您当前的位置:首页 > 发表论文>论文发表

算力研究论文

2023-02-27 13:37 来源:学术参考网 作者:未知

算力研究论文

在“新基建”浪潮下,人工智能正成为经济增长的新引擎,各行各业开启智能化升级转型。算力在其中扮演了重要角色,是国家未来竞争力的集中体现。但事实是,在发展的过程中,高速增长的海量数据与更加复杂的模型,正在为算力带来更大的挑战,主要体现为算力不足,效率不高。

算力诚可贵:数据、算法需要更多算力支撑

众所周知,在人工智能发展的三要素中,无论是数据还是算法,都离不开算力的支撑,算力已成为人工智能发展的关键要素。

IDC发布的《数据时代2025》报告显示,2018年全球产生的数据量为33ZB (1ZB=1万亿GB),到2025年将增长到175ZB,其中,中国将在2025年以48.6ZB的数据量及27.8%的占比成为全球最大的数据汇集地。

另据赛迪顾问数据显示,到2030年数据原生产业规模量占整体经济总量的15%,中国数据总量将超过4YB,占全球数据量30%。数据资源已成为关键生产要素,更多的产业通过利用物联网、工业互联网、电商等结构或非结构化数据资源来提取有价值信息,而海量数据的处理与分析对于算力的需求将十分庞大。

算法上,先进模型的参数量和复杂程度正呈现指数级的增长趋势。此前 Open AI 发表的一项研究就显示,每三到四个月,训练这些大型模型所需的计算资源就会翻一番(相比之下,摩尔定律有 18 个月的倍增周期)。2012 至 2018 年间,深度学习前沿研究所需的计算资源更是增加了 30 万倍。

到2020年,深度学习模型对算力的需求达到了每天百亿亿次的计算需求。2020年2月,微软发布了最新的智能感知计算模型Turing-NLG,参数量高达到175亿,使用125POPS AI计算力完成单次训练就需要一天以上。随后,OpenAI又提出了GPT-3模型,参数量更达到1750亿,对算力的消耗达到3640 PetaFLOPS/s-day。而距离GPT-3问世不到一年,更大更复杂的语言模型,即超过一万亿参数的语言模型SwitchTransformer即已问世。

由此可见,高速增长的海量数据与更加复杂的模型,正在给算力带来更大的挑战。如果算力不能快速增长,我们将不得不面临一个糟糕的局面:当规模庞大的数据用于人工智能的训练学习时,数据量将超出内存和处理器的承载上限,整个深度学习训练过程将变得无比漫长,甚至完全无法实现最基本的人工智能。

效率价更高:环境与实际成本高企,提升效率迫在眉睫

在计算工业行业,有个假设是“数字处理会变得越来越便宜”。但斯坦福人工智能研究所副所长克里斯托弗•曼宁表示,对于现有的AI应用来说却不是这样,特别是因为不断增加的研究复杂性和竞争性,使得最前沿模型的训练成本还在不断上升。

根据马萨诸塞大学阿默斯特校区研究人员公布的研究论文显示,以常见的几种大型 AI 模型的训练周期为例,发现该过程可排放超过 626000 磅二氧化碳,几乎是普通 汽车 寿命周期排放量的五倍(其中包括 汽车 本身的制造过程)。

例如自然语言处理中,研究人员研究了该领域中性能取得最大进步的四种模型:Transformer、ELMo、BERT和 GPT-2。研究人员在单个 GPU 上训练了至少一天,以测量其功耗。然后,使用模型原始论文中列出的几项指标来计算整个过程消耗的总能量。

结果显示,训练的计算环境成本与模型大小成正比,然后在使用附加的调整步骤以提高模型的最终精度时呈爆炸式增长,尤其是调整神经网络体系结构以尽可能完成详尽的试验,并优化模型的过程,相关成本非常高,几乎没有性能收益。BERT 模型的碳足迹约为1400 磅二氧化碳,这与一个人来回坐飞机穿越美洲的排放量相当。

此外,研究人员指出,这些数字仅仅是基础,因为培训单一模型所需要的工作还是比较少的,大部分研究人员实践中会从头开发新模型或者为现有模型更改数据集,这都需要更多时间培训和调整,换言之,这会产生更高的能耗。根据测算,构建和测试最终具有价值的模型至少需要在六个月的时间内训练 4789 个模型,换算成碳排放量,超过 78000 磅。而随着 AI 算力的提升,这一问题会更加严重。

另据 Synced 最近的一份报告,华盛顿大学的 Grover 专门用于生成和检测虚假新闻,训练较大的Grover Mega模型的总费用为2.5万美元;OpenAI 花费了1200万美元来训练它的 GPT-3语言模型;谷歌花费了大约6912美元来训练 BERT,而Facebook针对当前最大的模型进行一轮训练光是电费可能就耗费数百万美元。

对此,Facebook人工智能副总裁杰罗姆•佩森蒂在接受《连线》杂志采访时认为,AI科研成本的持续上涨,或导致我们在该领域的研究碰壁,现在已经到了一个需要从成本效益等方面考虑的地步,我们需要清楚如何从现有的计算力中获得最大的收益。

在我们看来,AI计算系统正在面临计算平台优化设计、复杂异构环境下计算效率、计算框架的高度并行与扩展、AI应用计算性能等挑战。算力的发展对整个计算需求所造成的挑战会变得更大,提高整个AI计算系统的效率迫在眉睫。

最优解:智算中心大势所趋,应从国家公共设施属性做起

正是基于上述算力需求不断增加及所面临的效率提升的需要,作为建设承载巨大AI计算需求的算力中心(数据中心)成为重中之重。

据市场调研机构Synergy Research Group的数据显示,截至到2020年第二季度末,全球超大规模数据中心的数量增长至541个,相比2015年同期增长一倍有余。另外,还有176个数据中心处于计划或建设阶段,但作为传统的数据中心,随之而来的就是能耗和成本的大幅增加。

这里我们仅以国内的数据中心建设为例,现在的数据中心已经有了惊人的耗电量。据《中国数据中心能耗现状白皮书》显示,在中国有 40 万个数据中心,每个数据中心平均耗电 25 万度,总体超过 1000 亿度,这相当于三峡和葛洲坝水电站 1 年发电量的总和。如果折算成碳排放则大概是 9600 万吨,这个数字接近目前中国民航年碳排放量的 3 倍。

但根据国家的标准,到2022年,数据中心平均能耗基本达到国际先进水平,新建大型、超大型数据中心的 PUE(电能使用效率值,越低代表越节能)达到 1.4 以下。而且北上广深等发达地区对于能耗指标控制还非常严格,这与一二线城市集中的数据中心需求形成矛盾,除了降低 PUE,同等计算能力提升服务器,尤其是数据中心的的计算效率应是正解。

但众所周知的事实是,面对前述庞大的AI计算需求和提升效率的挑战,传统数据中心已经越来越难以承载这样的需求,为此,AI服务器和智算中心应运而生。

与传统的服务器采用单一的CPU不同,AI服务器通常搭载GPU、FPGA、ASIC等加速芯片,利用CPU与加速芯片的组合可以满足高吞吐量互联的需求,为自然语言处理、计算机视觉、语音交互等人工智能应用场景提供强大的算力支持,已经成为人工智能发展的重要支撑力量。

值得一提的是,目前在AI服务器领域,我们已经处于领先的地位。

近日,IDC发布了2020HI《全球人工智能市场半年度追踪报告》,对2020年上半年全球人工智能服务器市场进行数据洞察显示,目前全球半年度人工智能服务器市场规模达55.9亿美元(约326.6亿人民币),其中浪潮以16.4%的市占率位居全球第一,成为全球AI服务器头号玩家,华为、联想也杀入前5(分别排在第四和第五)。

这里业内也许会好奇,缘何中国会在AI服务器方面领跑全球?

