您当前的位置:首页 > 发表论文>论文发表

计量模型毕业论文

2023-02-27 19:14 来源:学术参考网 作者:未知

计量模型毕业论文

计量经济学
期末实验报告

实验名称:大中城市城镇居民人均消费支出与其影响因素的分析
姓 名:
学 号:
班 级:
指导教师:
时 间:

23个城市城镇居民人均消费支出
与其影响因素的分析
一、 经济理论背景
近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。
二、 有关人均消费支出及其影响因素的理论
我们主要从以下几个方面分析我国居民消费支出的影响因素:
①、居民未来支出预期上升,影响了居民即期消费的增长
居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。
②、商品供求结构性矛盾依然突出
从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。
③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长
加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。
④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长
经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。
三、 相关数据收集
相关数据均来源于2006年《中国统计年鉴》:
23个大中城市城镇居民家庭基本情况
地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)
北京 1.6 1.8 1865.1 1633.2 1187.9
天津 1.4 2.0 2010.6 1889.8 939.8
石家庄 1.4 2.0 1061.3 1010.0 722.9
太原 1.3 2.2 1256.9 1159.9 789.5
呼和浩特 1.5 1.9 1354.2 1279.8 772.7
沈阳 1.3 2.1 1148.5 1048.7 812.1
大连 1.6 1.8 1269.8 1133.1 946.5
长春 1.8 1.7 1156.1 1016.1 690.2
哈尔滨 1.4 2.0 992.8 942.5 727.4
上海 1.6 1.9 1884.0 1686.1 1505.3
南京 1.4 2.0 1536.4 1394.0 920.6
杭州 1.5 1.9 1695.0 1464.9 1264.2
宁波 1.5 1.8 1759.4 1543.2 1271.4
合肥 1.6 1.8 1042.5 950.1 686.9
福州 1.7 1.9 1172.5 1059.4 942.8
厦门 1.5 1.9 1631.7 1394.3 998.7
南昌 1.4 1.8 1405.0 1321.1 665.4
济南 1.7 1.7 1491.3 1356.8 1071.4
青岛 1.6 1.8 1495.6 1378.5 1020.7
郑州 1.4 2.1 1012.2 954.2 750.3
武汉 1.5 2.0 1052.5 972.2 853.1
长沙 1.4 2.1 1256.9 1148.9 986.8
广州 1.7 1.8 1898.6 1591.1 1215.1

四、 模型的建立
根据数据,我们建立多元线性回归方程的一般模型为:
其中:
——人均消费支出
——常数项
——回归方程的参数
——平均每户就业人口数
——平均每一就业者负担人口数
——平均每人实际月收入
——人均可支配收入
——随即误差项
五、实验过程
(一)回归模型参数估计
根据数据建立多元线性回归方程:
首先利用Eviews软件对模型进行OLS估计,得样本回归方程。
利用Eviews输出结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:08
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C -1682.180 1311.506 -1.282633 0.2159
X1 564.3490 395.2332 1.427889 0.1704
X2 569.1209 379.7866 1.498528 0.1513
X3 1.552510 0.629371 2.466766 0.0239
X4 -1.180652 0.742107 -1.590947 0.1290
R-squared 0.721234 Mean dependent var 945.2913
Adjusted R-squared 0.659286 S.D. dependent var 224.1711
S.E. of regression 130.8502 Akaike info criterion 12.77564
Sum squared resid 308191.9 Schwarz criterion 13.02249
Log likelihood -141.9199 F-statistic 11.64259
Durbin-Watson stat 2.047936 Prob(F-statistic) 0.000076
根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,
从而初步得到的回归方程为:

