您当前的位置:首页 > 发表论文>论文发表

毕业论文氨氮

2023-02-27 21:45 来源:学术参考网 作者:未知

毕业论文氨氮

  化学是重要的基础科学之一,是一门以实验为基础的学科,在与物理学、生物学、地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。下文是我为大家搜集整理的关于大学化学毕业论文的内容,欢迎大家阅读参考!
  大学化学毕业论文篇1
  浅议化学氧化改性对碳毡空气阴极表面特征的影响

  微生物燃料电池(MFC)是一种可以将废水中有机物的化学能转化为电能同时处理废水的新型电化学装置。但输出功率低、运行费用高且性能不稳定等严重制约了MFC的实际应用。影响MFC性能的主要因素有产电微生物、阴极催化剂、电极材料、反应器构型及运行参数等。其中,阴极是影响MFC性能及运行成本的重要因素。目前,有学者通过筛选电极材料及对电极材料进行改性来提高MFC性能和降低成本,效果较为显着。因此,笔者采用HNO3氧化碳毡,制作改性碳毡空气阴极,研究化学氧化改性对碳毡空气阴极表面特征的影响;并通过循环伏安测试,考察改性后碳毡阴极的稳定性。

  1材料与方法

  1.1试验装置及材料

  采用连续流运行方式,试验装置主体是由有机玻璃制成的圆柱体,中间阳极室有效容积为36mL(内径为2cm,高为11.5cm),为确保阳极室的厌氧环境,用密封柱密封。阴极在阳极室外侧壁围绕。装置总容积为3.92L,密封盖上有阳极孔、阴极孔及检测孔,以便用铜导线、鳄鱼夹来连接外电路,外接1000Ω电阻作为负载。进水口设计在底部中央,制备成无膜上升流式反应器。阳极是直径为1cm的碳棒,阴极是厚度为3cm的碳毡,输出电压由万用表采集。

  1.2原水水质及运行参数

  垃圾渗滤液取自沈阳市老虎冲垃圾填埋场的集水井,其水质如表1所示。接种微生物为取自UASB反应器中的厌氧颗粒污泥,接种量为25mL。启动期的进水流量控制在30mL/h,COD约为500mg/L。稳定运行后进水流量逐步提升到90mL/h,COD提升到1500mg/L。

  装置在32℃下恒温运行。MFC接种厌氧污泥后,先用COD为1000mg/L的垃圾渗滤液驯化一个周期,使阳极的产电微生物成功挂膜,MFC运行稳定后,再以COD为1500mg/L的垃圾渗滤液作为阳极进水。

  1.3改性碳毡空气阴极的制备

  阴极预处理:将碳毡剪成所需尺寸,然后浸泡在1mol/L的盐酸溶液中,目的是去除碳毡中的杂质离子,24h后取出,用去离子水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。

  碳毡改性:将预处理过的碳毡浸入65%~68%的浓硝酸中,用水浴加热至75℃,处理不同时间后取出并用蒸馏水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。

  催化剂吸附:将经改性后的碳毡放入Fe/C催化剂溶液(硝酸铁浓度为0.25mol/L,活性炭粉为1g)中,于磁力搅拌器上搅拌30min,然后取出碳毡放入105℃烘箱中烘干。

  1.4分析项目和方法

  外电阻R通过可调电阻箱控制,电压由万用表直接读取,功率密度P通过公式P=U2/RV计算得到,其中U为电池电压,V为阳极室体积。

  表观内阻采用稳态放电法测定。

  循环伏安测试以饱和甘汞电极作为参比电极,采用传统三电极体系,电化学工作站为EC705型。

  电极电导率采用伏特计测定,COD采用快速密闭消解法测定,NH+4-N采用纳氏试剂光度法测定。

  2结果与讨论

  2.1改性时间对催化剂担载量的影响

  电极表面催化剂担载量是影响电极性能的直接因素,而化学改性将影响电极吸附催化剂的担载量(如表2所示)。碳毡经过HNO3化学氧化处理不同时间后,其质量均出现一定程度的减少,且随着处理时间的增加,单位质量碳毡减少量也逐步增加,同时,单位质量碳毡所吸附催化剂的量也增加。这是由于HNO3的氧化作用使碳毡结构发生了变化,表面沟壑加深加密,粗糙度和表面积增加。同时碳毡表面的H+易被催化剂Fe3+取代,也有利于阴极催化剂的吸附。

  2.2化学改性时间对电导率的影响

  电极电导率是表征电极性能的重要参数之一。考察了碳毡空气阴极化学改性时间对其电导率的影响,

  经改性后碳毡空气阴极的电导率明显提高,且随着处理时间的增加,电导率升高,当化学改性时间达到6h后,电导率趋于稳定。

  这是因为碳毡具有石墨层状结构,层与层之间主要是以范德华力相结合,故层间较易引入其他分子、原子或离子而形成层间化合物。应用HNO3处理碳毡时,HNO3分子嵌入层间,同时吸引石墨电子,使其内部空穴增多,因此大大提高了碳毡的电导率。当碳毡层间嵌入的HNO3分子达到饱和时,将不再影响碳毡的电导率。

