您当前的位置:首页 > 发表论文>论文发表

道路检测论文

2023-02-27 13:26 来源:学术参考网 作者:未知

道路检测论文

  道路桥梁,一般由路基、路面、桥梁、隧道工程和交通工程设施等几大部分组成。下面是我精心推荐的一些道路桥梁工程技术论文题目,希望你能有所感触!
  道路桥梁工程技术论文题目篇一
  1、论石灰土稳定天然砂砾路面基层的应用

  2、二灰碎石基层的施工及质量控制

  3、公路路堑边坡防护技术研究

  4、强法处理湿陷性黄土路基工艺

  5、浅谈高等级公路沥青砼路面机械化施工的几个方面

  6、沥青混凝土混合料的组成设计

  7、沥青混凝土场拌质量控制

  8、石灰稳定的施工与病害防治

  9、冲击压实技术在路基工程中的应用

  10、浅析场拌二灰砂砾参破碎砾石质量控制

  11、骨架密实型二灰碎石基层修筑技术研究

  12、水泥稳定碎石基层收缩裂缝防治

  13、解决高速公路桥头跳车的理论与施工

  14、公路桥面铺装早期破坏原因及治理方法

  15、市政工程现场施工与质量管理

  16、关于风积沙路基施工的论述

  17、论改性沥青路面施工技术

  18、石质路堑路床整修带来的思考

  19、二灰土底基层的施工

  20、二灰碎石基层的施工

  21、市政道路工程质量通病及防治

  22、土工合成材料的应用

  23、土方量计算方法

  24、高填方路基沉降变形规律研究

  25、公路路基压实质量控制

  26、公路路基沉陷的处理技术

  27、软土地基的加固措施

  28、浅谈填石路堤的施工技术

  29、路拌法水泥石灰综合稳定土的施工质量控制

  30、SMA混合料的施工质量控制

  31、粉喷桩在高填方软土地基中的应用

  32、公路边坡植被防护技术

  33、浅析滑坡形成机理及防治措施

  34、大孔隙沥青混凝土路面

  35、农村公路薄层水泥混凝土路面探析

  36、喷播边坡防护技术初探
  道路桥梁工程技术论文题目篇二
  道路桥梁工程检测技术

  摘要:道路桥梁工程检测技术的应用和探索,不仅能够起到保证桥梁运行安全、延长桥梁使用寿命的作用,还能通过对桥梁病害的及早发现,规避因整顿大修、关闭交通所带来的重大损失。介绍道路桥梁外观病害分析方法,总结几种道路桥梁的检测技术,可为相关检测工作提供参考。

  关键词:道路桥梁 检测技术 外观检测

  0、引言

  近几年来,受车祸、超载和养护不当等人为因素,以及地震、洪水等自然因素的影响,道路桥梁出现了各种各样的关于其结构损伤、病害的问题,缩短了其使用寿命,为保证道路桥梁的运营安全,需要对其进行检测。道路桥梁检测技术应运而生,并快速发展起来。

  1、当前道路桥梁在使用中常出现的问题

  道路桥梁在使用过程中会出现各种问题, 导致道路桥梁的安全性遭到破坏。 当前, 道路桥梁病害原因大致分为以下几类:

  a) 缺乏科学合理的设计方案, 导致不明确的工程施工规划;

  b)在道路桥梁试运行期间或者试运行以后, 道路桥梁出现比较严重的病害, 从而在很大程度上影响道路桥梁的承载能力;

  c)道路桥梁在施工过程中 ,没有按照规范进行, 导致施工质量较差, 使工程完工时没有达到工程预先的设计要求;

  d)有些桥梁在施工建设时的施工质量比较好, 在试运行期间也达到了良好的状态要求, 但是在运行一段时间以后桥梁的承载能力达不到要求;

  e)对于大跨度桥梁的检测工作可能会存在检测不到位现象, 导致桥梁出现安全隐患, 这类桥梁需要更加高深的检测技术, 而现阶段我国的检测方式还不能达到要求。

  2、道路桥梁外观病害分析法

  2.1根据部位逐一进行检测

  道路桥梁的结构组成可以分为上部、 下部以及其余附属结构。 鉴于不同的结构部位有不同的受力特征, 不同部位也会发生具有一些共性的病害, 对于出现的非常规病害, 检测人员要仔细

  研究其病害发生原因, 同时按照不同部位发生的病害程度进行相应的质量评估, 然后更换损坏部件以维持正常运行。

  2.2根据受力特征确定检测重点

  通常情况下, 可以根据桥梁的类型确定检测重点, 这些重点主要集中在跨中区域的裂缝、 剪力缝、 挠度、 桥梁主梁连接部位的安全情况以及道路桥梁的外观质量等。

  2.3对材料特性进行检测调查

  随着新技术、 新产品的不断发展和桥梁结构日益多样化, 越来越多的材料和设计应用到桥梁的结构建设中来, 其中使用最广的仍然是钢筋和混凝土结构。 其中钢筋的强度常常是以设计施工中的相关资料为依据的, 检测人员如果发现钢筋质量出现问题或者资料不明确, 在施工前要采取一定的措施进行相关问题的材料试验。