Se= (1311.506) (395.2332) (379.7866) (0.629371) (0.742107)
T= (-1.282633) (1.427889) (1.498528) (2.466766) (-1.590947)
F=11.64259 df=18
模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于0.05,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。
(二)处理多重共线性
我们采用逐步回归法对模型的多重共线性进行检验和处理:
X1:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:28
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 153.8238 518.6688 0.296574 0.7697
X1 523.0964 341.4840 1.531833 0.1405
R-squared 0.100508 Mean dependent var 945.2913
Adjusted R-squared 0.057675 S.D. dependent var 224.1711
S.E. of regression 217.6105 Akaike info criterion 13.68623
Sum squared resid 994441.2 Schwarz criterion 13.78497
Log likelihood -155.3917 F-statistic 2.346511
Durbin-Watson stat 1.770750 Prob(F-statistic) 0.140491
X2:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:29
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 1756.641 667.2658 2.632596 0.0156
X2 -424.1146 347.9597 -1.218861 0.2364
R-squared 0.066070 Mean dependent var 945.2913
Adjusted R-squared 0.021597 S.D. dependent var 224.1711
S.E. of regression 221.7371 Akaike info criterion 13.72380
Sum squared resid 1032515. Schwarz criterion 13.82254
Log likelihood -155.8237 F-statistic 1.485623
Durbin-Watson stat 1.887292 Prob(F-statistic) 0.236412
X3:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:29
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 182.8827 137.8342 1.326831 0.1988
X3 0.540400 0.095343 5.667960 0.0000
R-squared 0.604712 Mean dependent var 945.2913
Adjusted R-squared 0.585888 S.D. dependent var 224.1711
S.E. of regression 144.2575 Akaike info criterion 12.86402
Sum squared resid 437014.5 Schwarz criterion 12.96276
Log likelihood -145.9362 F-statistic 32.12577
Durbin-Watson stat 2.064743 Prob(F-statistic) 0.000013
X4:
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:30
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 184.7094 161.8178 1.141465 0.2665
X4 0.596476 0.124231 4.801338 0.0001
R-squared 0.523300 Mean dependent var 945.2913
Adjusted R-squared 0.500600 S.D. dependent var 224.1711
S.E. of regression 158.4178 Akaike info criterion 13.05129
Sum squared resid 527020.1 Schwarz criterion 13.15003
Log likelihood -148.0898 F-statistic 23.05284
Durbin-Watson stat 2.037087 Prob(F-statistic) 0.000096
由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:
X1、X3
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:32
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C -222.8991 345.9081 -0.644388 0.5266
X1 289.8101 227.2070 1.275533 0.2167
X3 0.517213 0.095693 5.404899 0.0000
R-squared 0.634449 Mean dependent var 945.2913
Adjusted R-squared 0.597894 S.D. dependent var 224.1711
S.E. of regression 142.1510 Akaike info criterion 12.87276
Sum squared resid 404138.2 Schwarz criterion 13.02087
Log likelihood -145.0368 F-statistic 17.35596
Durbin-Watson stat 2.032110 Prob(F-statistic) 0.000043
X2、X3
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:33
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 239.5536 531.1435 0.451015 0.6568
X2 -27.00981 244.0392 -0.110678 0.9130
X3 0.536856 0.102783 5.223221 0.0000
R-squared 0.604954 Mean dependent var 945.2913
Adjusted R-squared 0.565449 S.D. dependent var 224.1711
S.E. of regression 147.7747 Akaike info criterion 12.95036
Sum squared resid 436747.0 Schwarz criterion 13.09847
Log likelihood -145.9292 F-statistic 15.31348
Durbin-Watson stat 2.063247 Prob(F-statistic) 0.000093
X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:34
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 331.7015 142.5882 2.326290 0.0306
X3 1.766892 0.553402 3.192782 0.0046
X4 -1.473721 0.656624 -2.244390 0.0363
R-squared 0.684240 Mean dependent var 945.2913
Adjusted R-squared 0.652664 S.D. dependent var 224.1711
S.E. of regression 132.1157 Akaike info criterion 12.72634
Sum squared resid 349091.0 Schwarz criterion 12.87445
Log likelihood -143.3529 F-statistic 21.66965
Durbin-Watson stat 2.111635 Prob(F-statistic) 0.000010
由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。
X1、X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:37
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 193.6693 403.8464 0.479562 0.6370
X1 89.29944 243.6512 0.366505 0.7180
X3 1.652622 0.646003 2.558228 0.0192
X4 -1.345001 0.757634 -1.775265 0.0919
R-squared 0.686457 Mean dependent var 945.2913
Adjusted R-squared 0.636950 S.D. dependent var 224.1711
S.E. of regression 135.0712 Akaike info criterion 12.80625
Sum squared resid 346640.3 Schwarz criterion 13.00373
Log likelihood -143.2719 F-statistic 13.86591
Durbin-Watson stat 2.082104 Prob(F-statistic) 0.000050
X2、X3、X4
Dependent Variable: Y
Method: Least Squares
Date: 12/11/07 Time: 16:38
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 62.60939 489.2088 0.127981 0.8995
X2 134.1557 232.9303 0.575948 0.5714
X3 1.886588 0.600027 3.144175 0.0053
X4 -1.596394 0.701018 -2.277251 0.0345
R-squared 0.689658 Mean dependent var 945.2913
Adjusted R-squared 0.640657 S.D. dependent var 224.1711
S.E. of regression 134.3798 Akaike info criterion 12.79599
Sum squared resid 343100.8 Schwarz criterion 12.99347
Log likelihood -143.1539 F-statistic 14.07429
Durbin-Watson stat 2.143110 Prob(F-statistic) 0.000046
由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于0.05,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:

Se= (142.5882) (0.553402) (0.656624)
T= (2.326290) (3.192782) (-2.244390)
F=21.66965 df=20
(三).异方差性的检验
对模型 进行怀特检验:
White Heteroskedasticity Test:
F-statistic 1.071659 Probability 0.399378
Obs*R-squared 4.423847 Probability 0.351673

Test Equation:
Dependent Variable: RESID^2
Method: Least Squares
Date: 12/11/07 Time: 16:53
Sample: 1 23
Included observations: 23
Variable Coefficient Std. Error t-Statistic Prob.
C 34247.50 128527.9 0.266460 0.7929
X3 247.9623 628.1924 0.394723 0.6977
X3^2 -0.071268 0.187278 -0.380548 0.7080
X4 -333.6779 714.3390 -0.467114 0.6460
X4^2 0.121138 0.229933 0.526841 0.6047
R-squared 0.192341 Mean dependent var 15177.87
Adjusted R-squared 0.012861 S.D. dependent var 23242.54
S.E. of regression 23092.59 Akaike info criterion 23.12207
Sum squared resid 9.60E+09 Schwarz criterion 23.36892
Log likelihood -260.9038 F-statistic 1.071659
Durbin-Watson stat 1.968939 Prob(F-statistic) 0.399378
由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=30.1435,因为 < (5)= 30.1435,所以模型中不存在异方差。
(四).自相关的检验
由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于0.05,D-W值为2.111635,显著性水平 =0.05下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =1.543<D-W=2.111635<4 ,由DW检验决策规则可知,该模型不存在自相关问题。
六、对模型进行分析和解释经济学意义
回归方程的意义为:当平均每人实际月收入不变时,人均可支配收入每增加一个单位,人均消费支出减少1.473721个单位;当人均可支配收入不变时,平均每人实际月收入每增加一个单位,人均消费支出增加1.766892个单位。
七、 就模型所反映的问题给出针对性的政策建议或结论
对于我国人均消费支出的分析中,可以看出我国在过去的几年里经济发展稳健,但是由于种种原因导致我国经济的现状存在一定的问题,如不完善的社会保障制度导致消费结构不合理;过高的居民储蓄存款影响居民消费倾向;消费品生产行业投资方向失误和低效率引起国内市场消费梗阻;保守的消费观念和消费政策的制约;教育支出比重过大影响居民消费倾向 。对此我们国家应该在以下几个方面对居民消费中存在的问题进行对策研究
(一)建立和完善社会保障制度,增强居民消费信心
(二)培育新的消费热点,拓展居民的消费领域
(三)促使商品消费从自我积累型向信用支持型转变
(四)分层次促进居民消费
(五)破解影响消费结构优化的政策制约
(六)化解有效供给不足与产品相对过剩的矛盾