  2.3改性时间对MFC电化学性能的影响

  2.3.1对产电性能的影响

  分别选取经HNO3氧化0、2、4、6、8、10h的碳毡制备碳毡空气阴极,并以石墨棒为阳极,垃圾渗滤液为燃料构建MFC,进行产电试验。极化曲线斜率和功率密度是表征MFC产电性能的两个重要参数,因此,通过测定输出电压和电流等参数,分别得到极化曲线和功率密度曲线。整个试验过程保持进水流量为120mL/h,反应温度为32℃。经HNO3改性的碳毡空气阴极MFC的极化都经历了活化极化、欧姆极化和浓度极化三个阶段。随着HNO3改性时间的延长,活化极化、欧姆极化和浓度极化损耗逐渐减小,电池的极化曲线斜率逐渐减小,即表观内阻逐渐降低;当改性时间为6h时,极化曲线斜率达到最小,表明此时表观内阻最小(358Ω)。之后,随改性时间的增加,极化曲线斜率增大,即表观内阻增大。

  随着处理时间的增加,电池的功率密度同样经历了一个先增高再降低的过程,与图2的规律基本一致。其中当处理时间为6h时,电池的产电性能最好,最大功率密度达到6265.67mW/m3,较未经HNO3处理的MFC的最大功率密度(1838.46mW/m3)增大了2.4倍。由此可知,通过HNO3化学氧化改性碳毡空气阴极是改善MFC产电性能的有效方式之一。

  2.3.2对CV曲线的影响

  循环伏安法(CV)是表征MFC放电容量的重要方法之一。化学改性碳毡空气阴极MFC的CV曲线如图4所示。其中,扫描速度为50mV/s,扫描范围为-1~1V。扫描曲线以下的积分面积代表了电池的放电容量。由此可知,随着处理时间的增加,放电容量先增加后减小,化学氧化时间为6h时,构建的MFC放电容量最大,即MFC性能最好。综上所述,HNO3化学氧化碳毡空气阴极的最佳时间为6h。

  2.4MFC的产电除污稳定性

  2.4.1产电性能稳定性

  对经HNO3化学氧化处理6h的碳毡空气阴极MFC进行了CV测试,共进行了21次循环扫描,结果表明:随着循环次数的增加,曲线形状几乎没有改变,第1、6、11、16、21次的循环伏安曲线基本重合,面积近乎恒定,即放电容量几乎没有变化,说明电池性能比较稳定,能够长期稳定运行。

  在其他条件不变的情况下,采用经HNO3氧化6h的碳毡作为阴极,保持进水流量为120mL/h,外接1000Ω电阻持续运行14d,每天记录输出电压。

  在最初的3d内,输出电压从62mV增加到483mV,第4天达到最大为492mV,接下来的一周则稳定在470mV左右。随着运行时间的增加,电压略有下降,这可能是阳极室溶液的不断流动,冲刷阳极,带出一定量产电菌同时增加了电池的内阻所致,但总体上电池的运行比较稳定。

  2.4.2除污性能稳定性

  采用经HNO3化学氧化6h的碳毡作为阴极、石墨棒作为阳极、外接1000Ω电阻的MFC,以连续流方式处理垃圾渗滤液。试验过程中原水COD为(2376±200)mg/L,NH+4-N为(151±10)mg/L,保持进水流量为120mL/h、温度为32℃,反应初期(1~5d),出水COD浓度急剧下降,之后出水COD浓度逐渐趋于稳定。

  COD由初始的(2376±200)mg/L降到(238±15)mg/L,去除率达到89.9%~91.2%,高于谢珊等采用两瓶型MFC处理垃圾渗滤液对COD的去除率(78.3%)。而氨氮则由初始的(151±10)mg/L降到(86±5)mg/L,去除率达到39.3%~46.8%。去除的氨氮中部分以NH+4形式随水流进入阴极室,在阴极室扩散到空气中或转化为其他形式的氮,部分在阳极室作为电子供体被氧化。He等的研究也证实了氨氮可以作为MFC的燃料。

  3结论

  ①碳毡空气阴极吸附的催化剂量随着HNO3化学氧化碳毡时间的增加而增加,但是过量的催化剂不但不能促进反应,反而会增加电池内阻从而降低电池产电性能。碳毡空气阴极电导率随着HNO3化学氧化碳毡时间的增加而增加,并逐渐趋于稳定。

  ②随着HNO3化学氧化碳毡时间的增加,碳毡空气阴极MFC的功率密度、放电容量呈现先升高后降低的趋势,而极化曲线斜率呈现先降低后升高的趋势。

  ③HNO3化学氧化碳毡的最佳时间为6h。阴极改性6h后电池产电性能较稳定,最大功率密度比未改性增大2.4倍,达到了6265.67mW/m3,内阻降低到358Ω。

  ④阴极改性6h后的MFC处理垃圾渗滤液的性能稳定。当进水COD为(2376±200)mg/L、NH+4-N为(151±10)mg/L时,对两者的去除率分别为(89.9%~91.2%)和(39.3%~46.8%)。

  参考文献:

  [1]布鲁斯·洛根。微生物燃料电池[M].北京:化学工业出版社,2009.

  [2]FomeroJJ,RosenbaumM,CottaMA,etal.Microbialfuelcellperformancewithapressurizedcathodechamber[J].EnvironSciTechnol,2008,42(22):8578-8584.