  2.4内部缺陷检测

  在道路桥梁的混凝土构架中, 常常出现碎裂、 蜂窝、 分层、环境侵蚀以及钢筋锈蚀等缺陷, 如果单单靠外观检测不能及时发现这些缺陷, 因此要借助于其他的检测技术进行相关检测。 当前常用的桥梁检测方法有雷达检测技术、 声波检测法以及超声波探伤法。

  2.5结构性能检测

  在完成道路桥梁进行整体评价以后, 要根据相关的技术规范进行相应的验算工作, 在验算过程中的相关技术参数要以实际桥梁为准。 验算完成后, 对于未达到规范要求的桥梁可以考虑重建, 对于相对可以利用的可以进行更深一步的鉴定检测。

  2.6桥梁钢筋锈蚀测评

  由于混凝土的密实度、 碳化深度、 含水量以及保护层厚度不足或者开裂损伤等原因而导致钢筋锈蚀的, 可以通过外观检测、敲击检查等简单易行的操作对钢筋锈蚀程度进行检测。

  3、道路桥梁检测技术

  3.1超声波检测技术

  超声法检测道路桥梁缺陷的基本原理是利用超声波检测仪以及声波换能器, 测量并分析超声脉冲在道路桥梁中的传播速度、波幅、 主频率等参数, 然后以这些参数以及相应的变化为依据,判断道路桥梁出现的缺陷。

  3.2地质雷达检测技术

  地质雷达技术又称探测雷达技术, 是一种高精度、 无损检测、 直观、 经济快速的高科技检测技术。 该技术主要通过地质雷达向物体内部发射高频电磁波,然后接受由物体产生的相应反射来判断物体内部的情况。 地质雷达技术是一项精度较高的物理探测技术, 主要应用于工程地质、地基工程、 文物考古、 道路桥梁以及混凝土结构探伤等检测领域。

  利用地质雷达仪器进行检测的主要流程为:

  a)检测人员利用笔记本电脑对控制单元发出指令信息;

  b) 控制单元在接受指令以后, 向发射天线和接收天线发射出信号;

  c)当发射触发信号以后, 向地面发射高频电磁波;

  d)当探测位置为不均匀介质时, 电磁波就会遇到不同电性的目标和界面, 导致部分电磁波被反射回地面, 然后接收天线接收信号, 并以数据的形式传到控制单元, 返回到笔记本中, 以图像的形式显现出来;

  e) 通过对图像进行分析处理, 就可以检测出被检测物的内部情况。

  3.3声发射法检测技术

  由于材料内部结构不均匀或者存在不同性质的缺陷, 局部应力的集中会导致不稳定的应力分布, 材料在产生裂缝、 发生塑性变形以及断裂过程中, 会释放出部分应力, 使之以应力波的形式向四周扩散, 即为声发射。

  道路桥梁中的混凝土结构在荷载作用下发生变形, 当变形超出设计要求时, 就会出现裂纹,以波的形式释放能量。 运用声发射法对道路桥梁进行检测时, 将声发射器放置在需要检测的部位, 通过检测不同位置收到的声波时间差, 就可以明确缺陷的发生位置。 运用声波发射法进行检测可以详细、 准确、 快速地了解桥梁内部结构的变化。 在分析研究缺陷位置以后, 裂纹的种类、大小、 开裂速度等都可以比较详细地分析出来。 由于此种检测方法容易受到周围噪声的影响, 会导致检测精度的下降; 另一方面, 此种方法是利用道路桥梁内部缺陷,因此可以进行连续的动态检测。

  3.4冲击回波法检测技术

  冲击回波法检测技术是检测仪器通过机械冲击器向被检测物体表面发送应力脉冲波, 当压缩波在物体内传播遇到内部缺陷时, 冲击波就不能穿透而发生反射, 当波速固定且选择正确的冲击器时, 就可以通过测试准确地测得缺陷位置, 即便没有缺陷也可以测得物体的厚度。

  冲击回波法检测技术常为单面反射测试技术, 在检测完一点以后就可以判断出此处是否有损伤, 因此该方法具有方便、 快捷, 测试结果比较直观的优点。此方法广泛应用于道路桥梁混凝土或者混凝土结构内部裂纹等缺陷的测定。 另一方面, 此种方法虽然检测简单, 但属于单点测量, 其检测的结果存在不全面的缺点, 实际应用也比较少。

