您当前的位置:首页 > 发表论文>论文发表

锅炉电毕业论文

2023-02-28 10:12 来源:学术参考网 作者:未知

锅炉电毕业论文

  锅炉运行方面技术论文篇二
  锅炉经济运行技术浅谈

  【摘要】锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。

  【关键词】锅炉,经济,燃煤

  1、概述。锅炉是国民经济中重要的热能供应设备。电力、纺织、造纸、食品、机械、冶金、化工等行业, 以及工业和民用采暖都需要锅炉供给大量的热能。锅炉是将燃料的化学能转变为热能的燃烧设备,它尽可能的提供良好的燃烧条件,以求能把燃料的化学能最大限度地释放出来并使其转化为热能,并利用热能加热锅内的水。

  2、锅炉的分类。锅炉按照不同的方式分为以下几类:按锅炉的用途分为:生活锅炉、工业锅炉、电站锅炉和热水锅炉。按锅炉燃用的燃料分类可分为:燃煤炉、燃油炉和燃气炉。按燃烧方式分类可分为:层燃炉、室燃炉和介于二者之间的沸腾(流化床)炉。按有无汽包可分为:汽包锅炉和直流锅炉。按蒸汽压力分类可分为:低压锅炉、中压锅炉、次高压锅炉、高压锅炉、超高压锅炉、亚临界压力锅炉和超临界压力锅炉。按锅炉水循环方式分类可分为:自然循环锅炉、强制循环锅炉和复合循环锅炉。

  3、锅炉的应用。利用锅炉产生的热水或蒸汽可直接为生产和生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,是蒸汽动力装置的重要组成部分,多用于火电站、船舶、机车和工矿企业。

  4、锅炉的结构。锅炉是热能生成设备的主要构成,锅炉中的炉膛、锅筒、燃烧器、水冷壁过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。是由“锅”和“炉”两部分组成的。“锅”是汽水系统,它主要任务是吸引收燃料放出的热量,使水加热、蒸发并最后变成具有一定热能的热水或过热蒸汽。它由省煤器、汽包、下降管、联箱、水冷壁、过热器和再热器等设备及其连接管道和阀门组成。炉膛又称燃烧室,是供燃料燃烧的空间。锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器中。

  5.锅炉的工作原理。锅炉主要有以下系统来完成燃料的化学能到蒸汽具备足够的动能(以煤粉炉为例):汽水系统、风烟系统、燃料(煤粉和助燃油)系统、制粉系统、灰渣系统等。制粉系统用于磨制合格的煤粉储存于粉仓内,通过给粉机,由一次风送入炉膛进行燃烧。煤粉在炉膛内和高温烟气充分混合燃烧加热水冷壁内给水,同时产生大量的高温烟气,经各级低温、高温过热器通过辐射、半辐射半对流、对流充分换热冷却后的烟气由风烟系统中的引风机在经过电除尘、布袋除尘器等使烟气粉尘达标后由烟囱排向大气,炉内给水通过各级吸热后,形成高温高压蒸汽输送出去。煤粉燃烧产生的炉渣通过灰渣系统输送出去。

  6.锅炉的维护保养。在锅炉的日常运行过程中,各系统辅机运转正常,要注意维持各项参数在许可范围之内,严格控制压力、温度等超标,定期排污维持合格汽水品质,延长设备使用寿命。锅炉停运后仍要进行保养,锅炉保养的方法都是通过尽量减少锅炉水中的溶解氧和外界空气漏入来减轻锅炉的腐蚀。最常见的保养方法一般有湿式保养法、充氮置换法、烘干防腐保养法等几种。

  7.锅炉的经济运行。锅炉机组运行的优劣在很大程度上决定了整个电厂运行的经济性。衡量燃煤发电厂经济性的主要指标是供电煤耗。供电煤耗的大小取决于发电煤耗和厂用电率,影响发电煤耗的主要因素是锅炉效率。因此,研究电厂锅炉的经济运行方式,对提高电厂的经济性具有重要意义。

