城市道路交通管理规划与研究
摘要:城市道路交通管理规划是城市可持续性发展的前提和基础,本文分析介绍了我国城市道路交通管理规划的现状,阐述了交通管理规划的目的、内容、层次及过程,论述了交通需求预测的分析方法及其相应交通需求模型在交通管理规划中的应用。
关键词:城市道路交通 管理规划 交通需求
1.道路交通管理规划现状
西方国家城市交通系统发展经历了两个阶段,即建设阶段:二战后至二十世纪70年代;管理阶段:二十世纪80年代至现在。重点在公共交通系统、小汽车发展、单项交通、交通信号控制以及道路的有效利用等多方面进行交通管理规划。
目前我国城市交通发展的历程相当于西方国家的60~70年代,与发达国家相比,城市机动车密度还比较低。尽管如此,由机动车引发的环境污染问题和城市交通堵塞问题也很严重。这充分说明了我国在道路交通管理方面还存在体制上、行政上和技术上的问题。
随着全国城市道路交通畅通工程的深入开展,许多城市的交通状况得到了很大的改观,而且一系列先进的交通管理设备和先进的管理模式被采用,取得了很好的效果。如厦门、大连、南京、青岛、济南、杭州等城市的交通管理工作均很有成效,先后被评为畅通工程“优秀管理水平”。
取得成绩的同时,我们还要清楚地认识到,目前我国城市交通管理总体水平与畅通工程要求还有一定差距。在2000年全国“畅通工程”工作组检查的138个城市中,42个城市的交通管理规划工作只达到畅通工程11项要求中的5项要求,20个城市仅满足4项要求。由此可见,我国在城市交通管理规划方面远远滞后于现代道路交通发展的要求。
城市网络很复杂,交通的运行很复杂,产生交通问题的因素也很复杂,相应制定的城市交通管理方案往往由多个管理策略、管理措施组合而成,任何一个建设或管理措施的实施都会引起整个城市路网上交通运行情况的改变。如将一条路的某个路段改为单行道或单双号通行、将交叉口的类型改变(无控制改为信号控制)、将某路段改为公交专用道、打通某条路或拓宽某条路等,都会引起整个城市80%~90%以上的主要道路交通流量和车速的改变。因此,交通管理问题是一个系统工程,必须用科学的方法解决,常用的经验性的方法是不能完全解决的。因此交通管理需要做规划,实际上,目前一些城市所实施的有些管理措施,都是做过规划的,只是不太系统、全面而已。
为了改变当前城市交通管理规划滞后的局面,哈尔滨工业大学、清华大学、同济大学和东南大学等高校以及公安部交通科学研究所、中国城市规划设计研究院等部门正致力于部分城市的道路交通规划编制工作,为提高我国道路交通管理水平作出应有的贡献。
2.道路交通管理规划基本内容与方法
2.1 道路交通管理规划的目的
道路交通管理规划的目的是解决要不要管、什么时间管、怎么管、管什么地方等问题。通过规划,人们能预先知道管理策略实施后的效果,避免由于盲目管理而带来政策上的失衡和经济上的巨大损失。
2.2 道路交通管理规划的基本内容
道路交通管理规划的工作内容主要包括:
(1)城市道路交通现状调查
应调查、搜集的资料包括:交通小区划分及小区经济、土地利用资料、交通网络结构及道路几何要素资料、历史道路交通量及流向资料、居民出行特征资料、机动车出行特征资料、货物出行特征资料、现有交通管理设施及效果资料等。在这方面,由于交通调查面广,调查工作量大,资金投入多,因此,有的城市交通规划编制单位,甚至有关政府部门领导对基础数据调查工作不够重视,认为只要在原有交通规划资料搜集的基础上,作些补充调查即可,以致于规划方案与现实脱节,其针对性和可操作性差。这是一种极为错误和片面的观点,应引起有关部门的高度重视。
(2)现状分析与问题的诊断
