溃坝为主题的国际研讨会,才有了初步结论:左坝肩地基中过大的水压力使坝基岩块沿F1断层滑动而溃坝。1976年,当时世界上最高的土坝,美国Teton坝发生溃坝,经反复查证,确认坝基岩石节理发育,库水流经岩石裂隙使心墙齿槽土体发生管涌而最终遭致溃坝。

1985年,美国Bath County抽水蓄能电站高压钢管中的一条出现了屈曲破坏。尽管设计在钢管区域精心布置了排水幕,但由于砂岩的层状构造的特点,排水幕并未起到预期的作用。水电站高压钢管在外水压作用下屈曲破坏的事故国内外均屡有发生。高压水工隧洞产生水力劈裂也不乏实例。水工隧洞及其它隧道工程塌方事故频繁,多为岩石裂隙水的不利作用所引发。

滑坡是多发性的自然灾害。较大的天然滑坡大多是岩体中的滑坡。1963年意大利Vajont拱坝近坝左岸库区岩体大滑坡体积达2.5亿m3,在当时是有记载滑坡中规模、滑速及造成的灾害均是最大的。19世纪60年代,岩石力学,特别是岩石水力学尚处于萌芽状态,没有估计到滑坡会造成数千人死亡的重大灾害,因而未能采取有效的处理及预报措施。2000年4月,西藏易巩藏布江左岸花岗岩山体发生约3亿m3大滑坡。据分析,这次滑坡是山体积雪融化,水渗入山体而触发的。在水电站工地、公路、铁路沿线都有因人工开挖而出现岩石高边坡问题。不少人工岩石边坡因受降雨、施工用水、生活用水的影响而产生滑坡,造成程度不同的损失。许多工程因采取了以排水为主的综合处理措施而有效地防止了滑坡。

综上所述,许多工程事故都与岩石水力学有关。本文仅以几个重大工程事故的实例来说明研究、学习与掌握岩石水力学的重要性和迫切性。

2 法国Malpasset拱坝溃决

2.1 Malpasset拱坝简介 Malpasset双曲拱坝位于法国南部Rayran河上,坝高66m,水库总库容5100万m3。坝顶高程102.55m,顶部弧长223m。坝的厚度由顶部1.5m渐变到中央底部6.76m,属双曲薄拱坝。左岸有带翼墙的重力推力墩,长22m,厚6.50m,到地基面的混凝土的最大高度为11m,开挖深度6.5m。在坝顶中部设无闸门控制的溢洪道。坝基为片麻岩,片理倾角在30°~50°之间,倾向下游偏右岸。较大的片理中部充填糜棱岩。坝址范围内有两条主要断层。一条为近东西向的F1断层,倾角45°,倾向上游。断层带内充填含粘土的角砾岩,宽度80cm。另一条为近南北向的F2,倾向左岸,倾角70°~80°(图1)。

图1 Malpasset拱坝主要地质构造

图2 Malpasset拱坝水库蓄水过程线

2.2 拱坝溃坝过程 Malpasset拱坝于1954年末建成并蓄水。库水位上升缓慢。历经5年至1959年11月中旬,库水位才达到95.2m。这时的坝址下游20m,高程80m处有水自岩石中流出。因下了一场大雨,到12月2日晨,库水位猛增到100m(图2)。当日下午,工程师们到大坝视察,研究如何防止渗水的不利作用。因未发现大坝有任何异常,决定下午6点开闸放水,降低库水位。开闸后未发现任何振动现象。管理人员晚间对大坝进行了反复巡视,亦未见任何异常现象,于近21点离开大坝。21点20分,大坝突然溃决,当时库水位为100.12m。据坝下游1.5km对这一灾难少数目击者描述,他们首先感到大坝剧烈颤动,随之听到类似动物吼叫的突发巨响,然后感到强烈的空气波。最终他们看到巨大的水墙顺河谷奔腾,同一时间电力供应中断。洪水出峡谷后流速仍达20km/h,下游12km处Frejus城镇部分被毁,死亡421人,财产损失达300亿法郎。次日清晨发现大坝已被冲走,仅右岸靠基础部分有残留拱坝,一些坝块被冲到下游1.5km处,左岸坝基岩体被冲出深槽。

2.3 溃坝后的调查及分析 1959年Malpasset拱坝溃坝并造成的重大灾难震惊了工程界,也因在此之前尚未有拱坝溃坝的先例。事故发生在坝工建设方面,尤其是在拱坝建设方面为世界最先进的国家;该坝是由最负盛名的设计大师Andce Coyne设计的;它是当时溃坝记录中最高的坝;溃坝毁灭了Frejus市,在最富的地中海区造成重大灾害;这次事故表明任何型式的包括被认为最安全的拱坝都会遭到破坏(Serafim,1987)。Malpasset拱坝的失事,说明了当时对岩体内水的流动规律知之甚少。这一惨痛的教训大大促进了岩石力学,特别是岩石水力学的发展。本文将摘引已发表的文献,从岩石水力学观点分析其失事的机理。