  3.5红外热像检测技术

  红外线热像检测技术就是运用红外线热像探测仪器检测物体各部分发出的红外线能量, 然后根据物体表面温度场分布情况,直观地显示物体材料及结构上存在的不连续缺陷。 红外热像检测技术是非接触性无损检测技术。

  红外热像检测技术具有以下优点:

  a)红外热像检测技术的探测焦距可以从20cm到无穷远, 因此更加适合具有非接触性及大范围性无损检测;

  b)红外热像探测仪只对红外线产生反应, 因此只要道路桥梁的温度高于零度, 就可以用红外热像检测技术进行检测;

  c)由于红外热像检测仪可以取得很高的检测精度, 其温度分辨率可以达到0.1℃;

  d)检测模式更加灵活, 其摄像速度从1~30帧/s之间变化, 既适合静态检测又适合动态检测。

  4、结语

  对于道路桥梁进行相关内容的检测已经成为了目前道路桥梁日常维护管理过程中重要的组成部分之一。所以必须建立一套适用于道路桥梁试验相关的检测系统,并且实现对道路桥梁使用安全有效的保障,并且还需要具有一定的系统性以及智能化,这样就要求了相关的工作人员本身必须拥有较为丰富的实践经验,与此同时还必须对相关的理论知识有一个详细的了解,积极有效地将理论实际进行有效的集合,并且对每一项具体的检测数据进行有效地获取、分析,并且对整个道路桥梁进行准确细致的评估,同时及时有效地将安全隐患进行消除。

  
看了“道路桥梁工程技术论文题目”的人还看:

1. 道路桥梁工程技术论文

2. 道路桥梁工程论文

3. 道路桥梁施工技术论文

4. 道路桥梁工程检测技术论文

5. 道路桥梁论文范文

求一篇道路与桥梁专业的论文,一万字左右。急!最好是道路方面的。

  高压旋喷桩在道路软基处理中的应用

  摘 要:在津沽改线下穿通道的U15-U18段及搭板处,因按照原计划用于加强软土地基承载力的深层水泥搅拌桩机具过高,容易使机具与其上的高压线发生电击事故而在施工中无法得到实施,所以此段变更为高压旋喷桩。本文结合工程实例,分别从工作机理、施工流程、和质量检验三个方面对高压旋喷桩做了阐述。
  关键词:软土地基处理,高压旋喷桩,质量控制