  [3]李明,邵林广,梁鹏,等。集电方式对填料型微生物燃料电池性能的影响[J].中国给水排水,2013,29(9):24-28.
  大学化学毕业论文篇2
  浅谈化学分子力学对建筑建材选用的影响

  引言

  化学的应用给人类文明带来了翻天覆地的变化,在建筑领域,基于化学基础上的新型建筑建材的开发和利用提高了建筑的质量及建筑的安全性、稳定性、美观性等,是现代建筑研究的重要话题。此外,随着地球资源的日益紧张,环境污染的日益严峻,现代建材的研究和应用更为人们所重视,基于化学分子力学对建筑建材的选择和应用途径也日趋广泛。

  1 建筑建材的选择和应用

  1.1 现代建筑建材选择和应用的现状

  伴随着人类文明的发展,建筑建材的生产工艺日益改进,生产技术的现代化,实现了建筑建材生产的智能化、自动化,各类建筑材料在科技发展的影响下不断优化。例如,混凝土的应用,它不仅是一种建筑材料,更具有装饰等作用。如利用混凝土砌块装饰建筑物墙壁,不但具有一定的美观性,还具有保温、隔热等效果。在高分子化学建材应用上,国外的发展要优于国内,例如塑料地板、高分子防水卷材等高分子化学建材最早出现与国际市场,被一些发达国家广泛应用。当前,建筑建材的选择和应用趋于高科技、多功能化,人们对建筑建材的性能、装饰效果、环保作用等有了更高要求。例如,涂料的选择,功能多、污染小、性能高、装饰效果强的材料更受欢迎。总之,人们对建筑建材的选择已由传统的实用性,转向了性价比高、性能好、低碳环保、功能多等多元方向。

  1.2 新型化学建筑材料

  新型化学建筑建材能赋予建筑新功能,在节约能源、优化环境等方面也有突出表现。例如建筑物墙体,可选择非粘土砖、建筑墙体板材、钢结构、玻璃结构等,其性能明显优于传统墙体。如玻璃结构,透光性好、装饰性强,给人以时尚、美观、大气之感。同时,新型化学建筑建材的多样性,使其具备更广泛的功能。例如塑料,新型塑料门窗,不仅美观、轻便、易安装,还具有很好的隔热性、耐腐性等; 又如新型的塑料管材,不但克服可传统管材的易腐蚀、易生锈、易老化等缺点,还具质轻、易安装、无污染等特点,极适合现代建筑环境; 再如塑料地板,节省原料,运输、施工方便,能带给人更好的舒适,具有良好的装饰效果好,是现代建筑建材的“新宠”。此外,混凝土、涂料等,在化学发展的影响下也具有更多、更广泛的用途,例如涂料的防水、防火、防毒、杀虫、隔音、保温等作用。

  1.3 建筑建材的选择和应用原则

  建筑建材的选择首先要满足应用需求,确保建筑建材选择的应用性能,确保其应用方便、应用安全和应用效果。其次,考虑建筑建材的美观性,建筑不是把好的东西堆积起来,而是一种艺术的创造与实践。

  再次,充分考虑建筑建材的性价比,确保建筑工程的综合效益。在选择建筑建材时,先对建筑建材的特点、性能进行充分的了解,结合建筑需求,科学的选择适当的建筑建材。再对建筑建材的使用环境、使用目标进行综合的分析和研究,确保建筑建材应用的效果和性能,提高建筑物的功能性、美观性。最后,要全面认知建筑建材的应用工艺,确保建筑建材性能的发挥。例如混凝土,不但要了解各种混凝土的特点、配置比例等,还要重视其混合工艺,确保混凝土能到达理想的建筑效果。因此,建筑建材的选择是需要非常慎重的,而且需要遵循必要的应用原则。

  2 化学分子力学对建筑建材的选择和应用的影响

  新型建筑建材种类繁多、功能齐全。例如涂料,有有机水性涂料、溶剂类涂料等,在应用上也有较大区别。新型涂料应用化学知识,使涂料具有低污染、高性能、隔热、防火等多种功能,在材料选择时,要充分考虑建筑建材的应用目的,以达到工程施工的最大效益。又如保温隔热材料,现在常用的有玻璃棉、泡沫塑料等,这些材料的选择和应用与化学分子力学息息相关。以混凝土为例,要选择高性能的混凝土,首先,要了解混凝土的特点,它是一种由水泥、砂石、水、胶凝材料等按一定比例混合而成的复合材料。在材料的选择与应用中,必须认清其复合材料性质和各种混合比例,同时掌握混凝土的搅拌、成型、养护等等。

  其次,在混凝土基本特点基础上,科学认知混凝土的集中搅拌特点,科学搭配各种材料比例,确保建筑建材的工作性、效益性和性价比。再次,在实践中结合理论科学的进行建筑建材的选择和应用。如通常情况下,建筑中会使用硅酸盐水泥,在该类建筑建材的选择上,不能单方面的考虑某一方面,要综合考虑,全面了解、可选选择。例如,在配置C40 以下的流态混泥土时,选择 42. 5Mpa 普硅水泥就不太合适,应结合应用需求,选择 32. 5Mpa 普硅水泥,避免选择的盲目性带来施工的不便。

  此外,混凝土的选择要科学的利用化学知识,如相同标号的混凝土,要选择强度系数大,确保混凝土的耐久性; 相同强度的混凝土,则要选择需水量小的,降低水泥用量,确保水灰比例的科学性。同时,注重季节、气候等对于建筑建材化学性能的影响,如在混凝土配置中选择水泥,如在冬季施工则易采用 R 型硅酸盐水泥,搭配合适的掺料、外加剂等,确保混凝土性能。总之,化学丰富了现代建筑建材市场,为建筑提供了更多的选材机遇,而新型的建筑建材的使用一定要避开盲目性、跟风性,应在建筑目的的指导下,结合建筑建材性能,利用化学分子力学等知识,科学的、适当的对其进行选择和应用,以提高建筑建材的应用效果和应用价值。化学的分子力学,在建筑建材中应用非常广泛,基于建筑建材的化学分子力学应用,可以将建材的使用效率和使用效果做到最佳。总之,要充分利用化学分子力学的原理,在建筑建材中实现广泛的推广性使用,逐步加强对于化学原理的实际应用,从而达到推动行业发展的目的。