从道路基础设施状况、土地利用与公共交通、交通管理设施及现代化程度、交通秩序、交通质量及交通安全以及交通管理体制、政策、规划及宣传教育等方面对城市道路交通及管理现状进行分析、诊断。
(3)城市交通需求分析
通过交通需求模型的建立和计算(具体模型及方法将在下一节讨论),获得交通管理规划方案实施(评价)年份的各车种(客车、摩托车、公交车、出租车、货车、自行车)的OD矩阵,为后期交通规划提供规划依据和参数。
(4)城市交通管理方案的制定
一个城市的交通管理方案,往往是由多种管理策略和数种管理措施组合而成的。一般包括交通需求管理策略,如优先发展策略、限制发展策略、禁止出行策略、经济杠杆策略;交通系统管理策略,如结点交通管理、干线交通管理、区域交通管理。
(5)城市交通管理方案的评价
通过方案评价,分析交通管理措施是如何影响交通流的,预测交通管理措施实施下的交通运行指标,分析是否达到了管理目标。
交通管理方案的评价可按道路网络抽象化、交通管理方案抽象化、交通流重分布模拟以及管理效果分析四个步骤进行。
3.交通需求模型的建立及发展预测
交通需求预测是城市道路交通管理规划工作的基础,要做好一个城市的交通管理规划,首先要对出行进行定量预测,并对某一交通设施或系统进行分析、论证,各个路段、路口以及整个路网的通行能力都必须满足现状、近期或远期出行的交通需求,因此只有搞好流量预测才能了解该路网能否满足该城市的出行需求,并由此加以改善。
3.1 出行生成预测
居民出行产生预测的目的是建立小区居民出行发生量和吸引量与小区土地利用、社会经济特征等变量之间的定量关系,推算规划年各交通小区的居民出行发生量、吸引量。出行产生包括出行发生与出行吸引。居民出行产生预测的方法很多,常用的方法有交叉分类法、回归分析法、生成率法、吸引率法及平均出行次数法等。
居民出行分布预测是将预测的各分区出行发生量、吸引量转化为未来交通分区之间的出行交换量的过程。预测方法大体分为三类,即:增长率法、概率模型法和重力模型法。其中,双约束重力模型法在国内外交通规划中使用最为广泛。
3.2 交通分配预测
在掌握各分区出行产生、出行吸引,以及出行分布情况后,即知道了各分区之间有多少出行交换量后,就可着手进行交通分配。交通分配就是把各分区之间的空间 O-D量分配到具体的交通网络上。通过交通分配所获得的路段、交叉口交通量资料是检验道路规划网络是否合理的主要依据之一。目前,道路交通管理规划中应用较广泛的交通分配是随机用户平衡模型(Stochastic User Equilibrium)。该模型建立了路段行驶时间与路段交通量之间的函数关系,并考虑了通行能力的限制,通过反复迭代计算,直至达到要求的精度为止,最后分配出各路段上的交通量。
3.3 停车需求预测
世界上许多大城市均对停车需求预测进行过深入研究,由于各国国情不同、城市发展形态不同、经济增长不同,停车预测模式也不同,其计算方法差异较大。常用的预测模型有:停车生成率模型、用地与交通影响分析模型、相关分析模型、机动车OD预测模型、交通量-停车需求模型、静态交通发生率模型。下面对应用较为广泛的静态交通发生率模型和交通量-停车需求模型作一简要介绍。
(1)静态交通发生率模型
根据停车调查数据汇总可得到各交通小区的日停车数,再根据停放车辆车型比例换算为标准车,利用综合交通规划中社会经济与土地利用现状及发展预测所提供的现状和近、远期规划年的就业岗位数,抽取一定的样本,可建立静态交通发生率模型:
Pij=∑aiLij (i=1,……,m j=1,……,n) (1)