  由于炉膛内燃料的燃烧工况、温度水平、各级受热面的沽污与热交换状态以及辅助动力消耗的不同,其运行经济性也各不相同。必须进行精细的燃烧调整试验,以求得各种负荷下的最佳运行工况,作为日常运行调整的依据,以保证锅炉机组的经济运行状况良好。运行中应根据煤种变化掌握燃烧器特性、风量配比、一次风煤粉浓度及风量调整的规律,重视燃烧工况的科学调整,使炉内燃烧处于最佳状态。为了使燃料在炉膛内与氧气充分混合燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此除通过合理的风粉配比、调节火焰的充满度和合适的火焰燃烧中心外还应依据锅炉的性能试验,设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。

  煤粉炉通常采取以下措施来提高锅炉的经济性能:

  7.1合理配煤以保证燃煤质量。将各煤种精心混配,减少燃煤的大幅度变化,维持运行参数基本稳定。

  7.2合理调整煤粉细度。煤粉细度是影响飞灰可燃物含量的主要因素。经济煤粉细度要根据热力试验进行选取。

  7.3控制适量的过量空气系数。煤粉燃烧需要足够的氧气,但过多的冷空气会降低炉内温度水平,且使排烟容积增大。合理的过量空气系数应根据燃烧调整试验及煤种确定。

  7.4重视燃烧调整。炉内燃烧状况的好坏、温度水平及煤粉着火的难易程度直接影响灰渣可燃物的含量。

  为了考核性能和改进设计,锅炉常要经过热平衡试验。直接从有效利用能量来计算锅炉热效率的方法叫正平衡,从各种热损失来反算效率的方法叫反平衡。考虑锅炉的实际效益时,不仅要看锅炉热效率,还要计及锅炉辅机所消耗的能量。 单位质量或单位容积的燃料完全燃烧时,按化学反应计算出的空气需求量称为理论空气量。为了使燃料在炉膛内有更多的机会与氧气接触而燃烧,实际送入炉内的空气量总要大于理论空气量。虽然多送入空气可以减少不完全燃烧热损失,但排烟热损失会增大,还会加剧硫氧化物腐蚀和氮氧化物生成。因此应设法改进燃烧技术,争取以尽量小的过量空气系数使炉膛内燃烧完全。

  8.排放锅炉烟气中所含粉尘(包括飞灰和未燃尽的煤粉)、硫和氮的氧化物都是污染大气的物质,未经净化时其排放指标可达到环境保护法规限定指标的几倍到数十倍。控制这些物质排放的措施有燃烧前处理、改进燃烧技术、除尘、脱硫和脱硝等。借助烟囱只能降低烟囱附近地区大气中污染物的浓度,不能彻底根除污染物。烟气除尘所使用的作用力有重力、离心力、惯性力、附着力以及声波、静电等。对粗颗粒一般采用重力沉降和惯性力的分离,在较高容量下常采用离心力分离除尘静电除尘器和布袋过滤器具有较高的除尘效率。湿式和文氏—水膜除尘器中水滴水膜能粘附飞灰,除尘效率很高还能吸收气态污染物。为了达到较高的除尘效率,一般燃煤机组通常采用多级除尘,电除尘、布袋除尘等并通过脱硫脱销,使烟气的各项指标达到国标要求。

  9.锅炉的发展。锅炉未来将向着进一步提高锅炉和电站热效率的方向发展;将进一步降低锅炉和电站的单位功率的设备成本;将极大的提高锅炉机组的运行灵活性和自动化水平;将会发展更多锅炉品种以适应不同的燃料;将会继续提高锅炉机组及其辅助设备的运行可靠性;将会下大力气采取措施减少对环境的污染。

  参考文献:

  [1]张爱存.发电厂燃煤锅炉运行调整与经济性分析[D].华北电力大学 毕业 论文,2003.