以浪潮为例,自1993年,浪潮成功研制出中国首台小型机服务器以来,经过30年的积累,浪潮已经攻克了高速互联芯片,关键应用主机、核心数据库、云数据中心操作系统等一系列核心技术,在全球服务器高端俱乐部里占有了重要一席。在AI服务器领域,从全球最高密度AGX-2到最高性能的AGX-5,浪潮不断刷新业界最强的人工智能超级服务器的纪录,这是为了满足行业用户对人工智能计算的高性能要求而创造的。浪潮一直认为,行业客户希望获得人工智能的能力,但需要掌握了人工智能落地能力的和技术的公司进行赋能,浪潮就可以很好地扮演这一角色。加快人工智能落地速度,帮助企业用户打开了人工智能应用的大门。

由此看,长期的技术创新积淀、核心技术的掌握以及对于产业和技术的准确判断、研发是领跑的根本。

至于智算中心,去年发布的《智能计算中心规划建设指南》公布了智能计算中心技术架构,基于最新人工智能理论,采用领先的人工智能计算架构,通过算力的生产、聚合、调度和释放四大作业环节,支撑和引领数字经济、智能产业、智慧城市和智慧 社会 应用与生态 健康 发展。

通俗地讲,智慧时代的智算中心就像工业时代的电厂一样,电厂是对外生产电力、配置电力、输送电力、使用电力;同理智算中心是在承载AI算力的生产、聚合、调度和释放过程,让数据进去让智慧出来,这就是智能计算中心的理想目标。

需要说明的是,与传统数据中心不同,“智算中心”不仅把算力高密度地集中在一起,而且要解决调度和有效利用计算资源、数据、算法等问题,更像是从计算器进化到了大脑。此外,其所具有的开放标准,集约高效、普适普惠的特征,不仅能够涵盖融合更多的软硬件技术和产品,而且也极大降低了产业AI化的进入和应用门槛,直至普惠所有人。

其实我们只要仔细观察就会发现,智算中心包含的算力的生产、聚合、调度和释放,可谓集AI能力之大成,具备全栈AI能力。

这里我们不妨再次以浪潮为例,看看何谓全栈AI能力?

比如在算力生产层面,浪潮打造了业内最强最全的AI计算产品阵列。其中,浪潮自研的新一代人工智能服务器NF5488A5在2020年一举打破MLPerf AI推理&训练基准测试19项世界纪录(保证充足的算力,解决了算力提升的需求);在算力调度层面,浪潮AIStation人工智能开发平台能够为AI模型开发训练与推理部署提供从底层资源到上层业务的全平台全流程管理支持,帮助企业提升资源使用率与开发效率90%以上,加快AI开发应用创新(解决了算力的效率问题);在聚合算力方面,浪潮持续打造更高效率更低延迟硬件加速设备与优化软件栈;在算力释放上,浪潮AutoML Suite为人工智能客户与开发者提供快速高效开发AI模型的能力,开启AI全自动建模新方式,加速产业化应用。

那么接下来的是,智算中心该遵循怎样的发展路径才能充分发挥它的作用,物尽其用?

IDC调研发现,超过九成的企业正在使用或计划在三年内使用人工智能,其中74.5%的企业期望在未来可以采用具备公用设施意义的人工智能专用基础设施平台,以降低创新成本,提升算力资源的可获得性。

由此看,智能计算中心建设的公共属性原则在当下和未来就显得尤为重要,即智能计算中心并非是盈利性的基础设施,而是应该是类似于水利系统、水务系统、电力系统的公共性、公益性的基础设施,其将承载智能化的居民生活服务、政务服务智能化。因此,在智能计算中心规划和建设过程中,要做好布局,它不应该通过市场竞争手段来实现,而要体现政府在推进整个 社会 智能化进程的规划、节奏、布局。

总结: 当下,算力成为推动数字经济的根基和我国“新基建“的底座已经成为共识,而如何理性看待其发展中遇到的挑战,在不断高升算力的前提下,提升效率,并采取最佳的发展策略和形式,找到最优解,将成为政府相关部门以及相关企业的重中之重。

货殖列传|95后比特币矿场主的蓝用房地产逻辑经营矿场

【编者按】

《史记·货殖列传》是最早专门记叙从事“货殖”(商业)活动的杰出人物的史书著作,司马迁阐释的经世济民的经济思想和商业智慧,被誉为“ 历史 思想及于经济,是书盖为创举”。

新一轮 科技 革命和产业变革正在重塑世界经济结构、重构全球创新版图。在这场大变局中,所有勇于创新、敢于担当的企业家、创业者、打工人的故事,都值得被铭记。即日起,我们推出《澎湃 财经 人物周刊·货殖列传》,讲述全球化时代大潮中的商界人物故事。

他们为时代立传,我们为他们立传。

成都郊区的一处会所里,一场比特币“矿圈”的小饭局正在开场。

坐在主位的大田是一名“95后”,圆圆脸,穿着印有哆啦A梦的Gucci T恤,脚上是一双潮鞋。

“都是我的朋友”,大田高兴地说道。

在座的8个人或多或少都与比特币挖矿有关。时下价格约6万美元的比特币,正是通过“矿机”凭借算力抢夺记账权后被一个个挖出来的。购买矿机的挖矿者叫做“矿工”,帮“矿工”托管矿机并提供电力的地方称为“矿场”,矿场的老板就是“矿场主”了。

大田就是一个矿场主,在四川、新疆、云南等地拥有七八个虚拟货币矿场,总负荷超过80多万千瓦,规模在国内算比较大。

在这场饭局中,大田年龄最小,但大家叫他“大田哥”。他也被一些年纪稍长的矿工私下称为“矿圈新贵”。

“麻烦给我换个绿色的打火机,红色对我们来说不太吉利。”饭局中有位矿场主对服务员提供的打火机颜色不是很满意。在加密货币市场,绿色才代表上涨,红色则代表下跌。

去年以来,比特币迎来了一轮大牛市,最大涨幅超过10倍。对矿圈人士来说,当下正是春风得意时。像这样的饭局,几乎每天都在上演,而大田在其中如鱼得水。

(一)热气升腾

比特币挖矿最重要的成本就是电费,因此矿场首选电力资源充足而电费便宜的地区。四川水力资源丰富,是目前中国最重要的比特币矿场集中地。

拥有小算力矿机的矿工有时也被称作候鸟,在南方枯水期来临时,他们把矿机拆下来运到内蒙古、新疆等地使用火电来挖矿;当南方丰水期到来后,又将矿机运到南方来利用水电挖矿。如此往复,一年又一年。

今年2月发生了一条震动矿圈的新闻。内蒙古发改委官网发文称,为了加快淘汰化解落后和过剩产能,拟全面清理关停虚拟货币挖矿项目,4月底前全部退出。

内蒙古煤炭资源丰富火电相对便宜,因此,内蒙古也是四川进入枯水期后,比特币矿场的重要集中地之一。

在大家开始讨论下一个枯水期何处去时,大田相对淡定,他在内蒙古的矿场已在去年关了。

厂房里的隔离墙根据矿机大小整整齐齐地剪开了密密麻麻的散热孔,屋顶则装满了排风扇。为给矿机降温,在厂房的外侧还建有“水帘”,摸上去有硬纸般的粗糙感。在矿机工作时,工作人员便会打开机器,抽取消防水池的水让其从水帘流下,达到降温的目的。

当前空荡荡的厂房内部,两侧是剪开的矿机散热孔

厂房两侧是水帘,用于物理降温

大田的矿场人员配置一般是:一个场长,一个主管(也可以理解为副场长),每1万千瓦负荷配一个电工、4个运维。大田七八个矿场的场长都由其亲戚担任。场长负责整个矿场的管理调度,包括跟电站打交道。