  1、工程简介
  津沽该线下穿通道工程全长440米,宽为30.5米,其中U型槽的JK3+493.302¬— JK3+573.302的范围内,道路中心线两侧上方有110KV高压线干扰,所以此段由原来的深层水泥搅拌桩变更为高压旋喷桩。此段旋喷桩设计桩长10—15 米,设计桩径600mm,梅花形布置,桩距1.5米,总根数为668根,总米数为8095.4米,从2009年11月8日始到2009年11月19日止,历时12天,工后检验效果理想。
  2、高压旋喷桩概述
  2.1.概念:高压旋喷桩是高压喷射注浆法处理地基中的一种,是利用钻孔设备,把安装在注浆管底部侧面的特殊喷嘴,置入土层预定深度后,用高压泥浆泵等装置,以20Mpa左右的压力把预先制备好的水泥、水玻璃等材料作为主固化剂的浆液从喷嘴中喷射出去冲击破坏土体,同时借助注浆管的旋转和提升运动,使浆液把从土体上崩落下来的土搅拌混合,经一定时间的凝固,便在土中形成圆柱状的具有一定强度和抗渗能力的固结体,从而使地基承载力得到加强的一种工程方法。
  2.2. 加固机理:高压喷射注浆是利用工程钻机把带有喷嘴的注浆管钻进至土层的预定位置,以高压设备使浆液成为20Mpa左右的高压流从喷嘴里喷射出来,冲击破坏土体,当能量大、速度快和呈脉动状的喷射流的动压超过土体结构强度时,土料便从土体剥落下来,高压流切割搅碎的土层,呈颗粒状分散,一部分被浆液和水带出钻孔,另一部分则与浆液搅拌混合,随着浆液的凝固,组成具有一定强度和抗渗能力的固结体,当喷射流以360°旋转、自下而上喷射提升时,固结体的截面形状为圆形即称为旋喷。在钻机的钻杆最前端设置一个高压液体喷射装置,当钻机把该高压喷射装置送到土层预定深度时,通过高压泵向钻杆中心孔连续输送高压水泥浆液,高压水泥浆液即通过喷射装置中的喷嘴小孔喷入钻杆周围的砂层、土层及砂土层,与此同时钻机带动钻杆缓慢旋转并提升使喷嘴缓慢螺旋上升,从而使高压水泥浆不断切割搅拌土层,形成水泥、砂、土及速凝剂的混合搅拌浆体,通过固化剂和软土间所产生的一系列物理化学反应,生成水化物,然后水化物胶结形成凝胶体,将土颗粒凝结在一起形成具有整体性、水稳定性和较高强度的结构整体,从而提高其复合地基承载力及改变地基土物理化学性能,达到提高地基承载力、减少地基沉降、阻止水体流动、增强地基稳定性的目的。旋喷桩主要用于加固地基,提高地基的抗剪强度,改善地基土的变性性能,使其在上部结构荷载作用下,不至破坏或产生过大的变形。
  3、施工流程
  旋喷注浆施工流程可大致分为:施工准备,试桩、技术参数确定→测量放样,桩机就位,钻孔,水泥浆制备,旋喷和复搅,提管冲洗,移动设备→桩基工后检测;
  3.1、 施工准备:钻机进场之前首先进行场地布置,清除施工区域的杂物,平整场地施工段落要平整密实,做好排水工作,确保在较干净的环境中进行施工,其次,准备好施工用电和施工用水;施工用电使用沿线设置的变压器并配备发电机在施工现场,架设电缆接线到施工作业区。
  3.2、试桩、技术参数确定:每个工点施工前必须先打不少于3根的工艺试验桩,以检验机具性能及施工工艺中的各项技术参数,其中包括最佳的灰浆稠度、工作压力、钻进和提升速度等,还应根据被加固土的性质及单桩承载力要求,确定水泥掺入量。通过试验桩确定本工程高压旋喷桩施工技术参数为:水灰比为1:1;钻进、工作压力20~25Mpa;提升速度≤0.25m/min;桩顶1米范围提升速度≤0.2m/min;转速应控制在20~25r/min,水泥掺入量范围在180~220Kg/m之间。
  3.3、测量放样:测量人员根据施工图纸提供的坐标、平面布置图,在施工段落进行布桩,桩位用小木桩红色头醒目标注,桩间距误差不大于50mm,布桩完成自检合格后报监理工程师验收,验收合格后进行下一步工序。
  3.4、钻机就位:搅拌机具运至现场后进行安装调试,待转速、压力及计量设备正常后就位。钻机就位时先使钻头对准桩位标志中心,然后进行钻杆的双向调平,之后,再次调整对中,最后再精确调平。垂直度误差不超过1%,对中误差小于5cm。
  3.5、钻孔:每台钻机在开钻前,技术人员对钻杆总长度进行尺量,根据桩长、设计桩顶标高、原地面标高计算下钻节数,并在最后一节钻杆上标定出下钻结束位置。钻孔的目的是为了把注浆管置入到预定深度,钻孔方法采用单管法旋转钻机。在钻杆下钻时采用小于10Mpa的水泥浆压力,一方面防止堵喷嘴,另一方面对土体进行第一次喷射,使土体成为混合液,减小喷浆时土体的阻力,以利于浆液充分搅拌,钻到设计的深度。成孔后,应校检孔位、孔深及垂直度,是否符合设计要求。
  3.6、灰浆的制作:选用优质42.5#普硅水泥,根据搅拌桶的大小、水灰比、泥浆比重来标定最大水位线,按水灰比1:1添加水泥,并经充分搅拌,测定泥浆比重是否达到试配时比重1.47,如达不到继续添加水泥直至达到试配水泥浆比重为止。搅拌时间少于4分钟的不得使用,超过初凝时间的浆液也不得使用;灰浆经过两道过滤网的过滤,以防喷嘴发生堵塞;抽入储浆桶内的灰浆要不停地搅拌。
  3.7、旋喷和复搅:将注浆管下到预定深度后,调整回流阀门,使旋喷罐内的压强达到规定值,水泥浆到达喷嘴后,检验喷射方向、摆动角度,一切合格后,调整工作台和油泵阀门,使旋转速度控制在20—25 r /min和提升速度达到20-25cm /min的范围时开始提杆、旋喷,由下往上成桩,在桩头以下1米范围复喷提钻时采用最慢的1档提钻上升,并复喷一次,增加桩体的密实度,因为桩顶以下1米范围将承受较大的荷载,加强此处桩体的质量对发挥桩体的承载力起关键作用。当喷浆结束后,要对注浆孔进行二次回灌,防止旋喷桩体因水泥浆固结出现顶部凹陷而达不到设计桩顶标高。在施工过程中,旋转速度、提升速度、旋喷压力、水泥用量参数的变化将直接影响桩的均匀程度和桩径,水灰比参数的变化将会影响桩身的强度,因此必须时刻注意检查浆液初凝时间、水泥浆流量及压力、提升速度、旋摆角度、喷射方法等参数是否符合设计要求,并随时作好记录,如遇故障应及时排除。
  3.8、提管冲洗:喷射作业完成后,将注浆泵的吸浆管移到水箱内,在地面上喷射,以便把泥浆泵、注浆管内的浆液全部排除,防止残存水泥浆将管路堵塞。
  3.9移动设备:移动钻机至下一孔位,为确保桩与桩之间能很好咬合,宜采用打一跳一法,且间隔时间应大于36小时。
  4、质量检验 高压旋喷桩完成28d后方能进行质量检验。
  4.1、触探及抽芯检验
  成桩7d内采用轻型触探进行N10检测,检测频率为工程桩数的2%。抽芯检验的总桩数不得少于工程桩数的3‰,单位工程桩数小于1000根时,至少做3根。桩芯无侧限抗压强度(28d)应满足如下要求:桩顶~2/3桩长范围:≥1.6MPa;2/3桩长~桩尖范围:≥1.4MPa。
  4.2、高压旋喷桩单桩承载力要求
  高压旋喷桩单桩承载力表
  桩长(m) 单桩承载力(KN)
  10 307
  11 337
  12 367
  13 397
  14 427
  15 442
  质量检验标准
  序号 控制参数 控制标准值 备 注
  1 桩机安装垂直度偏差 <1% 查施工记录
  2 桩位偏差 ±50 mm 查施工记录
  3 注浆压力 ≥20Mpa 查施工记录
  4 水灰比 1:1 查施工记录
  5 水泥用量 ≥180kg/m 查施工记录
  6 桩径 ≥600mm 开挖抽查2%
  7 桩长 不小于设计值 查施工记录
  8 旋转速度 20~25r/min
  9 喷提升速度 10~25 cm/min
  10 桩身强度 不小于设计值 抽芯检查