论文要有计量模型,计量模型是什么意思

计量经济模型包括一个或一个以上的随机方程式,它简洁有效地描述、概括某个真实经济系统的数量特征,更深刻地揭示出该经济系统的数量变化规律。是由系统或 方程组成,方程由变量和 系数组成。其中,系统也是由 方程组成。 计量经济模型揭示经济活动中各个因素之间的 定量关系,用随机性的数学方程加以描述。
广义地说,一切包括经济、 数学、统计三者的模型;
狭义地说,仅只用 参数估计和假设检验的 数理统计方法研究经验数据的模型。
用截面数据作为计量经济学模型的样本数据,应注意以下几个问题。一是样本与母体的一致性问题。计量经济学模型的参数估计,从数学上讲,是用从母体中随机抽取的个体样本估计母体的参数,那么要求母体与个体必须是一致的。例如,估计煤炭企业的生产函数模型,只能用煤炭企业的数据作为样本,不能用煤炭行业的数据。那么,截面数据就很难用于一些总量模型的估计,例如,建立煤炭行业的生产函数模型,就无法得到合适的截面数据。

计量经济学论文参考

计量经济学在我国的推广与应用,对我国经济学的定量化研究做出了重要贡献,也在中国经济学界受到了越来越多的关注。下面是我为大家推荐的计量经济学论文,供大家参考。

计量经济学论文 范文 一:多媒体教学计量经济学论文

一、研究框架:教学的次优原理

(一)计量经济学教学次优理论分析

本研究的目标定位为:以现有的多媒体教学手段为背景,研究针对非计量经济学理论专业学生的教学目的及其规律,最终在教学内容比重和 方法 上提出相应的建议。研究的思路遵循经济理论中的“次优理论”,主要内容包括三大部分:第一部分对计量经济学的理论体系从方法论上进行整理,重点在于区分计量经济学逻辑框架中的原理部分和应用部分,并主要以例证的方式论证理论应用和理论原理的发展采取专业化与分工形式更具有效率;第二部分将采用实证方法分析非计量经济理论专业研究人员应用计量经济学进行分析所需要的基本知识和方法论知识,调查具备计量分析能力学生和研究人员相关知识获得的方式;第三部分在前面两部分研究结论的基础上,基于“次优”思路,对现行计量经济学教学的内容和方法进行调整,提出“有所为,有所不为”的教学思路。研究的主要观点是:当“最优”的某些条件不具备时,其他条件同样必须按照“次优”标准取值,而不能继续采取“最优”结果所要求的标准,否则效率会更差。计量经济学教学中同样存在这个问题。

(二)计量经济学教学次优原理

当学生不可能在一定的学时内完全掌握基本原理并熟练应用时,应该以应用能力为基本目标,对以数学推导为主要内容的基本原理做语言介绍。换个角度讲就是将计量分析能力获取的真正方式(即模仿实际案例)引入到教学中,使其更有效率。

二、实证分析:本科计量经济学教学策略

(一)教学目标的设定关于计量经济学教学目标的设定

通常会有理论和应用之争。任何一门学科,最理想的情况当然是在充分理解原理的来龙去脉基础上熟练运用并进行发展。但是,理论的证明和发展往往需要坚实的理论根基,研究者个体需要很长时间的专门训练。在现代科学高度分工化的背景下,科学理论的发展和应用已经有着明确的分工。计量经济学更是如此,对于本科经济学专业学生来讲,其学科基础结构以及学时有限,不可能进行大量的理论学习。因此,应该以熟练的应用为首要目标。尽管从逻辑结构来看,现代科学理论都是在基本原理正确的情况下才可以正常使用,即原理是应用的基础,但从人类认知的一般规律来看,熟练的认知和运用对于学习和掌握一套理论工具的原理更有帮助,反过来却更为困难一些。因此,在本科阶段,经济学专业学生应该在操作层次上掌握计量分析的基本方法,在思想层次上了解计量经济学的原理。