  3 结语

  高科技带来了建筑建材的高性能、多功能及轻便、美观等等。如玻璃材料钢化、夹丝、夹层等工艺不但提高了玻璃的安全性、抗压性,还对玻璃的隔音性、保温性等有很大的优化作用。随着化学工业的发展,越多的不可能变为可能,玻璃墙、塑料地板等,不断的丰富人类的建筑需求,提升建筑品味,使城市建设的风景更加多姿多彩。

  参考文献

  [1]辉宝琨。压力输送式预拌特种干混砂浆生产工艺选择[J].广东建材,2013( 9) .

  [2]崔东霞,费治华,姚海婷等,粉煤灰与化学外加剂对高性能混凝土开裂性能的影响[J].混凝土与水泥制品,2011( 4) .
猜你喜欢:
1. 大学毕业论文范文化学

2. 化学毕业论文精选范文

3. 大学化学论文范文

4. 化学毕业论文范文参考

5. 化学本科毕业论文范文

急求一篇毕业论文<<养猪场高浓度废水处理>>

  集约化养猪场废水处理技术及应用

  养猪场废水是养殖业废弃物中最典型的一类污
  染物,主要包括猪尿、部分猪粪和猪舍冲洗水,属高浓
  度有机废水。由于养猪业属传统产业,用于废水处理
  的资金有限,所以养猪场废水处理各项指标要完全达
  标难度很大。迄今为止,国内外对养猪场废水处理已
  进行了大量研究和工程应用实践。文章分析总结了
  近3年来集约化养猪场废水处理的工艺研究和工程
  应用等方面的情况,现报道如下。
  1 猪场废水处理工艺
  目前,养猪场废水处理研究的工艺方法有物化处
  理、自然生态处理、好氧处理、厌氧处理等,实际工程
  应用中常常是这些处理技术的组合工艺。
  猪场废水悬浮物质浓度很高,悬浮物质是COD
  的主要来源之一,过高的悬浮物质将会影响后续生化
  处理的效果,所以在养猪场废水进入生化处理系统之
  前进行固液分离处理是必要的。固液分离机有振动
  筛、回转筛、水力筛和挤压式分离机等,其中挤压式分
  离机可以连续运行,效率较高。德国研制的FAN -
  SEPATOR的挤压式离心分离机,具有很好的分离效
  果,在我国的应用表明,悬浮物的去除效率较高,分离
  出来的泥渣含水率为80%左右。
  猪场废水氮磷含量很高, 采用磷酸镁铵
  (MgNH4 PO4 ·6H2O,俗称鸟粪石)化学沉淀法处理,
  使得废水中的氨氮转化为缓释肥中的营养元素,解决
  了氮的回收和氨的污染两大问题,同时达到较好的预
  处理效果,为后续的生化处理创造了条件。但该方法
  必须考虑废水中N、P、Mg的平衡问题,所以廉价的添
  加剂是化学沉淀法能否实际应用的关键。Lee S I等
  人利用海水或制盐工业中的废盐卤作为Mg2 + 添加
  剂,沉淀速度快,与添加MgCl2 作镁源对磷有等同的
  去除效果,是一种处理成本低廉的方法,但去除氨的
  效果不如添加MgCl2。
  自然生态法是运用生态学原理与工程学方法相
  结合的技术,应用较多的是稳定塘工艺和人工湿地系
  统。PoachM E[ 1 ]为了研究有机负荷和去除效果的关
  系,设计了6个并联的湿地- 池塘- 湿地处理系统,
  通过分别进水控制各处理单元的有机负荷,试验研究
  表明,最佳TSS、COD、TN、TP去除率分别为35% ~
  51%、30% ~50%、37% ~51%、13% ~26%,夏季处
  理效果明显优于冬季,处理效果受温度和降雨的影响
  较大。自然生态法处理建设费用较低,运行成本低
  廉,但受自然条件的影响较大,适宜于土地资源丰富
  的地区,具有良好的应用前景。
  好氧生化法主要有活性污泥法和生物接触氧化法。
  成文[2]采用接触氧化水解(酸化) -两段接触氧化-混凝
  工艺处理猪场废水,水解对CODcr有较高的去除率,稳定
  在60%~70%;接触氧化对COD的去除效果在50%左右。
  整个工艺对氨氮去除效果较好,出水氨氮在13~15 mg/
  L, CODcr在200~250 mg/L,经过聚合氯化铝混凝沉
  淀后,最终出水CODcr稳定在100 mg/L 以下,出水
  达到污水综合排放一级标准(GB8978 - 88) 。但该工
  艺程序复杂,占地面积大,对氨氮的去除效果还有待
  进一步研究。邓良伟[ 3 ]研究水解- SBR处理猪场废
  水,大大简化了处理工艺, 水解去除了大部分的
  COD, TP去除率达到55% ,但对氨氮去除效果不好;
  SBR对氨氮有较好的去除效果, TN的去除率为74.
  1% ,氨氮的去除率在97%以上,但最终出水的COD
  残留量较大。猪场废水的高氨氮常常导致生化处理