式中:Pij为预测年第j交通小区的基本日停车需求(标准车次/日);ai 为第i类用地的静态交通发生率(标准车次/100工作岗位·日);Lij为预测年第j交通小区第i类用地的就业岗位数(人);n为小区数;m为用地分类数。
对模型的求解采用非线性优化的方法,即建立非线性优化模型:
式中参数意义同前。
(2)交通量-停车需求模型
通过对几种停车需求预测方法的比较可知,该模型虽不能具体得到区域内每一土地使用的停车设施需求量,但由于它与动态交通的预测方法相结合,因此比较适用于对交通小区的宏观停车需求分析。因此该模型可用来检验静态交通发生率模型的计算结果。
模型表达式为:
logPi=Ao+A1·logVki+A2·logVhi (3)
式中:Pi为预测年第i交通小区的日停车需求量(标准车次/日);Vki为预测年第i交通小区的客车日出行吸引量(标准车次/日);Vhi为预测年第i交通小区的货车日出行吸引量(标准车次/日);Ao、A1、A2为回归系数。
参考文献:
1.庄严、罗辑.促进城市交通发展、走城市交通可持续发展之路. 交通工程通讯,2000(2)
2.盖春英、裴玉龙.基于公路网的路段交通量预测方法研究. 交通工程通讯,2001(2)
3.王炜、徐吉谦、杨涛、李旭宏.城市交通规划理论及其应用. 南京:东南大学出版社,1998.
4.TransCAD Transportation GIS Software (Travel Demand Modeling with TransCAD 3.2),1999.
5.Meyer D. Urban Transportation Planning. McGraw-Hill Book Company,1984.
1、要先介绍旅游的相关情况,文字加图表
2、分析国内旅游现状
3、举例说明国内旅游线路的好处与坏处,最好能有图表
4、根据你所在的地区设计旅游线路,并叙述该线路的利弊。
5、总结
配电网络规划
配电网络的规划是供电企业的一项重要工作,为了获取最大的经济效益,电网规划既要保证电网安全可靠,又要保证电网经济运行,所以配电网络规划的主要任务是,在可行技术的条件下,为满足负荷发展的需求,制定可行的电网发展方案。
1 负荷预测
网络规划设计最终目的是为满足负荷需求服务的,负荷的发展状况足以影响网络发展的每个环节。网络规划的发展步骤要以负荷发展状况为依据,使用各馈线负荷数据可以掌握负荷发展情况,将过去的负荷进行分析,掌握负荷的发展规律。要对负荷进行分析,确定最高用电负荷时间和负荷率,得出最高用电负荷时间和负荷值,这些数据是预测未来负荷的基本资料。配电网络规划可以使用两种常用的预测方法。外推法就是基于用电区域的历史数据,假设负荷发展率是连续变化的,根据原来的负荷发展率推移以后各时期的发展状况。在一个用电区域里,初期负荷发展比较快,但土地资源逐步使用,用电负荷逐步趋于稳定,负荷发展率从大到小变化,最终负荷达到饱和或稳步发展状态。但对于经济发展迅速的地区,负荷发展率并不是连续变化的,而是呈现跳跃式的增长,用外推法显得有一定的误差。而仿真法与外推法有互补的作用,仿真法是以用电区域每年的用电量为依据的,通过调查每个用电负荷类型和每个类型用户的数量来计算负荷预测值。任何负荷预测方法都不可能完全准确,当掌握更新的负荷发展数据后,就必须对原有的负荷预测值进行修正。
2 确定网络的系统模型
确定网络的系统模型,包括确定网络是采用架空线路还是电缆供电,确定导线截面大小,网络接线方式,负荷转移方案,网络中有关设备的选型,网络在运行期间遇到不适应要求时应如何进行改造,系统保护功能,配网自动化规划等。
(1)在负荷分散或发展缓慢地区应使用架空线供电。在负荷密度比较大、发展迅速或基于城市环境美化建设考虑,应使用电缆供电。