(二)教学内容的选择及优劣排序

就逻辑结构而言,计量经济学课程可以分为基本方法、软件应用、经济学原理、数理统计原理等基本部分。为了达到按照次优原理制定的教学目标,必须对上述学习和教学当中的内容进行选择和排序。计量经济分析对计算工具的依赖性很强,在某种程度上,计量经济学的产生及其发展都依赖于计算方法和技术的进步。现代计算机的产生与升级,使得计量经济分析基本上采取各种专业软件完成,比如AMOS,AUTOBOX,DATADESK,SPSS,EVIEWS,MATLAB,GAUSS,STATVIEW等。因此,计量经济学的教学和学习必须依赖其中一种软件进行。国内大部分教科书都以EVIEWS作为演示逻辑过程的软件,其界面操作是教学过程必须包括的内容。但是,利用软件操作的计量经济分析过程的基本框架是建立在计量经济分析基本方法之上的。无论是经典还是现代计量经济学,基本的计算步骤都包括回归方法、统计检验、计量检验及修正四部分。因此,基本方法的教学应该是首要的内容,依据它进行软件的应用,一方面练习基本步骤,另一方面掌握分析的基本技能。计量经济学不是统计学,因此上述两方面的纯技术内容需要在经济学原理的规定下实施。任何参数都要符合经济学原理和常识。与此同时,经济学原理的学习可以通过其他专业课程进行教学,参数的经济学意义可以通过很短时间的介绍使学生掌握。因此,经济原理需要放在前面两项内容之后,学生可以在更高层次的计量经济学课程进行学习。数理统计原理是整个计量经济学的基础性“技术基础”,进行复杂计量经济分析以及计量经济学理论研究必须熟练掌握这部分内容。在本科阶段,没有必要进行全面严格的数理统计知识训练。计量经济学现行教学方式一个最大的问题就是对于上述内容没有做出恰当的选择和排序,而是按照尽量满足“最优条件”的方式,对于数理统计原理过于强调,往往放在教学最重要的位置。结果在每一个阶段学生都不能掌握基本的内容,往往是重复学习基本方法、软件应用等,效果很差。因此,对于上述内容必须按照“次优原理”做出排序,并在不同阶段选择教学重点。基本的排序应该是,首先是基本方法,务必使学生能熟记(例如各种条件、参数范围等),其次是软件的应用,接下来依次是经济学原理和数理统计原理。本科阶段一定要解决基本方法和软件的使用问题,避免重复学习。

(三) 教学方法 和其他经管类课程类似

计量经济学的教学分为理论讲授、实验和课程论文三个部分。理论讲授应该着重解决分析方法的问题,以介绍的方式使学生了解计量经济分析的数理统计原理;实验对应软件的应用,通过大量的软件操作和结果分析,使学生对于实际的分析步骤能够熟练进行;课程论文则对应经济学原理部分,通过对实际经济现象的数量分析,训练学生针对具体经济现象建立计量经济模型,具有对计量结果进行经济学解释的能力。课程阶段的时间有限,应该以学生掌握工具使用为目标,至于其经济学内涵以及分析技巧,应该放在学生自身的学习和研究计划之中安排。因此,课程阶段内的教学方法应该以前两者为主,课程论文方式可以放在学年论文和 毕业 论文(设计)阶段实施。

(四)教学手段计算机技术的进步

使得多媒体和案例教学已经成为目前经济学课程教学的基本手段。在计量经济学教学当中,应该更有针对性地使内容与教学手段对应。计量经济学中存在不少数学推导,例题演示,讲解时需要大量的数据及其处理的演示。如果采取原始的黑板书写,则必然浪费课堂时间,因而多媒体教学应该在计量经济学中大力推广。另一方面,多媒体教学由于省略了实际的操作过程,尽管有利于教师提高逻辑推进速度,但也增加了学生思维的强度和负担,导致学生无法及时理解教学内容,减弱学生对课堂学习内容的印象。因此,多媒体教学更适宜介绍性的内容,比如上述数理统计原理等。案例教学被很多学者作为提高计量经济学教学中学生兴趣的重要方式,这一点无可厚非。但是本科阶段计量经济学的首要任务是分析手段的掌握,而不是分析技巧的培养。因此,案例教学的中心应该放在分析过程,而不是建模和经济分析阶段———尽管这两者在引起学生学习兴趣方面效果突出。