  5、注意事项
  5.1、施工时应先施工内排桩,后施工外排桩
  5.2、水泥浆液应连续供应。如发生断浆现象,须复打,复打重叠长度必须大于1.0m。
  5.3、浆液拌和应均匀,不得有结块;浆液不得离析或停滞时间过长,超过2小时应停止使用。
  5.4、构造物基底水泥搅拌桩桩顶高程应根据构造物底高程进行计算确定,同时应考虑凿除50㎝桩头的影响。
  5.5、旋喷废浆应予以充分利用,施工过长中可在相邻桩之间开挖一定深度的浆液存贮沟(沟宽0.6~0.8米,深0.8~1.0米),待浆液凝固后形成具有一定强度的桩间横系梁,以增强各桩间共同作用,提高地基承载力。施工中控制冒浆量小于注浆量的20%,超过20%或完全不冒浆应查明原因,采取措施。
  5.6、成桩28d后,可开始基槽开挖,凿除50㎝软桩头,桩头凿除后桩长不得小于设计桩长。
  5.7、提钻喷浆的速度控制,控制好旋喷速度,保证不大于25cm/min且稳定,灌浆管分段搭接的长度不得小于10cm。底部时应适当加大压力保证底部桩头大于设计,顶部时应重复提钻喷浆一次保证桩头的完整。
  5.8、提升旋喷过程中确保压力达到设计要求,不小于20Mpa,使足够的水泥浆压入土体,钻杆旋转速度再规定范围内,20~25r/min,确保桩体的均匀性和整体性及强度。
  6、结语
  实践表明,采用高压旋喷桩技术进行软土地基加固的效果是显著的,它具有加固体强度高、加固质量均匀、施工操作简便、占地高度小等特点,可用于处理加固淤泥质土、粉土、粘土等软土地基,适用于场地狭窄、不宜进驻大型机械设备等场合,可有效地减少地基总沉降量和不均匀沉降,地基处理效果明显。
  参考文献:
  [1] 叶书麟. 地基处理工程实例应用手册[M].北京:中国建筑工业出版社,1983,3
  [2] 程云朋. 高压旋喷桩在地基加固中的应用探讨[J]. 山西建筑,2007
  [3] 李 兵. 高压旋喷桩施工技术[J]. 甘肃科技,2005