(2)导线截面大小的选择确定了导线的输送容量,要选择足够大的导线保证线路满足网络规划的要求,例如:负荷发展时期,不应经常更换导线截面。在线路故障时,可以将故障线路的负荷转由临近馈线供电,而不会过负荷运行。另外,导线截面的选择要保证线路末端电压降处于合格的范围内。在线路发生短路故障时也能承受故障电流。所以导线截面要比最大负荷电流所需的截面大,但同时截面的选择要符合经济原则,在导线输送容量与工程投资之间作比较。
(3)具有灵活接线方式的规划,可以使供电网络最大地发挥功能。对于架空线网络,最有效的方式,是将馈线与邻近变电所或同一个变电所的不同母线段的出线在线路末端联网,两回馈线也分别装上分段负荷开关和隔离刀闸。在其中一回馈线出现故障时,可通过分段开关将故障段隔离出来,对于电缆网络接线方式可以采用两回馈线组成互为备用网络,或采用三回馈线相互联络组成一个供电区域,其中两回带负荷,一回空载,作为两回负荷线的备用线。馈线之间可以组成大环网,一条馈线的负荷之间也可以组成小环网,形成大环套小环的形式。在负荷密集地区还可以建设开关站,变电所与开关站通过电源线连接,再由开关站向附近负荷供电,其作用是将变电所母线延长至用电负荷附近。
(4)制定负荷转移方案的原则是减少停电范围,尽量减少停电时间。在发现回馈线发生故障时,必须尽快查找到故障点,并将故障点前后的负荷转由邻近馈线供电,以使故障点的负荷隔离出去。
(5)国内外对各种电气设备都制定了详细标准,为设备选型提供了可靠依据。作为配网规划应选用运行效益好,损耗低,可靠性高,免维护的设备。对于开关设备应选用具备配网自动化功能,在设备中先安装配网自动化设备或者为以后发展预留空间。有些新型设备的购置费用虽然高,但运行可靠性高,故障率低,维护费用少,总体经济效益是相当理想的。
(6)配电网络规划在实施过程中随着负荷的发展状况稳定,在馈线负荷超出安全电流或没有足够的备用容量时,应该增加馈线,对用电区域的馈线正常供电范围进行调整。同时,配网规划内容也应作相应修改。
(7)为确保电网正常运行,必须建立健全的保护系统,在系统出现故障时,通过最少的操作次数将故障点隔离,保证非故障点尽早恢复用电。现在常用的系统保护方法有:
①用熔断器或过电流继电器实现过流保护,熔断器在超过熔断电流时自动熔断,迅速切断电流、保护用电设备,熔断器主要用于变压器保护。过电流继电器用于线路保护。
②接地故障保护用于消除接地故障,对直接接地或通过不可调阻抗接地的系统,可以把电流互感器二次绕组接到接地故障继电器上,或者把过流继电器与接地故障继电器集中使用。对于中性点不接地系统或通过消弧线圈接地的系统,由于接地故障会造成系统电压和电流不对称,继电器可根据基本判据来确定是否控制相应的断路器动作断开。
③单元保护,用于对系统中一个单元的保护,根据正常运行两侧电压相同的电路,流入的电流和流出的电流是相同的,通过比较两侧电流大小可以判断是否出现故障。但是单元保护要使用通讯线路,在保护线路太长的地方,很难将数据完整地集中起来进行比较。使用距离保护法可以打破这种局限性,在距离保护方案中,根据故障距离与故障阻抗成正比的原理,采用线路的电压和电流来计算故障距离。
④自动重合闸装置的方法是利用继电器控制断路器去执行不同的跳闸与闭合顺序。线路中有大部分故障是可以自动消除或暂时性的,使用自动重合闸装置可以自动恢复供电。⑤电力系统中,有时出现运行电压远远超过额定电压值的情况,例如:开关操作瞬间或系统受雷击时,都会产生过电压现象。加强各设备绝缘强度和绝缘水平,或在网络中安装过电压保护设备,可以使过电压降低到安全水平,例如使用空气间隙保护或安装避雷器作保护。