  过程中碳源不够、C /N过低,从而影响总氮的去除效
  果,如果采用外加碳源则会增加处理成本。Ju -
  Hyun Kim等人利用序批式反应器( SBR) 实时控制
  工艺,采取补充源水作外加碳源的方式处理猪场废
  水,通过ORP以及pH值实时控制缺氧段、好氧段,
  TOC和总氮的去除率分别在94%和96%以上,能够
  有效除去TOC和TN,但对TP的去除效果不佳。猪
  场废水氨氮浓度高,对直接进行生化处理可能会产生
  影响,因此在生化处理前进行化学脱氮以减轻后续生
  化处理的难度,是目前猪场废水处理的一个新途径,
  于金莲等人提出了加石灰乳混凝沉淀- 脱氨- 好氧
  生化的联合处理工艺,在生化处理前进行混凝沉淀和
  脱氨预处理,一方面去除了大部分悬浮物和部分难降
  解有机物;另一方面提高pH值,脱除大部分氨氮,使
  后续生化处理降低能耗、容易达标。
  自然生态法和好氧处理都有各自的不足,自然生
  态法处理需要大面积的处理场地;好氧处理能耗大,
  去除污染物不完全。
  对于高浓度有机废水的处理,厌氧技术是必然选择
  之一。目前较常用也比较有效的处理方法是厌氧或
  厌氧+好氧后续处理工艺,研制高效厌氧反应器是猪
  场废水处理的关键。邓良伟等人利用内循环厌氧反
  应器( IC)处理猪场废水,水力停留时间0. 8~2. 0 d,
  COD 负荷3~7 kg / (m3 ·d) ,经过半年的运行,结果
  表明, COD 平均去除率为80. 3% ,耐冲击负荷好,
  BOD5 平均去除率为95. 8% , SS去除率为78. 5%。
  厌氧反应器中,部分有机氮转化为氨态氮,使得出水
  氨氮浓度比进水高2. 82% ,反应器对总氮、总磷的去
  除还需进一步的试验研究。一般而言,单纯使用厌氧
  工艺,出水有机污染物还很高,必须采用后续处理才
  能达到排放标准。考虑到SBR 对氨氮有较好的去
  除,杨朝晖等人提出沉淀- UASB - SBR工艺处理猪
  场废水,经厌氧消化可除去大部分的有机质,在SBR
  工艺中的曝气过程分为2个阶段,中间添置闲置阶
  段,既防止产生过多泡沫,又增强反消化作用。经过
  稳定运行, UASB 反应器COD 有机负荷稳定在
  8~10 kg/ (m3 ·d) , COD去除率达到70%左右,BOD5
  去除率80%左右,经SBR 处理可去除氨氮95% ~
  98% ,最终出水CODcr为186 ~412 mg/L, BOD5 为
  78~146 mg/L,氨氮为20 ~60 mg/L,出水仍残留部
  分生化处理难以去除的难降解有机物,这是因为厌氧
  消化较完全,消化液COD较低,而氨氮很高,导致后
  续生化处理碳源不足,影响了后续的处理效果。杨朝
  晖等人又研究水解酸化+好氧处理猪场废水工艺,采
  用水解酸化反应器(ASBR)进行厌氧处理,保持厌氧
  消化处理控制在水解、酸化阶段,使出水C /N 较高,
  保证了后续SBR的生化效果。经过最终混凝处理,
  COD去除率为99. 6% , BOD5 去除率为99. 8%, TN
  为88. 3% ,氨氮为99. 8% ,出水达到污水综合排放二
  级标准(GB8978 - 96) 。但水解酸化反应器COD 的
  容积负荷较低仅为2. 3 kg/ (m3 ·d) ,还需进一步研
  究提高其负荷。
  猪场废水中还存在大量细菌,如不经处理可能将
  大肠杆菌带入地表水和地下水,危害人类健康, James
  A Entry等人提出用水溶性的阴离子聚丙烯酰胺
  ( PAM ) 处理猪场废水, 基建投资低、应用快捷。
  PAM、PAM与CaO复配和PAM与Al2 ( SO4 ) 4 复配能
  够使总的大肠杆菌和排泄物大肠杆菌减少30% ~
  50%,降低源水中的总磷、正磷酸根以及氨氮。正确
  的应用PAM及其复配物可以减少进入地表水和地下
  水中的污染物数量,保护水质。
  2 猪场废水处理技术应用情况
  目前,应用到实际工程上的猪场废水处理工艺有
  自然生态法处理、好氧处理、厌氧+好氧处理等。潘
  涌璋等人利用高级综合稳定塘处理猪场废水,经过稳
  定运行, 出水达到畜禽养殖业污染物排放标准
  (GB18596 - 2001)的要求,氨氮在60 mg/L 左右,总
  氮没有考虑,总停留时间在20 d以上,占地面积大,
  适合于土地资源较丰富的亚热带山区。由于凤眼莲
  对水体中的污染物质和营养物质有较好的吸收,

