Decision method of matrix invertibility and method to find the inverse of matrix
Digest: In advanced algebra, matrix theory is one of the main aspects of linear algebra, as well as an important tool to help solving practical problems. In most of the matrix theorems and applications, the inverse of matrix plays a significant part. This paper shows different ways to decide whether a matrix is invertible, methods of finding the inverse of both general matrix and one particular set of matrices, and also how to find the inverse of matrix by Excel or Matlab.
Keyword: inverse of matrix, adjoint matrix, elementary transformation
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵,或可逆是线性代数中最重要的内容。
1、下列命题等价:
1)A为n阶可逆矩阵
2)A是非奇异的。
3)A是满秩的。
4)A是行满秩的。
5)A是列满秩的。
6)方程组AX=0仅有零解
7)方程组AX=B仅有唯一解。
8)A的行向量组线性无关。
9)A的列向量组线性无关。
10)A的任何特征值均非零。
2、可逆的重要性体现在:
AB=C 表示B线性变换到 C, B与C是等价矩阵。同秩,同可逆或不可逆。是以B的列向量与C的列向量为基构成的向量空间为相同的空间。
扩展资料
逆矩阵性质定理
可逆矩阵一定是方阵。
如果矩阵A是可逆的,其逆矩阵是唯一的。
A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
两个可逆矩阵的乘积依然可逆。
矩阵可逆当且仅当它是满秩矩阵。
1、公式法:
其中,A^*为矩阵A的伴随矩阵。
2、初等变换法:对(A,E)作初等变换,将A化为单位阵E,单位矩阵E就化为A^-1。
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
扩展资料:
可逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
逆矩阵的计算比较麻烦
逆矩阵=伴随矩阵/A的行列式,而伴随矩阵,是用代数余子式得到的
计算逆矩阵主要有两种方法:
初等变换法计算原理
伴随矩阵法
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆
如果问题解决后,请点击下面的“选为满意答案”
逆矩阵 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得:
AB=BA=I
则我们称B是A的逆矩阵,而A则被称为可逆矩阵
逆矩阵的求法: A^(-1)=(1/|A|)×A* [A^(-1)表示矩阵A的逆矩阵,|A|为矩阵A的行列式,A*为矩阵A的伴随矩阵]
矩阵的另外一种常用的求法:(A|E)经过初等变换得到(E|A^(-1))[初等变化只用行运算,不能用列运算]
A是逆矩阵的充要条件是A的行列式不等于0
可逆矩阵一定是方阵
如果矩阵A是可逆的,A的逆矩阵是唯一的
可逆矩阵也被称为非奇异矩阵、非奇异矩阵、满秩矩阵。
两个可逆矩阵的乘积依然可逆
可逆矩阵的转置矩阵也可逆
一个可逆矩阵的逆矩阵是唯一的
矩阵可逆当且仅当它是满秩矩阵