求关于锅炉设计的毕业论文

  去幸福校园网站看看,那的论文很多
  1引 言
  1.1热水供热的研究对象
  人们的日常生活中需要大量的热能,尤其在冬季。现在在北方大多家庭取暖用热水集中供暖,而在淮阴等江苏地区冬季室内一般用空调或不提供供暖设备,靠自然光照和多穿些衣服来驱寒。近年来随着人们的生活水平的提高,越来越多的家庭购买空调或电取暖器用来冬季室内供暖。然而空调和电取暖器的耗电量太大及它们采用热风供暖在取暖时,室内空气太干燥等缺点。所以一般家庭买了,但用的很少,造成资源的浪费。经调查热水供暖同样适用于江苏地区,一些家庭已经安置了热水锅炉加散热片取暖系统。随着经济技术的提高和人们的需求增加,热水供热工程已经悄然在江苏大地上发展起来。
  1.2本设计的供暖系统的型式和主要内容
  热能的供应是通过供热系统完成,本设计供暖系统包括三个组成部分:
  (1) 热源:热水锅炉。
  (2) 供热管网:输送热媒的供热管路系统。
  (3) 热用户:直接使用或消耗热能的室内供暖系统。
  根据三个主要组成部分的相互关系来分,供暖系统可分为局部供暖系统和集中供暖系统。本设计是热源、供热管网和热用户三个主要部分在构造上连在一起的局部供暖系统。主要内容为房间的设计和供暖系统设计热负荷以及燃气热水锅炉的设计。

电厂方面毕业论文

  简介: 分析了锅炉安全阀阀门漏泄、阀体结合面渗漏、冲量安全阀动作后主安全阀不动作、冲量安全阀回座后主安全阀延迟回座时间过长以及安全阀的回座压力低、频跳和颤振等常见的故障原因,并针对故障原因提出了解决方法。
  关键字:安全阀 冲量 安全阀 主安全阀

  1
  、前言��

  安全阀是一种非常重要的保护用阀门,广泛地用在各种压力容器和管道系统上,当受压系统中的压力超过规定值时,它能自动打开,把过剩的介质排放到大气中去,以保证压力容器和管道系统安全运行,防止事故的发生,而当系统内压力回降到工作压力或略低于工作压力时又能自动关闭。安全阀工作的可靠与否直接关系到设备及人身的安全,所以必须给予重视。�

  2、安全阀常见故障原因分析及解决方法��
  2.1、阀门漏泄�

  在设备正常工作压力下,阀瓣与阀座密封面处发生超过允许程度的渗漏,安全阀的泄漏不但会引起介质损失。另外,介质的不断泄漏还会使硬的密封材料遭到破坏,但是,常用的安全阀的密封面都是金属材料对金属材料,虽然力求做得光洁平整,但是要在介质带压情况下做到绝对不漏也是非常困难的。因此,对于工作介质是蒸汽的安全阀,在规定压力值下,如果在出口端肉眼看不见,也听不出有漏泄,就认为密封性能是合格的。一般造成阀门漏泄的原因主要有以下三种情况:

  一种情况是,脏物杂质落到密封面上,将密封面垫住,造成阀芯与阀座间有间隙,从而阀门渗漏。消除这种故障的方法就是清除掉落到密封面上的脏物及杂质,一般在锅炉准备停炉大小修时,首先做安全门跑砣试验,如果发现漏泄停炉后都进行解体检修,如果是点炉后进行跑砣试验时发现安全门漏泄,估计是这种情况造成的,可在跑砣后冷却20分钟后再跑舵一次,对密封面进行冲刷。

  另一种情况是密封面损伤。造成密封面损伤的主要原因有以下几点:一是密封面材质不良。例如,在3~9号炉主安全门由于多年的检修,主安全门阀芯与阀座密封面普遍已经研得很低,使密封面的硬度也大大降低了,从而造成密封性能下降,消除这种现象最好的方法就是将原有密封面车削下去,然后按图纸要求重新堆焊加工,提高密封面的表面硬度。注意在加工过程中一定保证加工质量,如密封面出现裂纹、沙眼等缺陷一定要将其车削下去后重新加工。新加工的阀芯阀座一定要符合图纸要求。目前使用YST103通用钢焊条堆焊加工的阀芯密封面效果就比较好。二是检修质量差,阀芯阀座研磨的达不到质量标准要求,消除这种故障的方法是根据损伤程度采用研磨或车削后研磨的方法修复密封面。�

  造成安全阀漏泄的另一个原因是由于装配不当或有关零件尺寸不合适。在装配过程中阀芯阀座未完全对正或结合面有透光现象,或者是阀芯阀座密封面过宽不利于密封。消除方法是检查阀芯周围配合间隙的大小及均匀性,保证阀芯顶尖孔与密封面同正度,检查各部间隙不允许抬起阀芯;根据图纸要求适当减小密封面的宽度实现有效密封。

  2.2、阀体结合面渗漏�

  指上下阀体间结合面处的渗漏现象,造成这种漏泄的主要原因有以下几个方面:一是结合面的螺栓紧力不够或紧偏,造成结合面密封不好。消除方法是调整螺栓紧力,在紧螺栓时一定要按对角把紧的方式进行,最好是边紧边测量各处间隙,将螺栓紧到紧不动为止,并使结合面各处间隙一致。二是阀体结合面的齿形密封垫不符合标准。例如,齿形密封垫径向有轻微沟痕,平行度差,齿形过尖或过坡等缺陷都会造成密封失效。从而使阀体结合面渗漏。在检修时把好备件质量关,采用合乎标准的齿形密封垫就可以避免这种现象的发生。三是阀体结合面的平面度太差或被硬的杂质垫住造成密封失效。对由于阀体结合面的平面度太差而引起阀体结合面渗漏的,消除的方法是将阀门解体重新研磨结合面直至符合质量标准。由于杂质垫住而造成密封失效的,在阀门组装时认真清理结合面避免杂质落入。

  2.3、冲量安全阀动作后主安全阀不动作

  这种现象通常被称为主安全门的拒动。主安全门拒动对运行中的锅炉来说危害是非常大的,是重大的设备隐患,严重影响设备的安全运行,一旦运行中的压力容器及管路中的介质压力超过额定值时,主安全门不动作,使设备超压运行极易造成设备损坏及重大事故。

  在分析主安全门拒动的原因之前,首先分析一下主安全门的动作原理。如图1,当承压容器内的压力升至冲量安全阀的整压力时,冲量安全阀动作,介质从容器内通过管路冲向主安全阀活塞室内,在活塞室内将有一个微小的扩容降压,假如此时活塞室内的压强为P1,活塞节流面积为Shs,此时作用在活塞上的f1为:

  f1=P1×Shs……………………(1)�

  假如此时承压容器内的介质的压强为P2,阀芯的面积为Sfx,则此时介质对阀芯一个向上的作用力f2为:

  f2=P2×Shx�..............(2)

  通常安全阀的活塞直径较阀芯直径大,所以式(1)与式(2)中Shs>Sfx�P1≈P2

  假如将弹簧通过阀杆对阀芯向上的拉力设为f3及将运动部件与固定部件间摩擦力(主要是活塞与活塞室间的摩擦力)设为fm,则主安全门的动作的先决条件:只有作用在活塞上的作用力f1略大于作用在阀芯上使其向上的作用力f2及弹簧通过阀杆对阀芯向上的拉力f3及运动部件与固定部件间摩擦力(主要是活塞与活塞室间的摩擦力)fm之和时,即:f1>f2+f3+fm时主安全门才能启动。�

  通过实践,主安全门拒动主要与以下三方面因素有关:

  一是阀门运动部件有卡阻现象。这可能是由于装配不当,脏物及杂质混入或零件腐蚀;活塞室表面光洁度差,表面损伤,有沟痕硬点等缺陷造成的。这样就使运动部件与固定部件间摩擦力fm增大,在其他条件不变的情况下f1<f2+f3+fm所以主安全门拒动。

  例如,在2001年3号炉大修前过热主安全门跑砣试验时,发生了主安全门拒动。检修时解体检查发现,活塞室内有大量的锈垢及杂质,活塞在活塞室内无法运动,从而造成了主安全门拒动。检修时对活塞,胀圈及活塞室进行了除锈处理,对活塞室沟痕等缺陷进行了研磨,装配前将活塞室内壁均匀地涂上铅粉,并严格按次序对阀门进行组装。在锅炉水压试验时,对脉冲管进行冲洗,然后将主安全门与冲量安全阀连接,大修后点炉时再次进行安全阀跑砣试验一切正常。