基于计算机雷达图像道路地下病害识别技术研究

​​​1 引 言 据不完全统计,2014年我国城市道路出现塌陷事故2000余起,全国遭受道路塌陷事故影响的城市超过50个,主要分布于北京、上海、广东等20余个省区市。国土资源部、水利部发布的材料显示,全国受道路塌陷影响的城区范围接近2万平方公里。道路塌陷事故主要集中在三个区域,分别是:长江三角洲地区、珠江三角洲地区、华北地区。道路塌陷事故严重威胁了城市的公共安全,破坏了正常的交通秩序。如果能够提前发现并进行处理,就可以在最大程度上减小道路突然塌陷带来的损失。目前道路快速检测有效的手段是通过分析探地雷达图像,发现道路地下病害。 1.1 研究的目的与意义道路是一个城市最重要的基础设施,也是人员往来、经济发展的重要通道。随着我国经济、技术的快速发展,城市道路里程不断增加、交通运输越来越便利。城市规模的不断扩大,城市人口的不断增加,使得地面空间已无法满足人们的需求,地下空间就成为地面空间的有益补充,从各类管线到地下交通网络,地下空间的利用也趋于层次化和规模化。再加上浅层地质结构的多样性和复杂性,使得城市道路下方夯土随时都可能会受到自然的和人为的影响。因此,在道路建设快速发展的同时,道路养护工作也开始受到重视。2014 年年初,北京市交通委路政局通过城市道路巡查信息管理软件,设立道路养护站点,有效缩短了道路病害修复时间[1]。探测和修复道路地下病害是道路养护的关键问题。通常情况下,地下病害主要有疏松、空洞和富水异常(下面简称富水)三类。这些隐患可能导致路面出现唧浆、龟裂等病害,严重的空洞甚至会导致路面突然塌陷。2014 年 9 月 25 日上午,北京黄杉木店路富华家园西南门发生路面塌陷,半间房屋塌陷掉入坑中,所幸无人员伤亡[2]。传统的道路养护与检测方法主要依靠人力完成,不仅准确度较差,而且具有明显的滞后。近些年来,道路塌陷时有发生,由于养护与检测手段落后,致使人民生命财产遭受严重损失。2012 年 4 月 1 日,北京市民杨女士途经北礼士路物华大厦东侧的便道时,突遇路面塌陷,坠入热水坑。4 月 9 日,杨女士终因医治无效死亡,年仅 27 岁[3]。因此,道路检测急需采用先进仪器,利用先进的地球物理技术实现准确的检测和养护。尽可能减小不必要的损失。探地雷达(Ground Penetrating Radar, GPR)是应用地球物理科学的重要组成部分。探地雷达能够发射和接收微波段高频宽带电磁波。由于电磁波在地下介质交界面会发生反射,通过分析地下介质界面反射电磁波的波形特征,就能够获取地下目标的空间位置,构成材质等特征信息[4]。.......... 1.2 国内外研究状况和进展探地雷达的发展前后经历了 100 多年,这期间,德国人做出了重要贡献。探地雷达的雏形诞生于 1904 年,德国人 Hulsemeyer 发现电磁波能够探测地面金属物体[5]。1910 年德国人 Leimbach 和 L wy 第一次具体阐明了探地雷达相关技术,并获得了专利。1926 年,德国人 Hülsenbeck 发现介电常数不同的介质,会在其交界面产生电磁波反射,他以此提出了运用高频电磁波脉冲探测地下目标体的思路[6]。在第二次世界大战(1939 年-1945 年)期间,处于军事目的和战争需要,探地雷达得到了快速发展和应用,浅地层目标探测得以实现。1960 年越战时期,麻省理工学院推出了一种探测浅地层空洞的设备,用于发现越南战场中的地道[7]。同年,CookJ.C 用脉冲雷达在矿井中做了试验,但是由于地下介质比起空气,具有较强的电磁波衰减特性,加之地质情况的多样性,电磁波在地下的传播要比在空气中复杂的多[8]。随着电子信息技术的发展,仪器的信噪比得到了很大提高。探地雷达应用范围也迅速扩大,从早期的冰层、岩盐矿等弱耗介质扩展到土层、岩层、煤层等有耗介质。上世纪 70 年代以后,探地雷达被应用于石灰岩采石场的探测、工程地质探测、煤矿井探测等。进入上世纪 80 年代,随着民用市场的兴起,无载频脉冲探地雷达率先进入市场,发达国家竞先研制出民用探地雷达产品。之后,随着探地雷达产品不断更新换代,目前探地雷达技术已经相对成熟[9]。探地雷达技术用于路基路面检测始于上世纪 80 年代。1983 年,美国人 Benson等人就已经开展了公路沉降和塌陷的相关研究[10]。1984 年,Rodeick 等人采用探地雷达进行高速公路空洞探测研究[11]。1991 年,美国联邦公路局在道路工程应用中取得了一系列进展,成功探测了路基分层的厚度和路面脱空、路基空洞等道路病害。1993 年,日本人関口森江(M. Sekiguchi)等将探地雷达与钻孔摄像机结合起来,开发了一种道路结构探测系统[12]。1994 年,Kim Roddis 等比较了堪萨斯州 11种不同类型道路在探地雷达数据分析上的差异,这些差异主要是由于路基材质和设计结构决定的[13]。1995 年,美国劳雷工业公司与 GSSI 公司合作,在 10 个月内推出了世界第一套空气耦合高速路面检测雷达系统,并在中国一次试验成功,如图 1.2 所示。......... 2 探地雷达技术及数据特征 探地雷达是目前城市道路地下病害探测的主要手段,具有检测速度快、精度高的优点。本章从电磁场理论入手,导出了电磁波的波动方程。在理论介绍的基础上,阐述了探地雷达技术的原理和现状,对探地雷达数据的形式、特点和标定等问题作了简要说明。 2.1 电磁场理论1820 年,丹麦物理学家奥斯特首次发现了电流对磁针的作用,即电流的磁效应。1837 年,英国物理学家法拉第首先提出自然界同时存在着电场和磁场,电场和磁场都只能在一定的范围起作用,将原先难以捉摸的“超距作用”变为可以理解和研究的“场”。