三、结论

计量经济学教学效果普遍较差,其根本的原因在于计量经济学知识体系庞大和学时有限之间的矛盾。根据“次优原理”,应该在内容和目标上做出恰当的定位和选择。基本的分析方法(步骤)和软件操作是教学的首要目标和内容,本科阶段必须解决这两方面的问题,否则就会导致现在普遍存在的现象———不同层次课程都必须重复操作的训练。至于经济学原理,应该作为综合训练部分在学生的学年论文或毕业论文之中进行。而作为计量经济学科学基础的数理统计原理,应该是复杂计量分析和计量经济学理论研究中解决的问题,对于此层次课程来讲,适宜采用语言或演示方式进行介绍性教学。

计量经济学论文范文二:多媒体计量经济学论文

一、研究框架:教学的次优原理

(一)次优原理亚当•斯密“看不见的手”原理

构成西方主流经济理论框架的经济哲学基础。经过数代人的努力,西方微观经济学理论给出了“看不见的手”原理的形式化证明:以利己行为动机的完全竞争的市场经济将会导致(帕累托意义下的)最优———第一福利经济学定理。然而,现实经济中更普遍的情况是,经济环境与完全竞争的经济模型完全不一样。此时,结果还会是帕累托最优吗?1950年代之前,经济学家普遍认为在这种情况下,国家执行微观经济政策尽可能弥补现实经济和完全竞争模型的假设条件之间的差距,因而能使经济达到或接近于帕累托最优状态。1950年代在西方出现的“次优理论”(TheoryofSecondBest)证明,在不能全部满足完全竞争模型所要求的假设条件的情况下,即使微观经济政策成功地弥补了现实和假设条件之间的差异,政策的执行也不能保证帕累托最优状态的实现。1956年,经济学家李普西(R.G.Lipsey)和兰卡斯特(K.Lancaster) 总结 前人的理论分析,创立了次优理论。简单地说,次优理论包含的内容是:“如果在一般均衡体系中存在着某些情况,使得帕累托最优的某个条件遭到破坏,那么即使 其它 所有帕累托最优条件得到满足,结果也未见得是令人满意的,换句话说,假设帕累托最优所要求的一系列条件中有某些条件没有得到满足,那么,帕累托最优状态只有在清除了所有这些得不到满足的条件之后才能达到。”次优理论的基本思想可以用一个简单的图形来说明。曲线PP表示社会生产可能性曲线,曲线Ⅰ、Ⅱ表示社会无差异曲线。如果经济是完全经济市场,则福利最大化均衡点在E点。假定经济系统中存在一个约束条件(由直线AB表示),使得经济难以达到直线AB右上方的商品组合,最优点E也无法取得。因此,社会最优化问题是在AB线的约束下争取(由无差异曲线表示的)福利最大化。显然,约束条件下最优点在F点,即无差异曲线Ⅰ代表的效用水平。从最初均衡点E点满足的条件程度来看,A、B两点都优于F———前两点位于生产可能性曲线上,生产是有效的。但是,点F明显地比技术上有效的点A与B更优。这显然否定了这样的论点,即如果帕累托最优的所有条件不能全部满足,则满足某一部分就是最好的政策。次优理论的一般意义可以用英国经济学家米德(J.E.Meade)所讲的一个比喻来说明。设想一个人,他想登上群山的最高点。在朝着最高点行进的途中,他将不得不先爬上一些较低的山峰,然后再下山。因此,下面的说法并不正确,即为了达到最高点,这个人应该始终向山上爬。再者,由于最高的那座山被不同高度的群山环绕着,因此,当他爬到一座山后,很可能要攀登的是另一座较低的山。所以,任何朝着最高点移动,一定都会把这个人带到更高的位置这种说法是错误的。最优均衡结果的条件得不到满足的情况下,那么结果和最优之间的差距并非与条件满足的程度成反比关系。因此,如果最优条件得不到满足,那么最优化问题将是不同于原来的另一个问题,需要重新求解,而不是原来问题的“简化”。