(8)配电网络自动化管理系统是利用计算机网络,将自动控制系统和管理信息系统结合起来,建立系统控制和数据采集系统,为全面管理网络安全和经济运行提供依据。配网自动化系统的主要功能可以分成四个组成部分,第一是电网运行监控和管理功能,包括电网运行监视,电网运行的控制,故障诊断分析与恢复供电,运行数据统计及报告。第二是运行计划模拟和优化功能,包括配网运行模拟,倒闸操作计划的编制,各关口电量分配计划和优化。第三是运行分析和维护管理功能,包括对电网故障和供电质量反馈的信息进行分析,确定系统薄弱环节安排维修计划。第四是用户负荷监控和报障功能,包括用户端负荷和电能质量的遥测,用户端计量设备的控制,用户故障报修处理系统。
3 效益评估
配网规划经济效益评估,包括电网投资与增加用电量所产生收益的比较,以及为了使电网供电可靠性,线损率,电压合格率达到一定指标与所需投入费用之间的比较,采用投资与收益的研究可以确定使用那一种供电方式。
加快电力建设为地区经济发展提供了有利条件,但是电网投资与增加的用电量作比较,以此确定这些投资是否值得。所以电网投资要以分地区分时期发展,用电量发展快的地方相应电网投资也大,用电量发展慢的地方,相应电网投资也少一些。
对于用户来说,供电可靠性越高越好,但相应电网的投资也会大大增加。对于大用电量或重要用户,为确保有更高的可靠性,可以加大电网投资,因为减少停电时间可以同时减少用户和供电企业的损失。线损率是用来反映电能在电网输送过程中的损耗程度,公共电网中的损耗是由供电企业来承担的,通过对电网设备的技术改造,可以让供电企业直接得到经济效益。为了使供用电设备和生产系统正常运行,国家对供电电压质量制定了标准,对电压的频率、幅值、波形和三相对称性的波动范围作了规定。稳定的电压质量可以使供用电设备免受损害,让用户能正常生产,相比之下用户得到的好处会更多。
引言
高速铁路既是指通过改造原有线路(直线化、轨距标准化)
,使营运速率达
到每小时
200
公里以上,
或者专门修建新的
“
高速新线
”
,
使营运速率达到每小时
250
公里以上的铁路系统。高速铁路除了在列车在营运达到速度一定标准外,车
辆、路轨、操作都需要配合提升。
国内外高铁现状以及高铁特点简介
1964
年,日本建成世界上第一条高速铁路
——
东海道新干线,并以时速
210km/h
投入商业运营。由于修建高速铁路可以带来巨大的社会经济效益,高
速铁路的辉煌业绩深受世人瞩目,法国也及时发展了独具特色的可
能
是目前唯
一没有任何盈
利色彩而享誉世界的法国产
品
TGA
高速技术,并在
1981
年率
先建成西欧第一条高速铁路。从
此
TGV
一直牢牢占据高速轮
轨的速度桂冠,
目前的纪录
是
2007
年创下
的
578.4
公里
/
小时。欧洲有关
部门做出的长远
规划是到
2015
年,全欧高铁铁路总长达到
3
万公里,其中
新建段
9100
公
里,约
占
30%
。
紧接日法之后,
德国、
意大利、
西班牙等都相继修建了高速铁路。
并且德国
研制独自的
ICE
(
Intercity-Express
)机车,美国研制了具有美国特色的
Acela
。
从
1972
年以后,又相继出现了磁悬浮和摆式列车,而其中的摆式列车由于其性
价比较高,
有可能是一种在
大规模成熟铁路网基础上完成提
速的高速铁路技
术。
我国的高速铁路研发及建设均起步较晚,
但是我国高速铁路建设近几年的发
展速度有目共睹,从
2008
年
8
月
1
日我国第一条具有完全自主知识产权的高速
铁路
——
京津城际铁路开通运营,
到之后的武广高速铁路、
郑西铁路等高速铁路