矿场人员简易的工作环境

“原来对电没有概念,后来发现电费如果是一度电2毛钱,挖矿收益就可以提升一倍”,大田说。其实对大田这样的矿场主来说,主要收益就是赚取电费差。

比如矿场的电费是0.2元,它可以向矿工收取0.3元的电费。对于矿工来说,0.3元的电费相对于城里的0.6元还是很便宜的,因此他们愿意将矿机托管给矿场。

(二)校园矿工

今年26岁的大田出生于山东菏泽下面的一个小县城,父母都从医。他从初中、高中开始就想着怎么赚钱,而挖矿的 历史 可以追溯到他的大学时期。

大田中学时期的赚钱项目包括为别人充值QQ会员,买黄钻、绿钻、红钻,卖充电宝、手机卡,倒卖手机等等。

在一家985高校就读时期,大田也曾在学校试着开超市,与同学合伙做 “宿舍便利店”创业项目,一度融资到B+轮。

大田自称,在大学期间已“小有积蓄”。

他接触比特币还是因为有一位朋友向他借钱。那是2014年,这位朋友开口要借50000元,并保证一周后还55000元,周息10%。

在电脑、电动车、身份证的抵押下,大田最终借给他30000元,一周后果然收到了连本带息的33000元。

原来他朋友入了一个国际传销资金盘,只收取比特币入盘。大田也想入盘试试。

于是,在比特币还是800元、900元的时候,大田买了20多万元的比特币,但还没开始投入,该传销资金盘就崩盘了。

“我手上就留了一堆比特币也不知道卖给谁。”大田一度认栽。出乎意料的是,两三个月后,比特币竟然涨至2000多元,他和朋友反复确认后赶紧转手卖出。

就这样莫名其妙进入“币圈”,大田开始认真研究起了比特币,包括白皮书、论坛,不懂就上论坛搜攻略。到最后,大田还组装了一台矿机。

“那个时候到处抱着机器,去自习室插上电,回宿舍也插一会儿。”大田说。彼时,市场上矿机很少,全网算力也比较低,大田一个月也有一两千元可赚。

2017年,大田成为青岛一家知名企业的管培生。出于对区块链领域的了解,他在集团内部与人合伙创建了区块链方面的小微企业,也由此认识了一家云南虚拟货币矿场的矿场主。

起初,他买了一些矿机托管在云南的矿场里。后来大田认识了马鞍山的一位矿场主后,发现矿场收益不错,双方成为了合作伙伴。

大田的挖矿生涯算是正式开启了。

(三)刀口舔血

每一个矿场主的职业生涯可能都是从找电开始的,一路上可能还会面临很多危险时刻。

2018年中,大田与合作伙伴前往四川考察矿场。所谓考察矿场,主要就是前往“穷山恶水”中,找到愿意合作的水电站。这些地方在丰水期,也极容易发生地质灾害。

那时正值雨天,考察完四川的一个矿场后,大田和伙伴急匆匆沿着盘山公路驱车往回赶。由于急着下山,大田逆行驶到了上山的车道,结果在某个拐弯处迎面撞上了一辆大货车。

“车直接原地转了三个圈,安全气囊都出来了,就差这么多就掉山底下去了。”大田伸手比划了20厘米的距离,直到现在还心有余悸。

所幸的是,大货车是空的,车体没装货,因此大田的车所受作用力没那么大,从而避免了摔下山的悲剧。

这样的险境大田不止碰到一次。例如有一次赶往云南的路上差点120迈撞上塌方的石头,例如泥石流就在眼前冲毁了公路……

道路一侧的泥石流痕迹

大田在考察过程中,还遇到一个难题,就是大多数水电站的人不知道比特币挖矿是干嘛的,以为他们是骗子。

不过,当先吃螃蟹的电站赚到钱之后,越来越多的电站愿意与矿场合作。

在矿场运营过程中,大田也曾遇到过令其哭笑不得的窘境。

那是在云南的一个小山村,大田的矿场雇了两个当地人看门。由于看门的当地人总说他们在“挖矿”,忽然有一天,一群村民冲进了矿场,愤怒地指责大田在偷挖村里的矿。

大田解释称,他们挖的是比特币,但村民并不理解也不想管,只是表示“反正在我们村挖的,就是要分我们一份”。于是,大田让村民派几个代表进矿场查看。

“他们还拿着锄头在地上戳来戳去,想要找出地上是否有个矿洞,怎么也解释不通”。他无奈说道。

报警后,当地公安局的民警也不懂虚拟货币挖矿是怎么回事,大田他们用了一天的时间让民警明白,他们挖的“矿”是虚拟的,并没挖村里的“矿”。

“后来达成协议,每户每家50块钱一个月,估计到现在也是这样的。”他说。

(四)血亏2000多万

大田的真正危机发生在2020年。

这一年年初,大田的矿机开始陆陆续续运到了位于内蒙古人烟稀少处的一个新矿场。那是半年前,他经朋友介绍开始建造的,总负荷不到6万千瓦,投资了1800多万元。

之所以来此处建矿场,还与一项电费补贴有关。在招商时,大田的这个矿场按照云计算中心、大数据存储中心的形式引进,因此可以获得每度电0.12元的补贴,即电价0.38元,加上补贴返还0.12元后,实际电费0.26元。

令大田没想到的是,矿场运营的第一天晚上就出事了:由于施工偷工减料,变压器功耗太大发生爆炸。

检修了大半个月后,电缆又炸了。好不容易矿机开始运行,紧接着而来的是蔓延全国的新冠肺炎疫情。

全国各地都实行了封锁政策,大田的矿场留了四个值班的人。冰天雪地里,饥饿、缺水,是摆在这四人面前的头等大事。

内蒙古的冬季,室外温度最低可至零下几十度,工人们只能靠在水缸里每天砸冰获得水源。由于矿场处于人烟稀少地区,当地社区防疫人员只是偶尔巡视,巡视时往车内狭小的空间里塞箱泡面带给矿场值班工人。

“他们吃了同种口味的泡面整整一个月。”大田苦笑着回忆道。

另外,由于其他回乡的工人被封在老家,留下来值班的四个人的工作量陡然上升。

“4个人3万多台机器,每个人就要负责近1万台,如果矿机太冷容易掉线。那个时候零下40多度,需要人工拿鼓风机一台台吹。”大田说。

熬过封城期,以为可以正常运转的大田却等来一则通知:电费补贴无法审批通过,大田仍需按照0.38元一度的电费缴纳。

祸不单行。

新冠疫情外加原油价格大战,比特币价格也遭遇滑铁卢。2020年3月12日,比特币一度跌破4000美元,较2月最高价已是腰斩。

“币价8000美元的时候能保证不亏钱,3月12日的时候就扛不住了,绝望了,赶紧打电话让兄弟把变压器拆了把矿机发回来,电费0.26元我都跑不起来。”大田回忆道。

矿机从内蒙古的矿场拆运回来,意味着这段时间矿机无法运营,大田就需要赔给客户算力。

“以当时0.34元、0.35元的电费,每跑一度电要倒贴3分钱,跑得越多亏得越多。”大田说道,这一次,他来回亏了2000多万元。

(五)因祸得福

去年上半年,比特币价格一度还跌破了一些矿机的“关机币价”。

所谓矿机“关机币价”,是指矿机挖矿的收益不足以支付消耗的电费。一旦比特币价格跌破“关机币价”,矿工需要关闭矿机,否则亏损更大。

最严重的时候,大田所有的矿场中60%的矿机都关机了,只剩下大功耗的大算力机器仍在运行。好在比特币急剧下跌后,出现了反弹。

“其实没关几天,矿场本身算力是个平衡状态,大部分人关机,算力难度就会下降,挖的币就会越多,收益就越多,然后就会开机了。”大田说道。

像大田这样的矿场主与矿工还是两种不同的收益模式。做矿场是赚电费差,无论币价的涨跌,可以赚取一个相对稳定的收益。但是,如果矿工们不看好后市,不增加矿机甚至减少矿机,那么矿场的生意也会淡下去。