  二是主安全门活塞室漏气量大。当阀门活塞室漏气量大时,式(1)中的f1一项作用在活塞上的作用力偏小,在其他条件不变的情况下f1<f2+f3+fm所以主安全门拒动。造成活塞室漏气量大的主要原因与阀门本身的气密性和活塞环不符合尺寸要求或活塞环磨损过大达不到密封要求有关系。

  例如,3~9号炉主安全阀对活塞环的质量要求是活塞环的棱角应圆滑,自由状态开口间隙不大于14,组装后开口间隙△=1~1.25,活塞与活塞室间隙B=0.12~0.18,活塞环与活塞室间隙为S=0.08~0.12,活塞环与活塞室接触良好,透光应不大于周长的1/6。对活塞室内要求是,活塞室内的沟槽深度不得超过0.08~0.1mm,其椭圆度不超过0.1mm,圆锥度不超过0.1mm,应光洁无擦伤,但解体检修时检查发现每台炉主安全门的活塞环、活塞及活塞室都不符合检修规程要求,目前一般活塞环与活塞室的间隙都在S≥0.20,且活塞室表面的缺陷更为严重,严重地影响了活塞室的汽密性,造成活塞室漏汽量偏大。

  消除这种缺陷的方法是:对活塞室内表面进行处理,更换合格的活塞及活塞环,在有节流阀的冲量安全装置系统中关小节流阀开度,增大进入主安全门活塞室的进汽量,在条件允许的情况下也可以通过增加冲量安全阀的行程来增加进入主安全门活塞室内的进汽量方法推动主安全阀动作。

  三是主安全阀与冲量安全阀的匹配不当,冲量安全阀的蒸汽流量太小。冲量安全阀的公称通径太小,致使流入主安全阀活塞室的蒸汽量不足,推动活塞向下运动的作用力f1不够,即f1<f2+f3+fm致使主安全阀阀芯不动。这种现象多发生于主安全阀式冲量安全阀有一个更换时,由于考虑不周而造成的。

  例如2002年5号炉大修时,将两台重锤式冲量安全阀换成两台哈尔滨阀门厂生产A49H-P54100VDg20脉冲式安全阀,此安全阀一般与A42H-P54100VDg125型弹簧式主安全匹配使用,将它与苏产Dg150×90×250型老式主安全阀配套使用,此种主安全阀与A29H-P54100VDg125型弹簧式主安全阀本比不仅公称通径要大而且气密性较差,在5号炉饱和安全阀定砣完毕,进行跑砣试验时造成主安全阀拒动。后来我们将冲量安全阀解体,将其导向套与阀芯配合部分的间隙扩大,以增加其通流面积,再次跑砣试验一次成功。所以说冲量安全阀与主安全阀匹配不当,公称通径较小也会引起主安全阀拒动。
  2.4、冲量安全阀回座后主安全阀延迟回座时间过长�

  发生这种故障的主要原因有以下两个方面:

  一方面是,主安全阀活塞室的漏汽量大小,虽然冲量安全阀回座了,但存在管路中与活塞室中的蒸汽的压力仍很高,推动活塞向下的力仍很大,所以造成主安全阀回座迟缓,这种故障多发生于A42Y-P5413.7VDg100型安全阀上,因为这种型式的安全阀活塞室汽封性良好。消除这种故障的方法主要通过开大节流阀的开度和加大节流孔径加以解决,节流阀的开度开大与节流孔径的增加都使留在脉冲管内的蒸汽迅速排放掉,从而降低了活塞内的压力,使其作用在活塞上向下运动的推力迅速减小,阀芯在集汽联箱内蒸汽介质向上的推力和主安全阀自身弹簧向上的拉力作用下迅速回座。

  另一方面原因就是主安全阀的运动部件与固定部件之间的磨擦力过大也会造成主安全阀回座迟缓,解决这种问题的方法就是将主安全阀运动部件与固定部件的配合间隙控制台标准范围内。