从 1855 年开始,英国物理学家麦克斯韦在研究弹性力学和结构力学之余,又对新兴的电磁学感兴趣,将自己熟悉的弹性力学和电磁现象结合起来,通过三篇论文将电磁场理论用简洁、对称、完美数学形式表示出来,经后人整理成为经典电动力学的基础,这就是麦克斯韦方程组[55]。据此,他在 1865 年就预言了电磁波的存在。1888 年,德国物理学家赫兹在麦克斯韦去世 10 年之后,终于用实验验证了电磁波的存在。经典电动力学认为静电场和静磁场分别由静止电荷和恒定电流所产生,它们各自独立,分别满足各自的方程。当电荷、电流的分布随时间变化时,电场和磁场就不再相互独立,而是相互激发、相互影响、形成统一的电磁场。电磁波就产生于这个时变的电磁场。由此可见,以上由麦克斯韦方程组导出的,描述电磁场波动特征的一组微分方程就称为波动方程。波动方程可以描述自然界中的各种波动现象,包括横波和纵波,例如声波、光波和水波等等。波动方程是分析电磁波在各类介质中传播的重要数学基础。........ 2.2 探地雷达技术探地雷达(Ground Penetrating Radar)是一种用于地下介质结构探测的电磁仪器,它通过发射天线发射高频宽带(1MHz~10GHz)电磁波,再通过接收天线接受地下介质的反射电磁波,最后将反射电磁波通过数字电路转换成数字信号记录到存储设备上。由于探地雷达具有探测精度高,速度快等优点,是工程无损探测的一种重要的手段。目前,意大利系统工程公司(IDS)、瑞典 MALA 公司、加拿大探测器及软件公司(SSI)和美国地球物理探测设备公司(GSSI)是探地雷达的制造商,他们都推出了用于道路检测的探地雷达产品,如图 2.1 所示。从 80 年代开始,经过三十多年的研究和开发,国内探地雷达产品已经发展成熟,逐渐形成了自己的体系,从信号采集到数据处理,均达到了世界领先水准,在国内外具有一定知名度。中国矿业大学(北京)资源与安全开采国家重点实验室、长安大学公路学院等单位在探地雷达的理论研究,仪器开发和应用推广等方面做出了重要贡献。目前进入市场的产品包括中国矿业大学(北京)研制的城市道路检测探地雷达系统,如图 2.2 所示,中国电子科技集团公司第二十二研究所(青岛)的 LTD 系列探地雷达等等。探地雷达技术与其他道路无损检测技术相比,具有检测速度快,检测精度高的优点,因此成为城市道路检测的主要手段。然而,探地雷达数据与其他地球物理探测数据一样,具有解释难度大、人工解释经验需求高、解释周期长的困难,这对探地雷达道路检测的应用和普及造成了一定困难。本文采用中国矿业大学(北京)的探地雷达仪器,研究其道路地下探测图像和地下异常识别方面的算法,降低数据解释的难度,缩短解释的周期。............ 3 道路病害物理模型设计与特征测量 .........173.1 物理模型的结构 ...... 173.2 物理模型的设计 ...... 203.3 物理模型的特征测量 ...... 233.3.1 地下空洞探测 ........ 233.3.2 密实度监测 .... 353.3.3 路面沉降监测 ........ 393.4 本章小结 .......... 424 城市道路地下异常识别算法 .....434.1 基于希尔伯特边际谱的地下异常识别算法 .......... 434.1.1 经验模态分解 ........ 434.1.2 希尔伯特谱和边际谱 .... 454.1.3 实验结果与分析 .... 464.2 基于核匹配追踪的地下异常识别算法 .......... 554.3 本章小结 .......... 675 城市道路地下异常度量算法 .....695.1 探地雷达数据预处理 ...... 695.1.1 探地雷达数据降噪 ........ 695.1.2 探地雷达数据偏移归位 ........ 765.1.3 探地雷达数据精细配准 ........ 815.1.4 探地雷达数据标间配准 ........ 965.2 基于周期探测的地下异常度量算法 ...... 995.3 城市道路地下病害探测应用 ........ 1065.4 本章小结 .........110 5 城市道路地下异常度量算法 以往城市道路地下病害解释只能在一次探测结果上进行,因其结果经常受到周围环境的严重干扰,解释结果存在误差。由于危及城市道路安全的地下空洞会随着时间不断恶化,需要对城市道路进行多次探测。通过比较不同时期探测数据的差异,识别城市道路地下病害。为准确比较不同时期探测数据的差异,需要对城市道路地下异常准确度量,确定城市道路地下异常的位置及范围。具体说来,首先通过迭代 Myriad 滤波降噪算法,降低探地雷达数据中的噪声干扰。接着通过克希霍夫积分偏移算法,对探地雷达探测图像中的信号进行偏移归位,从而有效提高位置和范围计算的精度。然后通过探地雷达图像精细配准算法或标间配准算法,将两幅图像的相似区域完全对应到相同位置。最后,选择适合的滑动窗口,通过相关性比较探地雷达数据的差异,度量地下异常的位置和范围。 5.1 探地雷达数据预处理在探地雷达图像数据的采集过程中,噪声干扰是难以克服的现象。随着探测深度的增加,反射信号的噪声也越来越明显[77-78]。噪声干扰按照来源区分,主要有以下几类:一、发射天线和接收天线之间存在耦合波干扰。即使采用了金属等屏蔽材料,依然不能保证发射天线的电磁波不会耦合到接收天线上;二、发射天线与发射电缆阻抗不匹配。发射天线与发射电缆连接时必须考虑阻抗匹配问题,否则会导致能量损耗,形成驻波干扰信号;三、天线发射信号与天线屏蔽罩之间的振荡干扰。对于宽频带天线而言,屏蔽罩难以保证对所有频率信号均良好屏蔽,往往会存在天线发射信号与天线屏蔽罩之间的振荡干扰;四、天线馈点反射信号干扰。馈点是天线与馈线的连接点,尽管可以采用吸收材料吸收部分反射信号,仍会有部分信号引起驻波干扰;五、发射脉冲信号的旁瓣干扰。理论上,发射脉冲信号不存在旁瓣,在现实中不可能只有主瓣信号,这些旁瓣信号也会引起干扰。