的开工建设及投入运营,我国高铁建设一直得到国家大力的政策支持与资金投
入。
特别是在过去两年,
我国多项高铁建设项目开工并建成投产,
宁波~台州~
温州、
温州~福州、
福州~厦门等客运专线相继建成通车,
特别是世界上里程最
长、时速
350
公里、全长
1068.6
公里的武广高速铁路开通运营,成为中国高速
铁路的又一里程碑。
高速铁路在不长的时期内之所以能取得如此的发展势头,
根本原因是基于轮
轨系的高速技术充分发挥了既先进又实用的特点,
特别是在中长距离的交通中的
独特优势。
实践表明,
高速铁路已是当代科学技术进步与经济发展的象征。
高速
铁路虽然源于传统铁路,
但借助于多项高新技术已全面突破常规铁路的概念,
已
形成一种能与既有路网兼容的新型交通系统。
同时高铁还具有一些其他列车无法
比拟的优点:(
1
)输送能力大:目前各国的高速铁路几乎都能满足最小行车间
隔
4
分钟及其以下(日本可达
3
分钟)的要求。
(
2
)速度快:法国、日本、德
国
、
西班牙和意大利高速列车的
最高运行时速分别达到
了
300
公
里、
300
公
里、
280
公里、
270
公里和
250
公里。如果作进一步
改善,运行时速可以达
到
350
~
400
公里
。
(
3
)安全性好:高速铁路由于在全封闭
环境中自动化运
行,又有一系
列完善的安全保障系统,所以其
安全程度是任何交通工具无
法比拟的
。
(
4
)受气候变化影响小,正确率高
:高速铁路全部采用自动化
控制,可以全
天候运营,除非发生地震。由于
高速铁路系统设备的可靠性
和较高的运输
组织水平,可以做到旅客列车极高的正点
率。
(
5
)方便快捷
:
高速铁路一般
每
4
分钟发出一列车,日本在旅
客高峰时每
3
分半钟发出一
列客车,旅客
基本上可以做到随到随走,不需
要候车。
(
6
)能源消耗低:
如果以
“
人
/
公里
”
单位能耗来进行比较的
话。高速铁路为
1
,则小轿车
为
5
,
大客车
为
2
,飞机
为
7
。
(
7
)
环境影响好(
8
)
经济效益好:高速铁路投入
运行以来,倍
受旅客青睐,其经济效益也十分
可观。日本东海道新干线开
通后仅
7
年就
收回了全部建设资金,
自
1985
年以后,每年纯
利润达
2000
亿日元
。
德国
ICE
城市间高速列车每年纯利润
达
10.7
亿马克
。
法国
TGV
年
纯利润
达
19.44
亿法郎。
实例分析
2.1
沪杭高速铁路布局及运营现状简介
沪杭城际高速铁路,
连接上海与杭州,
是中国
“
四纵四横
”
客运专线网络中沪
昆客运专线的一个组成部分。
该工程连接上海、
杭州两大城市,
由上海虹桥站引
出,
经松江南
-----
金山北
-----
嘉善南
-----
嘉兴南
-----
桐乡
-----
海宁西
-----
余杭南引入
杭州东站,
并通过联络线与上海站、
杭州站相接,
正线全长
160
公里,
其中
87
%
为桥梁工程,全线设车站
9
座。采用
国产“和谐号”
CRH380A
新一代高速动车
组列车,
全程
持续运营速度为
350
公里,
最高运营时速为
380
公里
。
工程自
2009
年
2
月
26
日动工,
2010
年
10
月
26
日正式通车营运。
由于沪杭高铁
采用的日本新干线道版运用一种
新的轨道施工技术,轨
枕本身是混凝
土浇灌而成,路基不用碎石,铁
轨、轨枕直接铺在混凝土路
上。采用这种
施工技术,列车在行驶中即使遇
到弯道也不用减速。致使沪
杭高铁运行最
高时速达到
416.6
公里,
继续刷新世界铁路运
营试验的最高时
速。