(二)计量经济学教学次优理论分析

本研究的目标定位为:以现有的多媒体教学手段为背景,研究针对非计量经济学理论专业学生的教学目的及其规律,最终在教学内容比重和方法上提出相应的建议。研究的思路遵循经济理论中的“次优理论”,主要内容包括三大部分:第一部分对计量经济学的理论体系从方法论上进行整理,重点在于区分计量经济学逻辑框架中的原理部分和应用部分,并主要以例证的方式论证理论应用和理论原理的发展采取专业化与分工形式更具有效率;第二部分将采用实证方法分析非计量经济理论专业研究人员应用计量经济学进行分析所需要的基本知识和方法论知识,调查具备计量分析能力学生和研究人员相关知识获得的方式;第三部分在前面两部分研究结论的基础上,基于“次优”思路,对现行计量经济学教学的内容和方法进行调整,提出“有所为,有所不为”的教学思路。研究的主要观点是:当“最优”的某些条件不具备时,其他条件同样必须按照“次优”标准取值,而不能继续采取“最优”结果所要求的标准,否则效率会更差。计量经济学教学中同样存在这个问题。

(三)计量经济学教学次优原理

当学生不可能在一定的学时内完全掌握基本原理并熟练应用时,应该以应用能力为基本目标,对以数学推导为主要内容的基本原理做语言介绍。换个角度讲就是将计量分析能力获取的真正方式(即模仿实际案例)引入到教学中,使其更有效率。

二、实证分析:本科计量经济学教学策略

(一)教学目标的设定关于计量经济学教学目标的设定

通常会有理论和应用之争。任何一门学科,最理想的情况当然是在充分理解原理的来龙去脉基础上熟练运用并进行发展。但是,理论的证明和发展往往需要坚实的理论根基,研究者个体需要很长时间的专门训练。在现代科学高度分工化的背景下,科学理论的发展和应用已经有着明确的分工。计量经济学更是如此,对于本科经济学专业学生来讲,其学科基础结构以及学时有限,不可能进行大量的理论学习。因此,应该以熟练的应用为首要目标。尽管从逻辑结构来看,现代科学理论都是在基本原理正确的情况下才可以正常使用,即原理是应用的基础,但从人类认知的一般规律来看,熟练的认知和运用对于学习和掌握一套理论工具的原理更有帮助,反过来却更为困难一些。因此,在本科阶段,经济学专业学生应该在操作层次上掌握计量分析的基本方法,在思想层次上了解计量经济学的原理。