  2.5、安全阀的回座压力低�

  安全阀回座压力低对锅炉的经济运行有很大危害,回座压力过低将造成大量的介质超时排放,造成不必要的能量损失。这种故障多发生在200MW机组所使用的A49H型弹簧脉冲安全阀上,分析其原因主要是由以下几个因素造成的:

  一是弹簧脉冲安全阀上蒸汽的排泄量大,这种形式的冲量安全阀在开启后,介质不断排出,推动主安全阀动作。

  一方面是冲量安全阀前压力因主安全阀的介质排出量不够而继续升高,所以脉冲管内的蒸汽沿汽包或集气联箱继续流向冲量安全阀维持冲量安全阀动作。

  另一方面由于此种型式的冲量安全阀介质流通是经由阀芯与导向套之间的间隙流向主安全阀活塞室的,介质冲出冲量安全阀的密封面,在其周围形成动能压力区,将阀芯抬高,于是达到冲量安全阀继续排放,蒸汽排放量越大,阀芯部位动能压力区的压强越大,作用在阀芯上的向上的推力就越大,冲量安全阀就越不容易回座,此时消除这种故障的方法就是将节流阀关小,使流出冲量安全阀的介质流量减少,降低动能压力区内的压力,从而使冲量安全阀回座。

  造成回座压力低的第二因素是:阀芯与导向套的配合间隙不适当,配合间隙偏小,在冲量安全阀启座后,在此部位瞬间节流形成较高的动能压力区,将阀芯抬高,延迟回座时间,当容器内降到较低时,动能压力区的压力减小,冲量阀回座。

  消除这种故障的方法是认真检查阀芯及导向套各部分尺寸,配合间隙过小时,减小阀瓣密封面直往式阀瓣阻汽帽直径或增加阀瓣与导向套之间径向间隙,来增加该部位的通流面积,使蒸汽流经时不至于过分节流,而使局部压力升高形成很高的动能压力区。

  造成回座压力低的另一个原因就是各运动零件磨擦力大,有些部位有卡涩,解决方法就是认真检查各运动部件,严格按检修标准对各部件进行检修,将各部件的配合间隙调整至标准范围内,消除卡涩的可能性。

  2.6、安全阀的频跳�

  频跳指的是安全阀回座后,待压力稍一升高,安全阀又将开启,反复几次出现,这种现象称为安全阀的“频跳”。安全阀机械特性要求安全阀在整动作过程中达到规定的开启高度时,不允许出现卡阻、震颤和频跳现象。发生频跳现象对安全阀的密封极为不利,极易造成密封面的泄漏。分析原因主要与安全阀回座压力达高有关,回座压力较高时,容器内过剩的介质排放量较少,安全阀已经回座了,当运行人员调整不当,容器内压力又会很快升起来,所以又造成安全阀动作,像这种情况可通过开大节流阀的开度的方法予以消除。节流阀开大后,通往主安全阀活塞室内的汽源减少,推动活塞向下运动的力较小,主安全阀动作的机率较小,从而避免了主安全阀连续启动。

  2.7、安全阀的颤振

  安全阀在排放过程中出现的抖动现象,称其为安全阀的颤振,颤振现象的发生极易造成金属的疲劳,使安全阀的机械性能下降,造成严重的设备隐患,发生颤振的原因主要有以下几个方面:

  一方面是阀门的使用不当,选用阀门的排放能力太大(相对于必须排放量而言),消除的方法是应当使选用阀门的额定排量尽可能接近设备的必需排放量。

  另一方面是由于进口管道的口径太小,小于阀门的进口通径,或进口管阻力太大,消除的方法是在阀门安装时,使进口管内径不小于阀门进口通径或者减少进口管道的阻力。排放管道阻力过大,造成排放时过大的北压也是造成阀门颤振的一个因素,可以通过降低排放管道的阻力加以解决。�

  3、结束语
  对锅炉安全阀的常见故障原因进行了分析并提出了具体的解决方法,虽然目前电站锅炉安全阀都是由主、辅阀配套组成的,并采用机械和热工控制双重保护,有些故障不易发生,但只有充分掌握安全阀的常见故障原因和消除方法,在故障发生时处理起来才能得心应手,对保证设备的安全运行有着重要的意义。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页