去年5月,比特币四年一度的减半时刻来临,矿工挖出的每个区块中比特币奖励数量由12.5个比特币下降至6.25个比特币,这意味着矿机的收入也随之减半。那时,币价为5000多美元。

“5月丰水期很多人对行情很失望,大家觉得涨到5000美元,是一个反弹就跑的状态。机器没人买,大家都在卖机器,都觉得比特币反弹到6000美元已经很高了。”大田说。

作为矿场主,大田也曾想过退出,但他与水电站签了合同,必须在年内承接原本签订的负荷才能退。

因此,他只能咬着牙买矿机自己填负荷,“很多差了一两万千瓦负荷”。好在那时大家都在卖矿机,所以大田买入的矿机成本很低。

比特币行情在去年下半年彻底反转,启动了一波超级大牛市。

回忆起这些,大田笑称自己是被动致富:“我买了很多芯动矿机T2T,那时候蚂蚁矿机S9是200元买的,现在1500元。T2T 700多元,现在8000元。神马矿机M21那个时候一台3000多元,现在2万多元。”

蚂蚁矿机S9

2020年5月至今,矿机平均价格几乎涨了10倍。而大田的矿场在2020年1T(算力单位,是比特币网络处理能力的度量单位)的收益是0.5元、0.6元,现在1T的收益能达到2元。

(六)去接管三线矿场

一轮牛市下来,挖矿行业也出现了新趋势,一些机构也做起了矿工。

在进入挖矿行业早期,大田的客户全是散户,一个客户需要托管的矿机基本在10台以内,少的也就5台左右。

随着比特币日渐进入主流视野,越来越多的机构资金开始进入矿圈,并在现如今的比特币牛市下垄断了市场上新制造的绝大部分矿机。

“我现在不接纯粹的散户。”大田表示,目前在虚拟货币挖矿行业投100万也就十几台机器,对他来说是“散中之散”。

截至目前,大田矿场80多万千瓦的负荷,自有矿机占2万多千瓦,60%-70%体量为上市公司、集团托管的矿机,剩下的负荷则对接一些云算力平台,集中散户托管。

值得注意的是,在2020年下半年以来,传统融资租赁公司也开始进入矿机市场。

大田的矿场也在扩大,新疆的矿场刚刚建设完成,四川的一个矿场丰水期之前可能还要再扩10万千瓦负荷。在矿机上,他逐渐把小算力机器淘汰,换成大算力机器。不过,目前市场上矿机难买,他预订的矿机11月才能发货。

在厂房外,仍可以运行的小算力蚂蚁矿机S9随意堆放着

随着加密货币市场的扩大,原本野蛮生长的矿圈也开始逐渐走向垂直领域细分,走向精细化。

大田也在 探索 矿场新的商业模式,“像房地产的逻辑一样发展”。

在大田看来,矿场的第一个阶段是“只要有关系,就能拿地”,拿到地就能赚钱。第二个阶段是矿场建设越好、越美观,招商能力越强。第三是发展阶段,比拼的是管理能力和品牌,矿机主买服务,而不是买电费。

“所以我现在要做一个矿场一站式服务,去接管三线矿场,就是那种可能运营不是特别专业的矿场。” 大田兴奋地说起自己的蓝图,“我来给你接管,可以用我的品牌去招商,但是要重新翻修一遍。这些矿场自己招商0.2元左右的电费,我给你招0.24元,拿30%收益分给我一点都不亏。”

内蒙古宣布清退虚拟货币挖矿后,《自然通讯》(Nature Communications)4月6日刊发了一篇来自中国科学院、清华大学学者的研究论文。论文称,中国的矿工占比特币网络算力的75%以上,如果没有适当的干预措施和可行的政策,密集的比特币挖矿将可能破坏中国的减排努力。

“挖矿终究来讲还是要用能源的边角料。绿色挖矿肯定是趋势。”他说道。

校对:刘威

数字技术将如何改变我们的生产和生活论文

“科技是第一生产力。”在改革开放的今天,我们与数字的联系愈来愈紧密,数字也正以不可阻挡之势,深深地改变我们的生活。
降低生产、经营等成本降低劳动力。在数字时代,算力就是生产力。比如客人自己扫码点餐,饭馆就能省下一个服务员的成本,这就是算力在发挥作用。