  ]考虑用凤眼莲处理猪场废水,工艺流程如下:
  该凤眼莲生化处理系统对COD 的______去除率为
  43%~69% ,对总氮的去除率为55% ~72% ,对氮元
  素的吸收量很大,同时对总磷、挥发酚等污染物都有
  较好的去除效果。该处理系统的停留时间为30 d,日
  设计流量为600 m3 ,但需要较大的处理场地,且受气
  候条件影响很大,这都限制了该工艺的应用。目前,
  厌氧+好氧处理工艺应用较为广泛。胡海良等人将
  环形生活污水高效净化沼气装置应用到猪场废水的
  处理上,废水经过高效净化沼气装置后进入接触氧化
  池,进行自然曝气去除CODcr和BOD5 , 该工艺对
  COD、BOD的去除率达到90%以上,但出水氨氮为
  100~200 mg/L,去除效果不好。邓良伟等人进行了
  厌氧- 加源水- 间隙曝气(Anarwia)的研究,此工艺
  是厌氧+ SBR工艺的改良,因为厌氧消化较完全,导
  致好氧处理中C /N较低,影响后续消化效果,如果添
  加外源碳源或外源有机物提高C /N,运行成本随之增
  高,故提出了部分猪场废水进入厌氧池进行厌氧处
  理,另一部分进入沉淀配水池与厌氧出水混合后再采
  用间歇曝气的序批式反应器( SBR)处理,经过一年的
  生产性试验,该改良工艺对COD、氨氮、TN的去除率
  分别为93. 1% ~97. 4%、98. 2% ~99. 5%、93. 1% ,
  但最终剩余难降解的有机质还需要进一步物化处理
  才能达到排放标准。
  3 其他相关处理技术
  猪场废水处理还有其他的相关处理技术,如从养
  猪场生产过程的环境管理上考虑,在源头改进工艺减
  少排污,减轻污染。采用干清粪工艺取代水冲式清粪
  就是一种较好的方法,干清粪工艺是将粪便单独清
  出,不与尿、污水混合排出,这种工艺固态粪便含水量
  低,粪中营养成分损失小,肥料价值高,便于堆肥和其
  他方式处理,还可以节约用水,减少废水和污染物排
  放量,易于净化处理,是目前理想的清粪工艺。以万
  头规模化养猪场为例,将现有的水冲粪工艺改为干清
  粪工艺,每年可减少污水排放5. 5万吨,既节约了用
  水,又减少了污染。王德刚等人提出“零污染”干式
  法养猪,即在栏舍内铺上敷料,将猪的粪尿吸附混合,
  生物处理后进行二次发酵,并经工艺处理合成生态有
  机肥,对周围环境达到“零污染”的排放效果,同时降
  低猪群疾病发生率,加快生长速度,提高饲养效益以
  达到较好的经济效益、环境效益。
  目前很多学者提出了不少猪场废水处理的新方法,
  但都只停留在试验室小试阶段,真正应用到生产中还需
  要进一步的研究试验。邓良伟等人利用秸秆作为载体
  进行堆肥,在堆肥发酵过程中,产生的生物热蒸发浓缩
  “猪场废水”,达到处理猪场废水和生产有机肥的目的。
  以秸秆为载体用猪粪水及其厌氧消化液进行堆肥处理,
  其吸水比可达1∶5. 94~1∶6. 65,堆肥含水率基本在
  70%以上,超过一般堆肥过程含水率( 50% ~60% ) ,
  且能保持较长的高温期,说明以秸秆为载体吸收猪粪
  水在高温条件下进行堆肥的工艺路线是可行的。在
  堆肥过程中,氮、磷、钾是一个累加的过程,所获得的
  堆肥是一种肥效较高的有机肥,但该工艺消耗猪场生
  产废水有限,仅限于小规模的污水处理,对于大规模
  的猪场废水处理还需研究探讨。
  4 结论与展望
  根据以上分析,解决猪场废弃物污染问题,首先
  应当加强猪场环境管理,从源头污水减量化考虑,采
  用“零污染”干式养猪,减少用水量,基本实现零污染
  物排放;或采用干清的方式代替水冲,既不会流失营
  养物质,又可以大大减少废水的排放。养猪业属于传
  统产业,猪场废水处理必须寻求经济可行、处理效果
  好的方法。开发经济有效的处理工艺是目前猪场废
  水处理的重点。高效厌氧反应器的研制、氮磷污染物
  的去除、沼气发电技术及无害化资源能源的回收是今
  后猪场废水处理的重要研究方向。
  参考文献:
  [ 1 ] POACH M E. SwineWastewater treatment bymarsh - pond - marsh
  constructed wetlands under varying nitrogen loads [ J ]. Ecological
  Engineering, 2004 (23) : 165 - 175.
  [ 2 ] 成文. 养猪场废水处理工艺研究[ J ]. 环境污染与防治, 2000, 22
  (1) : 24 - 27.
  [ 3 ] 邓良伟. 水解- SBR工艺处理规模化猪场粪污研究[ J ]. 中国给
  水排水, 2001, 17 (3) : 8 - 11.
  [ 4 ] 余远松. 凤眼莲水生生态系统处理大型养猪场废水的应用研究
  [ J ]. 农业环境保护, 2000, 19 (5) : 301 - 303.