........ 结论 本文以探地雷达探测图像为研究对象,重点分析了目前探地雷达用于城市道路地下病害探测的相关技术难点,重点突破探地雷达图像解释难度大、人力解释经验需求高、解释周期长的困难。重点围绕城市道路地下异常识别与度量的目标,建立城市道路地下空洞动态演化模型,研究基于探地雷达图像的异常识别、异常度量等关键问题。本文的主要工作可以归纳如下:一、通过城市道路地下病害物理模型实验,能够得到以下结论:当地下施工等扰动发生时,一方面由于扰动形成地下空洞,周围土体由于受到应力不均,引起密实度下降,从而引起路面沉降。另一方面,地下形成空洞会导致地下土体与空气接触,水分持续挥发引起密实度下降,进而引起路面沉降。二、通过城市道路地下异常识别算法研究,能够得到以下结论:1、由于地下空洞和金属管线两种异常均能引起希尔伯特边际谱的变化,因此基于希尔伯特边际谱的地下异常识别算法不仅可以用于地下空洞的探测,还可以用于金属管线的探测。基于希尔伯特边际谱的地下异常识别算法能够对单一的砂质粉土模型,通过边际谱的幅值大小估计密实度状况,进而发现地下异常。在城市道路地下探测的过程中,受到地下管线、构筑物等影响,通过上述算法估计的密实度可能存在误差。2、基于核匹配追踪的地下异常识别算法。通过小波核函数的占比估计密实度状况,从而发现地下异常。平均密实度的估计结果不会受到金属管线的干扰,对探测地下松散和空洞病害具有较好的应用前景。三、通过城市地下异常度量算法研究,能够得到以下结论:1、通过迭代 Myriad 滤波降噪算法,降低探地雷达数据中的噪声干扰,取得最佳信噪比为 28.357dB,与 Myriad 滤波降噪算法相比信噪比提升了 3.5dB。因此,相比于Myriad滤波降噪算法,迭代Myriad滤波降噪算法能够取得更好的滤波效果。2、通过克希霍夫积分偏移算法,能够对探地雷达探测图像中的信号进行偏移归位,当参数为 30 时,可以达到最佳的偏移效果。3、通过探地雷达数据精细配准算法或标间配准算法,保持数据的一致性。通过实验证明,精细配准和标间配准在丢道达到 90%的情况下,还原的探地雷达数据与原数据的相关系数仍然能够达到 0.9 以上。这就能够部分去除由于数据丢道、采集软件设置、含水率变化等因素引起的一致性差异。由于配准通过水平和垂直方向的差值实现,因此减少了对信号特征的破坏。..........参考文献(略)​​​​

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页