从计算机硬件设计的角度分析如何提供更为丰富的算力

自上世纪90年代互联网技术诞生以来,移动互联网、云计算、大数据、人工智能等新一代信息技术的不断发展和逐步成熟,并日益深入的渗透到经济社会的各个领域,2020年全球范围内爆发的新冠疫情又进一步加速了这一趋势,数字经济已经成为世界经济发展的新阶段,即世界经济发展已经进入数字经济时代。
党中央、国务院和各级政府高度重视数字经济的发展。从2015年《中国制造2025》、《促进大数据发展行动纲要》等政策出台以来,中央和各级地方陆续以推出系列数字经济发展的措施,并支持雄安新区、浙江、福建等六个地区建设国家数字经济创新发展试验区,支持北京、上海、深圳、西安等地建设国家新一代人工智能创新发展试验区。2020年国家进一步提出加强新型基础设施建设,并明确将数据作为一种新型生产要素写入政策文件,这些将为数字经济的发展奠定更加坚实的基础。
农业经济时代,土地、水源和工具是关键资源。工业经济时代,能源、原材料、机器设备和生产工艺等是关键资源。那数字经济时代的关键资源是什么呢?数字经济时代的关键资源是数据、算力和算法。数据是数字经济时代的原材料,各种经济活动中都在源源不断的产生的数据,越来越多的组织也将数据当作一种资产,在政策层面数据已经成为一种新型生产要素。算力相当于数字经济时代的机器设备和生产力,面向各种场景的数据产品或应用都离不开算力的加工和计算,而且对算力的需求和要求也越来越高。算法是数字经济时代的生产工艺,面向图像、语音、自然语言处理等不同的应用场景和领域的算法也层出不穷,算法的提升和改进可以提高算力的效率和更多的挖掘数据价值。
本文重点分析算力方面内容,介绍算力市场总体情况,当前算力发展的特点和趋势,以及重点算力供应方式等。
一、算力需求快速增长,算力投资具有多重经济价值
算力即计算能力,核心是CPU、GPU、NPU、MCU等各类芯片,具体由计算机、服务器、高性能计算集群和各类智能终端等承载。数字经济时代,数据的爆炸式增长,算法的复杂程度不断提高,对算力需求越来越高。算力是数字经济发展的基础设施和核心生产力,对经济发展具有重要作用,根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,计算力指数平均每提高1点,数字经济和GDP将分别增长3.3‰和1.8‰。
随着数字经济的不断发展,人工智能、物联网、区块链、AR/VR 等数字经济的关键领域对算力的需求也将呈爆炸式增长。根据华为发布的《泛在算力:智能社会的基石》报告,预计到2030年人工智能、物联网、区块链、AR/VR 等总共对算力的需求将达到3.39万EFLOPS,并且将共同对算力形成随时、随地、随需、随形 (Anytime、Anywhere、AnyCapacity、Any Object) 的能力要求,其中人工智能算力将超过1.6万EFLOPS,接近整体算力需求的一半。OpenAI开发的GPT-3模型涉及1750亿个参数,对算力的需求达到3640PFLOPS,目前国内也有研究团队在跟进中文GPT-3模型的研究。
算力投资具有多重经济价值,不仅直接带动服务器行业及上游芯片、电子等行业的发展,而且算力价值的发挥将带动各行业转型升级和效率提升等,带来更大的间接经济价值。根据《泛在算力:智能社会的基石》报告,每投入1美元算力即可以带动芯片、服务器、数据中心、智能终端、高速网络等领域约4.7美元的直接产业产值增长;在传统工厂改造为智能化工厂的场景下,每1美元的算力投入,可以带动10美元的相关产值提升。
二、算力发展的特点及趋势
随着数据规模的增加和算法复杂度的提升,以及应用多样性的不断丰富,对算力提出的要求也越来越高,当前算力发展呈现出三方面的特点,一是多种架构百花齐放的状态,二是中心化的算力与边缘终端算力快速发展,三是专用算力日渐成势。
近年来多种算力架构并存并快速发展。曾经x86架构的算力占绝对优势,英特尔和AMD基本垄断了X86算力架构市场,海光信息通过跟AMD合作获得x86架构的授权;如今基于ARM架构的算力份额不断扩大,特别是在移动端ARM架构算力成为主流,华为海思等主要产品是基于ARM架构,另外天津飞腾的产品也是基于ARM架构。随着人工智能等算力需求的不断增加,GPU算力的需求不断增加,英伟达在GPU算力市场占有绝对优势,AMD也分了一杯羹,叠加比特币挖矿算力需求,导致市场上GPU卡供不应求。近几年国内也出现几个GPU方面的创业团队,如寒武纪、登临科技、燧原科技等。此外,Risc-V、存算一体化架构、类脑架构等算力也不断涌现,不过这些算力刚刚起步,在应用生态等方面还需要一定较长的培育过程。
中心化算力和边缘终端算力快速发展。随着7nm制程日渐成熟,基于7nm制程的CPU、GPU等算力性能得到极大提升,目前7nm制程算力主要是中心化算力,移动端智能手机的处理器算力部分也已经采用7nm制程。台积电的7nm制程已经实现规模化,并开始攻关3nm工艺制程;中芯国际7nm工艺制程仍在技术攻关当中。随着5G及物联网应用的不断增加,边缘终端算力的需求日益增加,特别是自动驾驶、智慧安防、智慧城市等领域算力需求。地平线自动驾驶芯片已经量产,英伟达jetson产品在嵌入式终端产品应用广泛,其他针对特定领域专用边缘终端芯片创业公司层出不穷。
针对图像、语音等特定领域的专用算力日渐成势。一方面是芯片工艺制程越来越逼近摩尔定律的极限,另一方面是物联网智能终端对功耗的要求等,针对特定领域的专用芯片层出不穷,并且越来越多的巨头参与其中。谷歌的TPU专为机器学习定制的算力,阿里平头哥的含光NPU专为神经网络定制的算力,赛灵思的FPGA算力,百度研发针对语音领域的鸿鹄芯片以及云知声、思必驰、探境科技等也推出智能语音相关的芯片,北京君正、云天励飞、依图科技和芯原微电子等推出针对视觉和视频处理相关的专用芯片。
三、算力供应以公有云和自建算力为主,多种方式相补充
当前的算力供给主要包括公有云、超算中心、自建算力、地方算力中心等方式。其中,公有云和自建算力中心是算力的主要来源方式,超算中心及地方算力中心等多种方式相互补充。
规模化的算力供应通常通过数据中来承载,新建数据中心的不断增加,将带动未来算力资源的供应不断扩大。据中国电子信息产业发展研究院统计数据,2019年中国数据中心数量大约为7.4万个,大约能占全球数据中心总量的23%,其中大型数据中心占比12.7%;在用数据中心机架规模达到265.8万架,同比增长28.7%;在建数据中心机架规模约185万架,同比增加约43万架。2020年国家大力支持“新基建”建设以来,数据中心作为“新基建”的重要内容,京津冀、长三角和珠三角等算力需求地区,以及中西部能源资源集中的区域,如内蒙、山西等,均在推进新的大中型数据中心的建设。
公有云以其稳定和易用等特点,成为许多企业特别是中小企业的算力首选方式。据不完全统计,阿里云服务器总数接近200万台,腾讯云服务器总数超过110万台,华为云、百度云、京东云、AWS等云厂商服务器总数未找到确切数据,保守估计各类云厂商服务器总数之和也超过500万台。而且在国家宣布大力支持“新基建”建设之后,腾讯宣布未来五年将投资5000亿元用于云计算、数据中心等新基建项目的进一步布局,阿里云宣布未来三年阿里将投2000亿元用于面向未来的数据中心建设及重大核心技术研发攻坚,百度宣布预计到2030年百度智能云服务器台数将超过500万台。各大云厂商仍在继续加大算力投入,公有云算力供应将会更加充裕。
自建算力以其安全性和自主性等特点,成为政府、大企业及其他关注安全的组织的算力首选方式。政府、银行及高校和央企等,通常通过自建或租赁数据中心的方式自建算力,满足自身各项业务的算力需求。许多互联网公司在刚开始时选择使用公有云服务,但规模发展到一定程度时通常都会开始自建或租赁数据中心的方式自建算力。其他有部分各种类型的企业,出于安全、商业机密和隐私等方面的考虑,不意愿把数据和业务等放到阿里云等公有云上,往往选择托管服务器的方式自建算力,规模更小企业直接就在本地使用。2020年6月快手宣布投资100亿元自建数据中心,计划部署30万台服务器,字节跳动等大型互联网公司都在不断加大数据中心的建设。
超算中心和地方算力中心作为算力供应有效的补充方式,适合于大规模计算需求的应用领域。截至2020年,科技部批准建立的国家超级计算中心共有八所,分别是国家超级计算天津中心、广州中心、深圳中心、长沙中心、济南中心、无锡中心、郑州中心和昆山中心。超算中心主要的算力资源以CPU为主,新建的超算中心及更新升级过程中超算中心逐步增加了异构GPU算力资源。超算中心较好的满足和弥补了高校科研中算力资源的需求,特别是在工业仿真、生物信息、新材料、气象、海洋等科学计算领域。国内主要省市地区基本都投资建设了当地算力中心,重点服务本地科研和产业发展的需求,如太原、苏州、福建等地,目前通常地方算力中心的规模并不大,计算节点数在200-500之间居多,主要服务于当地气象、工业仿真和生物信息等领域计算需求。此外,2020年以来,武汉、南京、珠海、许昌等地区正在建设人工智能计算中心,将在一定程度上弥补当前规模化AI算力不足的情况。
结语
算力作为数字经济的基础设施,也是数字经济时代的生产力和引擎,越来越成为数字经济时代国家竞争力的体现。根据IDC与浪潮联合发布的《2020全球计算力指数评估报告》,中国和美国的算力建设在全球处于领先地位,美国的算力无论在规模、效率、应用水平等方面都领先于中国。此外,从算力芯片供应角度看,美国的英特尔、AMD、英伟达等企业几乎占了全球的绝大部分的市场份额。可见,中国在算力建设和发展仍然需要加大投入和加强研发等,发挥优势的同时弥补不足,从而为数字经济长期发展奠定更加坚实的基础。

全球算力竞争加剧,我国 ICT 建设驶入快车道

(报告出品方/分析师:银河证券研究院 赵良毕)

报告原标题: 通信行业深度报告:ICT“双碳”新基建,IDC 温控新机遇

(一)算力建设关乎数字经济发展,各国均不断发力

加快培育数据要素市场,全球算力竞争不断提升。 2020 年 4 月 9 日,《中共中央、国务院关于构建更加完善的要素市场化配置体制机制的意见》中,数据首次作为一种新型生产要素在文件中出现,与土地、劳动力、资本和技术等传统要素并列。计算力已经与国家经济息息相关。

IDC&清华产业研究院联合发布的《2021-2022 全球计算力指数评估报告》表明,计算力是数字经济时代的关键生成要素:

(1)从 2016-2025 年的整体趋势及预测来看,各个国家的数字经济占 GDP 的比重持续提升,预计 2025 年占比将达到 41.5%。

(2)计算力作为数字经济时代的关键生产力要素,已经成为挖掘数据要素价值,推动数字经济发展的核心支撑力和驱动力。

(3)国家计算力指数与 GDP 的走势呈现出了显著的正相关。评估结果显示十五个重点国家的计算力指数平均每提高 1 点,国家的数字经济和 GDP 将分别增长 3.5%和 1.8%,预计该趋势在 2021-2025 年将继续保持。同时,通过针对不同梯队国家的计算力指数和 GDP 进行进一步的回归分析后,研究发现:当一个国家的计算力指数达到 40 分以上时,国家的计算力指数每提升 1 点,其对于 GDP 增长的推动力将增加到 1.5 倍,而当计算力指数达到 60 分以上时,国家的计算力指数每提升 1 点,其对于 GDP 增长的推动力将提高到 3.0 倍,对经济的拉动作用变得更加显著。

数字化进程不断推进,发展中国家经济增速较高。 根据 IDC 数据显示,2016 年到 2025 年,数字经济占比不断提升,全球数字经济占比2025E为41%,其中发达国家数字经济占比为48.10%,比发展中国家高 17.8 个百分点。中美两国计算力指数综合评估较高,中国计算力发展水平涨幅达 13.5%,处于较高增长水平。总体来看,数字经济为各国 GDP 总量贡献不断提升,算力提升推动数字经济向好发展。

全球公有云用户市场保持增长,IT 侧资本开支不断增加。 云是推动企业数字化转型升级的重要驱动力, 企业不断增加对移动技术、协作以及其他远程工作技术和基础架构的投资。预计到 2023 年,用户支出将达到近 6000 亿美元,云将占全球企业 IT 消费市场的 14.2%。其中软件化服务(SaaS)是最大的细分市场,预计该市场在 2023E 用户支出增长至 2080.80 亿美元,相比 2021 年增长 36.73%;云基础建设(IaaS)将达到 1562.76 亿美元,相比 2021 年增长 70.53%。为了获得数字经济时代的比较优势,全球主要国家在数据中心的建设上进行了大规模投资,全球经济受到新冠疫情的严重影响下,数据中心的建设保持了较高增速,预计在未来几年云服务提供商与电信公司之间的合作日益增加,全球云市场有望进一步增长。

中国 IDC 市场规模增速较快,目前处于高速发展期。 受益于我国“新基建”战略提出和持续攀升的互联网流量,2021 年数据中心建设规模不断增长。根据中国信通院数据,我国 2021年 IDC 行业规模约 1500.2 亿元,近 5 年中国 IDC 市场年均复合增速约达 30%,领先于全球 IDC市场增速,其中近三年中国 IDC 市场具有高增速。我国 IDC 行业增速较快主要系我国 5G 建设持续推进,5G 应用项目多点开花不断落地,预计到 2025 年,我国数据中心市场规模达到 5952亿元。随着数字经济“东数西算”工程加速推进、互联网和云计算大客户需求不断扩张及数据中心在物联网、人工智能等领域的广泛应用,数据中心行业发展前景广阔,有望保持高速增长。

IDC 机柜数量不断增长,中国东部地区 IDC 中心较多。 2021 年 IDC 的机柜量增长了 99.15万架,增速为 30%,机柜量总数达到 415.06 万架,年度增长率达到 31.39%。随着 5G 时代数字经济向 社会 各领域持续渗透,数据量爆炸式增长使得全 社会 对算力需求提升,预计每年仍将以20%以上速度高增,有望打开市场新空间。目前我国大部分数据中心集中在东部及沿海地区,根据 CDCC 数据,2021 年华东、华北、华南三地区机柜数占全国总数的 79%,而东北、西北地区占比相对较低。

我国东部地区 IDC 上架率较高,西部地区加速建设。 目前 IDC 机房在我国东西部呈现差异较大发展,体现东密西疏、东热西冷的特点。2021 年新增机柜对比可知,东部及沿海地区数据中心上架率高,西部上架率较低。2021 年华东、华北、华南三地上架率约 60%-70%,而东北、西北、西南及华中上架率仅有 30%-40%。在政策布局方面,国家不断推进数字经济发展,形成以数据为纽带的区域协调发展新格局。对于网络时延要求不高的业务,率先向西部转移建设,由于西部地区气温较低优势突出,实施“东数西算”有利于数据中心提高能效,西部地区产业跨越式发展,促进区域经济有效增长。

(二)数字经济政策护航,“东数西算”工程建设有望超预期

把握数字化发展机遇,拓展经济发展新空间。2022 年 1 月,国务院发布《“十四五”数字经济发展规划》,规划强调数字经济是继农业经济、工业经济之后的主要经济形态,是以数据资源为关键要素,以现代信息网络为主要载体,以信息通信技术融合应用、全要素数字化转型为重要推动力,促进公平与效率更加统一的新经济形态。同时,规划明确提出到 2025 年,数字经济迈向全面扩展期,数字经济核心产业增加值占 GDP 比重达到 10%。基于上述规划,2022年 5 月 26 日,工信部在 2022 年中国国际大数据产业博览会上指出,坚持适度超前建设数字基础设施,加快工业互联网、车联网等布局。

推进绿色数据中心建设,提升数据中心可再生能源利用率。 我国能源结构正处在不断优化的过程中,新能源地区分布不均衡,特别是水力、光伏、风能,主要集中在中西部地区,而使用端主要在东部沿海地区,虽然通过“西电东送”工程部分缓解了东部地区用电紧张问题,但是作为高耗能的数据中心产业,协调东西部发展布局、降低能耗就十分必要。全国各省市、地区相继出台了各种强调数据中心绿色、节能的政策要求,进而促进能源生产、运输、消费等各环节智能化升级,催化能源行业低碳转型。

东西部资源高效匹配,建立全国一体化协同创新体系。 “东数西算”工程是我国继“南水北调”、“西气东输”、“西电东送”之后的又一项重大的国家战略工程,将东部海量数据有序引导到西部,优化数据中心建设布局,缩小东西部经济差异,促进东西部协同发展。2022 年 2 月17 日,国家发改委、中央网信办、工业和信息化部、国家能源局联合印发通知,同意在京津冀、长三角、粤港澳大湾区、成渝、内蒙古、贵州、甘肃、宁夏等 8 地启动建设国家算力枢纽节点,并规划了 10 个国家数据中心集群。全国一体化大数据中心体系完成总体布局设计,“东数西算”工程正式全面启动。国家以“东数西算”为依托,持续推进数据中心与算力、云、网络、数据要素、数据应用和安全等协同发展,形成以数据为纽带的区域协调发展新格局,助力数字经济不断发展。

全球算力网络竞争力凸显,ICT 产业链有望迎来发展新空间。 通过全国一体化的数据中心布局建设,扩大算力设施规模,提高算力使用效率,实现全国算力规模化、集约化发展,有望进一步提升国家算力水平和全球竞争能力。同时,扩大数据中心在中西部地区覆盖,能够就近消纳中西部地区新型绿色能源,持续优化数据中心能源使用效率。通过算力枢纽和数据中心集群建设,将有力带动相关产业上下游投资,促进东西部数据流通、价值传递,延展东部发展空间,推进西部大开发形成全国均衡发展新格局。

(三)双碳减排目标明确,绿色节能成为发展必需

能源变革不断创新升级,低碳转型融入 社会 经济发展。 自上个世纪人类逐渐认识到碳排放造成的不利影响,各国政府和国际组织不断进行合作,经过不懈努力、广泛磋商,在联合国和世界气候大会的框架下达成了一系列重要共识,形成了《联合国气候变化框架公约》(1992 年签署,1994 年生效)、《京都议定书》(1997 年达成,2005 年生效)和《巴黎协定》(2015年达成,2016 年生效)等文件,其中《巴黎协定》规定了“把全球平均气温升幅控制在工业化前水平以上低于 2 以内”的基础目标和“将气温升幅限制在工业化前水平以上 1.5 之内”的努力目标。