  畜禽粪便用于生产饲料的方法

  随着我国畜牧业的蓬勃发展,生产规模化、集约
  化趋势越来越明显,在给人类提供丰富的畜禽产品同
  时,由于规模化养殖场的畜禽粪便和污水多不处理直
  接用作肥料,某些地区甚至直接排入江河,造成严重
  的环境污染。其实,畜禽粪便并非完全是不可利用的
  废物,粪便中有一部分营养物质能被动物直接再吸
  收,还有一部分物质可通过处理再被动物吸收。现在
  被各国所接受和使用的主要处理方法有以下几种。
  1 干燥法
  一般只适用于营养物质含量较高的鸡粪。
  1. 1 自然干燥
  将新鲜粪便单独或掺入一定比例糠麸拌匀后,摊
  在水泥地面或塑料布上,随时翻动,自然风干、晒干,
  然后粉碎,掺到其他饲料中饲喂。此法成本较低,操
  作简单,但受天气影响大,晒干时造成的环境污染大。
  1. 2 加温干燥
  干燥快速,可达到灭菌、灭杂草籽和去臭的目的,
  但是经处理后的粪便养分损失较大,成本较高。
  1. 2. 1 低温干燥 将畜禽粪便运到装有机械搅拌和
  气体蒸发的干燥车间或干燥机、隧道窖中,在70 ~
  500 ℃的温度下烘干,使畜禽粪便含水量降到13%以
  下,再储藏和利用。
  1. 2. 2 高温快速干燥 将含水量为70% ~75%的
  畜禽粪便通过高温快速干燥机,在不停旋转的干燥机
  中,畜禽粪便通过间接加热( 500 ~700 ℃) , 12 s左
  右,含水量即可降至13%以下。
  1. 3 微波处理干燥

毕业论文主要内容概述怎么写

毕业论文主要内容概述怎么写

毕业论文主要内容概述怎么写,大学生活又即将即将结束,我们在毕业前夕的时候,是需要进行论文答辩的,可是对于毕业论文都不会写了,别说毕业答辩,我和大家一起来看看毕业论文主要内容概述怎么写。

1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。

2、论文摘要和关键词。

论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。

关键词 是能反映论文主旨最关键的词句,一般3-5个。

3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。

4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。

5、正文。是毕业论文的主体。

6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。

7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。

参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。

参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。

8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅助性数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。

好氧颗粒活性污泥的快速驯化与培养

生命科学与技术学院 生工090 班 XXX 学号

指导教师:(教授)

1、课题来源及项目名称

自主研发项目

2、课题立题意义与目的

近年来,随着工业化的推进,水污染和水体富营养化问题日益严重。而传统的活性污泥污水处理方法存在着工艺路线复杂、占地面积大、剩余污泥产量大等缺陷。好氧颗粒污泥结构紧凑,因而沉降性能优异,无需沉淀池以及混合液和污泥的回流,这简化了废水的处理工艺流程,大大节省了基建费用和运行费用。此外,其微生物相丰富,在降解有机碳的同时可以脱氮除磷,还能承受较高的COD负荷和有毒物质的的冲击负荷。这样,作为一种可持续发展的污水处理技术,好氧颗粒污泥废水生物处理方法具备了占地面积小、操作简单、出水水质优良等优点。好氧颗粒污泥技术作为一种新型的'废水生物处理形式,在城市污水和工业废水处理中具有非常广阔的应用前景。

3、本课题的主要研究内容

(1)好氧颗粒污泥的驯化与培养 (2)好氧颗粒污泥的储存及活性恢复 (3)好氧颗粒污泥的耐负荷波动性研究

4、本课题的研究过程

本课题是在前人探究得到的好氧颗粒污泥培养条件的基础上,设计与搭建特定的反应器来驯化培养颗粒,同时分析颗粒污泥浓度以及沉降性能的变化,考察颗粒对于COD、氨氮等废水污染指标的去除效果,试图在短期内驯化培养得到好氧颗粒污泥。

此外,还针对颗粒污泥的储存方法和活性恢复以及培养得到颗粒的耐负荷波动性进行了探索。分别考察储存一段时间之后以及在人为负荷波动下颗粒污泥的污泥特性以及去除污染物能力的情况。

5、实验结论

本论文以COD为1500mg/L的模拟废水为底物,在SBAR反应器中,以普通絮状活性污泥为接种污泥,循环周期为4h,在较强水力剪切力的作用下,通过不断缩短污泥沉降时间,成功培养得到了好氧颗粒污泥。该颗粒表面光滑、轮廓清晰、沉降性能良好,呈浅黄色。其粒径主要分布在0.5-2mm,颗粒强度为99.88%,湿密度为1.048g/cm3,沉降速度为62.1m/h,以上数据均远远优于传统活性污泥。对于模拟废水的COD和氨氮都表现出了优异的去除能力,去除率均可达到90%以上,出水可以达到国家一级排放标准。

分别在冰箱内保存和在室温下储存一个月后,颗粒的物理性质均有一定程度的下降,但保存后颗粒的性质还保持在较好的水平。这说明,冰箱内和室温下的保存条件对颗粒物理性质的影响不大,且仅就物理性质而言,冰箱内保存的效果比室温保存的效果好;而在恢复阶段,仅进行了第六个批次,除氨氮外,其他污染物的去除就都可以接近甚至达到稳定期的情况;对比两种储存方法,除了颗粒对COD和TP的处理效果二者比较更接近,其他数据都表明在冰箱内的储存效果优于室温下。但室温保存能耗较低。两种方法各有利弊。

实验室测定氨氮最简方法

最简方法:
  ①水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL。
  采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水扬酸—
  次氯酸盐比色法时,改用50mL 0.01mol·L-1
  硫酸溶液为吸收液。
  ②标准曲线的绘制:吸取0、0.50、1.00、3.00、5.00、7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾钠溶液,混匀。加1.5mL纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度。
  由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。
  ③水样的测定:
  a.分取适量经絮凝沉淀预处理后的水样(使氨氮不超过0.1mg),加入50mL比色管中,稀释至标线,加0.1mL酒石酸钾钠溶液。以下同标准曲线的绘制。
  b.分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol·L-1氢氧化钠溶液,以中和硼酸,稀释至标线。加1.5mL纳氏试剂,混匀。放置10min后,同标准曲线步骤测量吸光度。
  ④空白试验:以无氨水代替水样,做全程序空白测定。