2.3.1 溃坝原因的官方分析 Malpasset拱坝所有者法国农业部于12月5日组建了一个调查委员会。几个月后提交了一个临时报告。1960年8月提出代表官方的最终报告,1962年夏报告对外公布(Laeger,1963)。该报告正文只有55页,因有40个附件,共形成三厚本报告。委员会委托法国电力公司(EDF)对大坝应力作了复核,最大压应力为6.1MPa,混凝土抗压安全系数为5.3。拱冠局部有1MPa拉应力。EDF还对拱的独立工作工况进行了校核。对左岸重力墩也进行了复核,在拱圈单独作用下重力墩是安全的。冲走的附有基岩的大量混凝土块均未发现混凝土与岩石接触面有破坏迹象。混凝土质量良好,其抗压强度为33.3MPa~53.3MPa。由此判断,坝失事是由坝基岩石引发的。委员会认为,水的渗流在坝下形成的压力引发了第一阶段的破坏(Jaeger,1979,391页)。

2.3.2 坝工界对溃坝原因的讨论 法国官方最终报告公开后,引起了坝工界广泛重视。Coyne and Bellier公司对Malpsset拱坝地基片麻岩进行渗透试验(Bellier and Londe,1976),得出了渗透性与应力明显关系。就这一关系对拱坝失事原因给出了明确的解释,并由Londe(1985,1987)在工程地基国际会议及大坝失事国际研讨会上作了报告。这一期间,还发表了一些重要论文');">论文和专著,主要有Jaeger(1963,1979)、Habib(1987)、Post和Bonazzi(1987)、Serafim(1981,1982,1987)、Wittke和Leonards(1987)及汝乃华和姜忠胜(1995)等。Malpasset拱坝失事至今已40多年,对其失事的原因至今尚未取得完全一致的认识。但绝大多数专家都认为坝基内过大的孔隙水压力是造成失事的主要原因。

2.3.3 Londe(1987)的分析 片麻岩有片理构造。试验研究表明,当窄条形荷载与片理垂直时,应力向岩体深部传布呈扩散状,而当荷载与片理平行时,受片理影响,应力分布呈条带状传至岩体深部而不能扩散(图3)。Malpasset拱坝由于其与片麻岩片理空间相对关系,左坝肩拱推力与片理平行,右坝肩拱推力则与片理垂直。左右两坝肩岩体承载后的应力分布有很大差异。由于坝左有F1断层,在左坝肩从拱座到F1断层形成高应力岩体条带。Bernaix在Malpasset拱坝溃坝后对地基片麻岩体进行过室内渗透性与应力关系的试验,发现片麻岩的渗透性与应力关系十分明显。将这一关系用指标S表示:

图3 荷载垂直片理与平行处理应力分布

S=k-1/k50
(1)

式中:k-1为拉应力为0.1MPa时岩块的渗透系数,k50为压应力为5MPa时岩块的渗透系数。

试验表明,S指标最大值可达200。按岩石渗透性与应力关系的试验结果,在拱坝推力作用下左坝肩拱座到F1断层实际上形成了条状防渗帷幕,相当于一个地下大坝。该区域的渗透系数仅为周围岩石的渗透系数的1/100或更小。由于条带内与条带外渗透系数相差100倍,绕坝渗流水头全消耗在防渗条带内。因而,在防渗条带上游就作用有相应于全水头的压力。左坝基岩体在全水头压力作用下沿F1断层滑动致使拱坝溃决(图4)。

2.3.4 Wittke和Leonards的分析 西德Aachen大学Wittke教授在1984年秋考察了Malpasset拱坝遗址后,随即开展了对该坝失事原因的研究。作为Aachen大学访问学者,作者曾部分地参予了该项研究工作。Wittke从岩体渗流的增量荷载理论,用有限元方法分析坝与坝基在水压力、自重及渗流荷载作用下的变形和应力。结果表明,拱坝坝踵处岩体在垂直片理方向产生拉应力,该处片理产生张裂缝。库水进入裂缝并将裂缝劈开至下部断层处,在裂缝内形成全水头压力,使左坝肩至F�1断层的岩块失稳(图5),大坝溃决。

图4 Londe对Malpasset拱坝溃坝原因的解释
图5 Wittke对Malpasset拱坝溃坝原因的解释

图4及图5对Malpasset拱坝破坏分析形式上一致,但出发点不相同。岩体中有节理、裂隙、片理、层面及断层等各种构造面,水流主要顺这些构造而运动。对多数岩石,岩块的渗透性常可忽略不计。从这个观点,Wittke提出的Malpasset拱坝溃坝原因的分析是比较最实际的。Serafim与Wittke的观点基本一致。

2.4 小结 Malpasset拱坝溃坝造成了灾害。对这一事故的分析研究加深了工程界对岩石力学的认识,并促进了岩石水力学的发展,目前已成为岩石力学的一个重要的学科分支。显然,岩石水力学的形成无论对科学的发展或对工程的安全都有重大意义。1987年在Purdue大学召开的以大坝失事为主题的国际研讨会上G.A.Leonards主席总结发言中有一段评论:“……Malpasset坝的溃决是推动初步形成的岩石力学成为一个茁壮成长的岩石工程学科的 主要动力,这一学科可以广泛应用于土木工程,包括大坝、隧道、大型地下洞室、自然岩石边坡及人工岩石边坡的稳定性各类问题上。……”

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页