推动能源革命,落实碳达峰行动方案。 为了达到《巴黎协定》所规定的目标,我国政府也提出了切合我国实际的双碳行动计划,2020 年 9 月 22 日,我国在第七十五届联合国大会上宣布,中国力争 2030 年前二氧化碳排放达到峰值,努力争取 2060 年前实现碳中和目标。中国的“双碳”目标正式确立,展现了中国政府应对全球气候变化问题上的决心和信心。同时 2021年度《政府工作报告》中指出:扎实做好碳达峰、碳中和各项工作,制定 2030 年前碳排放达峰行动方案。优化产业结构和能源结构。推动煤炭清洁高效利用,大力发展新能源,在确保安全的前提下积极有序发展核电。扩大环境保护、节能节水等企业所得税优惠目录范围,促进新型节能环保技术、装备和产品研发应用,培育壮大节能环保产业,推动资源节约高效利用。落实 2030 年应对气候变化国家自主贡献目标。加快发展方式绿色转型,协同推进经济高质量发展和生态环境高水平保护,单位国内生产总值能耗和二氧化碳排放分别降低 13.5%、18%。

聚焦数据中心低碳发展,实现双碳方式产业发展。 在双碳背景下,“东数西算”工程中数据中心西部迁移,PUE 值有望降低带来能耗电量高效利用。能源高效节能、革新升级已是大势所趋和必然要求。

(一)数据中心能耗突出,绿色节能是发展趋势

绿电成为发展趋势,低碳发展中发挥重要作用。 随着大力发展数据中心产业,数据中心能耗在国民经济中的占比也在不断提高。研究表明,预计 2025 年,数据中心能耗总量将达到 3952亿 kW·h,占全 社会 用电总量的 4.05%,比例逐年攀升。整体来看,由服务器、存储和网络通信设备等所构成的 IT 设备系统所产生的功耗约占数据中心总功耗的 45%。空调系统同样是数据中心提高能源效率的重点环节,所产生的功耗约占数据中心总功耗的 40%。降 PUE 将成为未来发展趋势,主要从制冷方面入手。

数据中心碳排放不断控制,PUE 值不断改善。 根据国家能源局 2020 年全国电力工业统计数据 6000 千瓦及以上电厂供电标准煤耗每度电用煤 305.5 克,二氧化碳排放量按每吨标煤排放 2.7 吨二氧化碳来计算,2021 年全国数据中心二氧化碳排放量 7830 万吨,2030 年预计排放约 1.5 亿吨二氧化碳。

量化指标评估数据中心能源效率。 为评价数据中心的能效问题,目前广泛采用 PUE(Power Usage Effectiveness)作为重要的评价指标,指标是数据中心消耗的所有能源与 IT 负载消耗的能源的比值。PUE 通常以年度为计量区间,其中数据中心总能耗包括 IT 设备能耗和制冷、配电等系统的能耗,其值大于 1,越接近 1 表明非 IT 设备耗能越少,即能效水平越好。

数据中心空调系统及服务器系统能耗占比较大。 数据中心的耗能部分主要包括 IT 设备、制冷系统、供配电系统、照明系统及其他设施(包括安防设备、灭火、防水、传感器以及相关数据中心建筑的管理系统等)。整体来看,由服务器、存储和网络通信设备等所构成的 IT 设备系统所产生的功耗约占数据中心总功耗的 45%。其中服务器系统约占 50%,存储系统约占 35%,网络通信设备约占 15%。空调系统仍然是数据中心提高能源效率的重点环节,它所产生的功耗约占数据中心总功耗的 40%。电源系统和照明系统分别占数据中心总耗电量的 10%和 5%。

(三)温控系统持续优化,节能技术变革打开新机遇

温控系统多元化趋势,节能技术不断突破。 当前主流的制冷方式包括风冷、水冷、间接蒸发冷却和液冷技术,根据数据中心规模、环境特点选择合适的制冷技术。提高数据中心的能效,尤其是空调制冷系统的能效成为研究重点。目前,数据中心空调制冷能效比的提升主要从液冷和自然冷源两方面入手。从制冷方式来看,风冷将逐渐被安装灵活、效率更高的液冷方式所取代。液冷技术目前应用于 5G 场景,通常对骨干网 OTN 设备、承载网设备以及 5G BBU 设备进行液冷,采用液冷技术可以通过液体将发热元件热量带走,实现服务器的自然散热,相互传统制冷方法,液冷技术更为高效节能。

冷却系统不断优化。 为了客观评价这些制冷技术以便进一步提高节能减排效率,中国制冷学会数据中心冷却工作组研究认为:采用数据中心冷却系统综合性能系数(GCOP)作为评价指标更为合理。

其中,GCOP 为数据中心冷却系统综合性能系数指标,用于评价数据中心冷却系统的能效。为数据中心总能耗,其中不仅包括数据中心市电供电量,也包括数据中心配置的发电机的供电量。为制冷系统能耗,包括机房外制冷系统的能耗,另外包括 UPS 供电的制冷风扇、关键泵以及设备机柜内风扇等制冷设备产生的能耗。

实际情况中,为了使能效评价结果更具有说服力与可比较性。冷却工作组建议使用数据中心全年平均综合性能系统数的(GCOPA)指标和特定工况下数据中心冷却系统综合性能系数(GCOPS)作为评价标准。

冷却工作组根据上述标准针对来自内蒙古呼和浩特、广东深圳、河北廊坊等地的高效数据中心进行分析。这些数据中心分布在不同建筑气候区,使用了不同系统形式和运行策略,例如高效末端、自然冷却、AI 控制的运行优化等。数据表明西部地区建设新型数据中心制冷能耗较优。我国数据中心冷却系统能效存在极大差异,提升我国数据中心冷却系统的能效意义较大,冷却系统仍存在巨大的节能潜力。

数据中心容量不断扩充,中美两国贡献较多。 根据 Synergy Research Group 的最新数据显示,由大型供应商运营的大型数据中心数量已增至 700 家,而以关键 IT 负载衡量,美国占这些数据中心容量的 49%,中国是继美国之后对超大型数据中心容量贡献第二大的国家,占总量的 15%。其余的产能分布在亚太地区(13%)、EMEA 地区(19%)和加拿大/拉丁美洲(4%)。超大规模数据中心数量翻一番用了五年时间,但容量翻番用了不到四年时间。

空调系统建设成本较多。 根据IBM数据,数据中心的建设成本中空调系统的占比为16.7%。总体来说,2021 年数据中心基础设施设备总支出为 1850 亿美元,能源方面建设资本开支占较大份额,能源建设及利用效率有望进一步提升。

数据中心资本稳步增长,温控市场打开新空间。 根据 Synergy Research 的数据,2021年数据中心基础设施设备总支出(包括云/非云硬件和软件)为 1850 亿美元,公有云基础设施设备支出占比为 47%。面向硬件的服务器、存储和网络合计占数据中心基础设施市场的 77%。

操作系统、虚拟化软件、云管理和网络安全占了其余部分。参照 2021 年全球数据中心资本开支增长 10%的现实,假设未来 4 年数据中心每年资本开支保持增长 10%,我国数据中心温控系统市场规模 2021 年为 301 亿元,可在 2025 年达到 441 亿元。

(一)英维克:打造温控全产业链,行业高景气领跑者受益

国内技术领先的精密温控龙头,聚焦精密温控节能产品和解决方案。 公司自成立以来,一直专注于数据机房等精密环境控制技术的研发,致力于为云计算数据中心、通信网络、物联网的基础架构及各种专业环境控制领域提供解决方案,“东数西算”项目中提供节能技术。