求“生物能源的可持续发展”毕业论文 200分

  你好
  综合删改一下就行了
  先去这里看看
  
  再与下面结合一下
  希望对你有帮助

  对于生物能源,我们能做什么?
  自人类迈进二十一世纪以来,开发新能源成为全世界解决能源问题的共同出路。与化石燃料相比,新能源具有可再生、对环境友好等特点,更符合人类可持续发展的目标。其中,太阳能、风能、地热能、水能和潮汐能,是开发较早的新能源,已在实际生产生活中发挥了重要作用。曾一度被人们看好的核能,有着极高的能量值,可是其高额的研究经费和潜在的巨大危害,令世界大多数国家望而却步。而作为新能源中“排行”靠后的生物能源,却在最近几年内忽然人气锐增,势如破竹,被看作是“新能源家族中可实现度最高的未来能源”。那么究竟何谓生物能源呢,它又有哪些优势呢?
  生物能源主要是指在生物体(尤为植物)内,经一系列化学反应所释放出的能源。其实,世界上90%的能源消耗来自植物光合作用所积累的能源,比如地球演变的历史上所积累的矿物能源(煤、石油、天然气,因为它们是堆积在一起的有机物经地质作用形成的),但总有一天矿物能源会消耗殆尽。能源危机威胁着人类的发展。所以发展可再生能源,尤其是利用植物光合产物转化成便于利用的能源,引起了全球的广泛关注。人类利用生物能源,实质是将植物通过光合作用固定的碳的能量释放出来。它的好处在于: 一、中性的碳循环,即无温室效应;二、生物再生的能源有助于克服化石能源供应的萎缩。并且,发展生物能源不仅可以解决资源、环境的问题,还可以带动农业产业的发展,实现环境与经济效应的双赢。
  我国是粮食大国,同样也是资源匮乏的国家,发展生物能源十分符合我国国情。对此农业部成立了生物质工程中心,目的是加强农业生物质技术研究,在生物能源的开发等方面取得突出进展,并使我国在未来达到国际先进水平。与此同时,国内的众多科研院所也纷纷加入研发行列,试图开拓出自己的道路。巴西、美国等利用玉米淀粉转化成酒精已经取得很大成效。但是就世界上大多数国家和地区而言,不可以用有限的耕地去发展新的能源产业。所以利用荒地种植野生、半野生的能源植物已是大家认同的发展方向。另外,与某些国家采用把玉米、甘蔗转化成乙醇,或是从油料作物中提取生物柴油不同,我们国家把目光放在了更为高效的纤维素上。 中学生科技网 ]
  纤维素是植物的木质部分,是地球数量最大的植物积累的产物,植物从太阳获取的绝大部分能量也都储存于其中。所以人类一旦掌握了释放出存储在纤维素中能量的技术,能源危机便可迎刃而解。在北京市科技俱乐部组织的活动中,我有幸与北京大学生命学院的老师交谈,并聆听纤维素技术。我了解到纤维素的降解和转化是十分关键的步骤,也是巨大的难点。纤维素犹如植物坚硬的骨架,因此它远比淀粉类物质难分解。而突破口是找到合适的能高效分解纤维素的酶。在这方面生物又给了我们很好的启示:牛吃的是充满纤维素的草,却能够胜任拉车、耕田的重活。牛胃的反刍作用,其中微生物产生的纤维素酶都是很值得我们去模拟的。我们的课外科技活动就从这里开始,从分离和改良纤维素酶基因开始。而从另一个角度,我们还可以通过提高植物体内的纤维素含量,来提高转化效率,降低成本。天然的甜高梁、柳枝稷是目前已知的高纤维素含量植物,而通过对它们进行转基因处理,我们能从单位植株中获得更多的纤维素。
  生物能源的开发与生物技术、基因工程密不可分。北大的老师向我讲述了基因工程在培育能源植物中的作用。其中包括促进光能产物的积累,促进采收后纤维素的降解,以及要使能源植物在缺水的环境中生长,要使这些植物耐受低温、增加一年中光能转化的时间。这些都是可以通过基因操作技术来实现。这些工作正是我们这一代人明天要做的事情。今天,我们要多学习这方面的高新技术知识。
  作为当代的青少年,我们需要放眼世界,密切关注生态环境和资源问题。过去,我们曾开展节水宣传、参与植树造林,为美化环境做出贡献。而现在我们要身体力行,加入到开发、宣传新能源的行列中。比如,我们可以在实验田里学农劳动,负责原料作物的种植和养护;有组织地进行野外考察,研究各种作物的成分及价值,提供给有关部门。或者科学合理地运用已有的知识,为增强农作物的环境适应性、解决荒漠化问题积极献言献策。我们还可以在学校内做培养微生物、植物的组织培养等实验,提高对生物工程技术的认识水平;加入青少年科技俱乐部,进入科研院所,与导师合作研究相关课题。或者是在学校、社区中宣传生物能源的使用前景…… 总之,有无数活动与创意等待我们去实施。在这个过程中,不但能丰富自己的文化知识,还可以提高科学素养,锻炼能力!其实,我们的力量并不微小。只要我们报有一颗热爱科学的心,将热情与智慧投入其中,就会获得意想不到的收获。而我们的家园,也必将在你我的行动中,变得越来越美丽!

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页