(二)教学内容的选择及优劣排序就逻辑结构而言

计量经济学课程可以分为基本方法、软件应用、经济学原理、数理统计原理等基本部分。为了达到按照次优原理制定的教学目标,必须对上述学习和教学当中的内容进行选择和排序。计量经济分析对计算工具的依赖性很强,在某种程度上,计量经济学的产生及其发展都依赖于计算方法和技术的进步。现代计算机的产生与升级,使得计量经济分析基本上采取各种专业软件完成,比如AMOS,AUTOBOX,DATADESK,SPSS,EVIEWS,MATLAB,GAUSS,STATVIEW等。因此,计量经济学的教学和学习必须依赖其中一种软件进行。国内大部分教科书都以EVIEWS作为演示逻辑过程的软件,其界面操作是教学过程必须包括的内容。但是,利用软件操作的计量经济分析过程的基本框架是建立在计量经济分析基本方法之上的。无论是经典还是现代计量经济学,基本的计算步骤都包括回归方法、统计检验、计量检验及修正四部分。因此,基本方法的教学应该是首要的内容,依据它进行软件的应用,一方面练习基本步骤,另一方面掌握分析的基本技能。计量经济学不是统计学,因此上述两方面的纯技术内容需要在经济学原理的规定下实施。任何参数都要符合经济学原理和常识。与此同时,经济学原理的学习可以通过其他专业课程进行教学,参数的经济学意义可以通过很短时间的介绍使学生掌握。因此,经济原理需要放在前面两项内容之后,学生可以在更高层次的计量经济学课程进行学习。数理统计原理是整个计量经济学的基础性“技术基础”,进行复杂计量经济分析以及计量经济学理论研究必须熟练掌握这部分内容。在本科阶段,没有必要进行全面严格的数理统计知识训练。计量经济学现行教学方式一个最大的问题就是对于上述内容没有做出恰当的选择和排序,而是按照尽量满足“最优条件”的方式,对于数理统计原理过于强调,往往放在教学最重要的位置。结果在每一个阶段学生都不能掌握基本的内容,往往是重复学习基本方法、软件应用等,效果很差。因此,对于上述内容必须按照“次优原理”做出排序,并在不同阶段选择教学重点。基本的排序应该是,首先是基本方法,务必使学生能熟记(例如各种条件、参数范围等),其次是软件的应用,接下来依次是经济学原理和数理统计原理。本科阶段一定要解决基本方法和软件的使用问题,避免重复学习。

(三)教学方法和其他经管类课程类似

计量经济学的教学分为理论讲授、实验和课程论文三个部分。理论讲授应该着重解决分析方法的问题,以介绍的方式使学生了解计量经济分析的数理统计原理;实验对应软件的应用,通过大量的软件操作和结果分析,使学生对于实际的分析步骤能够熟练进行;课程论文则对应经济学原理部分,通过对实际经济现象的数量分析,训练学生针对具体经济现象建立计量经济模型,具有对计量结果进行经济学解释的能力。课程阶段的时间有限,应该以学生掌握工具使用为目标,至于其经济学内涵以及分析技巧,应该放在学生自身的学习和研究计划之中安排。因此,课程阶段内的教学方法应该以前两者为主,课程论文方式可以放在学年论文和毕业论文(设计)阶段实施。

(四)教学手段计算机技术的进步

使得多媒体和案例教学已经成为目前经济学课程教学的基本手段。在计量经济学教学当中,应该更有针对性地使内容与教学手段对应。计量经济学中存在不少数学推导,例题演示,讲解时需要大量的数据及其处理的演示。如果采取原始的黑板书写,则必然浪费课堂时间,因而多媒体教学应该在计量经济学中大力推广。另一方面,多媒体教学由于省略了实际的操作过程,尽管有利于教师提高逻辑推进速度,但也增加了学生思维的强度和负担,导致学生无法及时理解教学内容,减弱学生对课堂学习内容的印象。因此,多媒体教学更适宜介绍性的内容,比如上述数理统计原理等。案例教学被很多学者作为提高计量经济学教学中学生兴趣的重要方式,这一点无可厚非。但是本科阶段计量经济学的首要任务是分析手段的掌握,而不是分析技巧的培养。因此,案例教学的中心应该放在分析过程,而不是建模和经济分析阶段———尽管这两者在引起学生学习兴趣方面效果突出。

三、结论

计量经济学教学效果普遍较差,其根本的原因在于计量经济学知识体系庞大和学时有限之间的矛盾。根据“次优原理”,应该在内容和目标上做出恰当的定位和选择。基本的分析方法(步骤)和软件操作是教学的首要目标和内容,本科阶段必须解决这两方面的问题,否则就会导致现在普遍存在的现象———不同层次课程都必须重复操作的训练。至于经济学原理,应该作为综合训练部分在学生的学年论文或毕业论文之中进行。而作为计量经济学科学基础的数理统计原理,应该是复杂计量分析和计量经济学理论研究中解决的问题,对于此层次课程来讲,适宜采用语言或演示方式进行介绍性教学。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页