公司营业收入高速增长,盈利能力表现良好。 2022Q1,公司实现营收 4.00 亿元,同比增长 17.10%,归母净利润 0.13 亿元,同比下降 59.26%,主要受原材料价格上涨、疫情反复等因素影响。2021 年英维克实现营业收入 22.28 亿元,同比增长 29.71%,自 2017 年以来 CAGR 达34.65%,主要是由于机房温控一些大项目验收确认,以及机柜温控节能产品收入增长。受益于整个行业的景气度,全年实现归母净利润 2.05 亿元,同比增长 12.86%,自 2017 年以来 CAGR达 24.25%,主要源自数据中心及户外机柜空调业务的持续增长。

公司毛利率总体稳定,未来有望止跌回升。 2021 年公司销售毛利率为 29.35%,同比下降9.50%,主要原因系上游原材料成本提升,公司整体盈利能力承压。净利率总体有所下降,销售净利率为 8.92%,同比下降 15.85%。随着公司持续数据机房等精密环境控制技术的研发,技术平台得到复用,规模效应愈发显著,公司未来毛利率及净利率有望企稳回升。

蒸发冷却、液冷技术为未来发展趋势,公司技术储备充足,产品系列覆盖全面。 目前国内数据中心温控方式仍然以风冷、冷冻水为主,由于热密度、耗能的提升,传统方案已经不能满足市场需求,散热方式逐渐从传统风冷模式发展到背板空调、液冷等新型散热方式,数据中心冷却系统呈现出冷却设备贴近服务器、核心发热设备的趋势,液冷、蒸发冷却技术优势明显。

研发投入持续增加提升核心竞争力,温控系统不断优化。 公司以技术创新作为企业发展的主要驱动力,不断加大研发投入。虽然受到上游原材料价格急速上涨和疫情反复的不利影响,公司始终坚持加大研发力度,为公司后续发展提供技术支撑。英维克作为细分行业龙头,及时捕捉市场发展动向,以技术创新作为企业发展的主要驱动力。

公司产品线丰富,方案灵活凸显竞争优势。 英维克的机房温控节能产品主要针对数据中心、服务器机房、通信机房、高精度实验室等领域的房间级专用温控节能解决方案,用于对设备机房或实验室空间的精密温湿度和洁净度的控制调节。其中包括 CyberMate 机房专用空调&实验室专用空调、iFreecooling 多联式泵循环自然冷却机组、XRow 列间空调、XFlex 模块化间接蒸发冷却机组、XStorm 直接蒸发式高效风墙冷却系统、XSpace 微模块数据中心、XRack 微模块机柜解决方案、XGlacier 液冷温控系统等产品与解决方案。

公司的产品直接或通过系统集成商提供给数据中心业主、IDC 运营商、大型互联网公司,历年来公司已为腾讯、阿里巴巴、秦淮数据、万国数据、数据港、中国移动、中国电信、中国联通等用户的大型数据中心提供了大量高效节能的制冷产品及系统。此外,英维克还提供机柜温控节能产品主要针对无线通信基站、储能电站、智能电网各级输配电设备柜、电动 汽车 充电桩、ETC 门架系统等户外机柜或集装箱的应用场合提供温控节能解决方案,以及用于智能制造设备的机柜温控产品。

(二)佳力图:运营商市场企稳互联网市场突破,业绩有望边际改善

精密环境温控龙头,打造恒温恒湿解决方案。 公司产品应用于数据中心机房、通信基站以及其他恒温恒湿等精密环境,公司客户涵盖政府部门以及通信、金融、互联网、医疗、轨道交通、航空、能源等众多行业。公司产品服务于中国电信、中国联通、中国移动、华为等知名企业。目前,公司拥有精密空调设备、冷水机组两大类产品,十三个系列产品线,产品的先进性、可靠性以及节能环保的优势在行业中始终保持主导地位,同时公司依托在环境控制技术和节能技术方面的优势,为数据中心提供节能改造服务。

公司营业收入保持增长,净利润有所下滑。2022Q1,公司实现营收 1.22 亿元,同比下降10.69%,归母净利润 0.14 亿元,同比下降 36.68%,主要受原材料价格上涨、疫情反复、竞争加剧等因素影响。

2021 年佳力图实现营业收入 6.67 亿元,同比增长 6.68%,自 2017 年以来CAGR 达 9.73%,全年实现归母净利润 0.85 亿元,同比下滑 26.35%,2021 年,公司主要是受到以下因素影响导致利润下滑,(1)南京疫情停工待产、限电限产、疫情延时交付验收的各种困难;(2)随着市场规模的不断扩大,国内机房空调市场竞争较激烈;(3)原材料价格特别是大宗商品价格持续上涨,原材料成本占公司营业成本平均比例达 70%以上,是公司产品成本的主要组成部分,铜、镀锌钢板在 2021 年度一直呈现上涨趋势,采购价格较 2020 年上涨了 20%-40%,导致公司成本呈现大比例增长。

图 17. 公司受多因素影响毛利率有所下降(单位:%)

公司精密环境领域产品丰富,技术先进。 公司产品应用于数据中心机房、通信基站以及其他恒温恒湿等精密环境,公司客户涵盖政府部门以及通信、金融、互联网、医疗、轨道交通、航空、能源等众多行业。公司产品服务于中国电信、中国联通、中国移动、华为等知名企业。

目前,公司拥有精密空调设备、冷水机组两大类产品,十三个系列产品线,产品的先进性、可靠性以及节能环保的优势在行业中始终保持主导地位,同时公司依托在环境控制技术和节能技术方面的优势,为数据中心提供节能改造服务。

研发投入不断投入,空调效率持续提升。 虽然受到上游原材料价格急速上涨和疫情反复的不利影响,公司始终保持加强技术研发团队建设,加强与高等院校、行业专家等机构、人士的合作,推动尖端理论研究和实践,依托现有的研发体系,充分发挥节能控制方面的技术优势,加快机房智能节能管理系统的研制,进一步提高公司产品的性能指标,加强在空调换热器效率提升、供配电技术方面的基础性研究实力,全面提升公司在机房环境控制一体化解决方案方面的创新能力。

公司核心技术不断凸显。 2021 年末公司拥有的核心技术有 36 项,同时有包含带封闭式高效冷却循环的通信模块、数据中心冷冻站集中控制系统、机房空调 VRF 系统、CPU 液冷技术、VRF 技术在机房空调领域的初级应用等 28 项在研项目。

(三)其他节能相关公司情况

申菱环境是国内提供人工环境调控整体解决方案的领先企业,服务场景数值中心、电力、化工、能源、轨道交通、环保、军工等领域。产品主要可分为数据服务空调、工业空调、特种空调三部分。公司是华为数据服务空调的主要供应商,与华为存在多年合作关系。除了华为业务的快速增长,也获得了腾讯等互联网龙头企业的认可。此外,申菱环境在储能方面也有布局。

依米康致力于在通信机房、数据中心、智慧建设以及能源管理领域为客户提供产品和整体解决方案,包括从硬件到软件,从室内精密空调到室外磁悬浮主机,从一体机和微模块到大型数据中心的设计、生产和运维服务,助力客户面对能源和生态挑战。公司信息数据领域的关键设备、智能工程、物联软件、智慧服务四大板块业务均可为数据中心产业链提供产品及服务。

高澜股份是国内领先的纯水冷却设备专业供应商,是国家级专精特新“小巨人”企业,从大功率电力电子装置用纯水冷却设备及控制系统起家,产品广泛应用于发电、输电、配电及用电各个环节电力电子装置。2020 年以来,通过企业并购,其新能源 汽车 业务收入大幅提升,动力电池热管理产品、新能源 汽车 电子制造产品收入占总营收比重均大幅上涨,合计收入占总营收比重达到 48.88%,首次超过纯水冷却设备成为公司第一大收入来源。

节能技术突破不及预期导致供给端产能释放缓;

原材料短缺及价格上涨;

市场竞争加剧;

下游数据中心市场增速不及预期。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页