您当前的位置:首页 > 发表论文>论文发表

脱硫煤研究论文

2023-02-24 14:56 来源:学术参考网 作者:未知

脱硫煤研究论文

巨野煤田煤质分析及科学利用评价
摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田
是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。
[关键词]煤质分析;煤质特点;科学利用;评价
1巨野煤田煤质分析
1.1煤的工业分析
工业分析是确定煤组成最基本的方法。在指标
中,灰分可近似代表煤中的矿物质,挥发分和固定碳
可近似代表煤中的有机质。
衡量煤灰分性能指标主要有灰分含量、灰分组
成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是
动力用煤和气化用煤的重要性能指标。一般以煤灰软
化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。
1.1.1龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆
时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖
触及底板变成球形时的温度;半球温度(HT)为灰锥形
变至近似半球形,即高约等于底长的一半时的温度;
流动温度(FT)为煤灰锥体完全熔化展开成高度<1.5 mm
薄层时的温度。
1.1.2彭庄矿钻孔煤样工业分析结果(表2)
2煤质特点及科学利用评价
2.1巨野煤田煤质特点
由煤炭科学研究总院《巨野矿区煤质特征及菜加
工利用途径评价》2003.5可以看出巨野煤田煤质有
如下特点:①灰分含量低,属于中、低灰煤层。②挥发
分含量高,各煤层原煤的挥发分含量在33%以上,且
差异不大,均属于高挥发分煤种。③磷含量特低;硫分
含量上低下高。④干燥基低位热值高。各层煤的都比
较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质
层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量
在86.02%~86.51%之间,氢含量在5.41%~5.44%之
间,C/H比值<16。⑦灰熔点上高下低。
2.2成浆性实验评价
2008年1月,华东理工大学对巨野煤田龙固矿
(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验
及评价。
2.2.1成浆浓度实验
成浆浓度是指剪切速率100 s-1,粘度为
1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制
浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作
为添加剂,用量为煤粉质量的1%。制成一系列浓度的
水煤浆,测量其流动性,观察水煤浆的表观粘度随成
浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度
也明显升高。本实验3种煤样成浆浓度分别为龙固矿
66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。
2.2.2流变性实验
水煤浆流变特性是指受外力作用发生流动与变
形的特性。良好的流变性和流动性是气化水煤浆的重
要指标之一。
将实验用煤制成适宜浓度的水煤浆,然后用
NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表
观粘度随剪切变化的规律绘制成曲线,观察水煤浆的
流变特性,见表11。
从表11可以看出,3种煤制成的水煤浆中,随着
剪切速率增大,表观粘度都随之降低,均表现出一定
的屈服假塑性。屈服假塑性有利于气化水煤浆的储
存、泵送和雾化。
2.2.3实验结论
煤粉粗粒度(40~200目)和细颗粒(<200目)质
量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质
量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆
浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加
压气流床水煤浆气化技术对水煤浆浓度的要求。
2.3原料煤的应用
2.3.1适合于制备水煤浆
水煤浆不但是煤替代重油的首选燃料,而且是加
压气流床水煤浆气化制备合成气的重要原料。同时它
又是一种很有前途的清洁工业燃料。实践上,华东理
工大学“巨野煤田原煤成浆性实验评价报告”表明:巨
野煤田各矿井原料煤均适合于制备高浓度稳定水煤
浆。
2.3.2用于煤气化合成氨、合成甲醇及后续产品
巨野煤田原煤属于高发热量的煤种(弹筒热平均
值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高
(>1 300℃),有利于固态排渣。根据鞍钢和武钢分
别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,
巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一
样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,
作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。
煤气化得到的合成气既可通过变换用于合成
氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲
醇为基础可进一步合成其他约120余种化工产品。另
外,还可利用甲醇制备醇醚燃料及合成液体烃燃料
等。
2.3.3用作焦化原料
焦化用于生产冶金焦、化工焦,其副产焦炉煤气
可用于合成甲醇或合成氨,副产煤焦油进行分离和深
加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可
以供将来的400万t/a焦化厂或者上海宝钢等大型
钢铁企业生产I级焦炭时作配煤炼焦使用;灰分
≤9.0%的8级精煤(2#),也可供华东地区的中小型焦
化企业生产2级和3级冶金焦的配煤炼焦使用。此
外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏
高,最好进行配煤炼焦。2.3.4远景目标———煤制油
煤直接液化可得到汽油、煤油等多种产品。巨野
煤田的大部分煤层均为富油煤,尤其是15煤层平均
焦油产率>12%,属高油煤;根据元素分析计算的碳氢
比各煤层均<16%;大部分煤层挥发分>35%的气煤和
气肥煤通过洗选后的精煤挥发分>37%,而其灰分
<10%。因此,巨野煤田的煤炭都是较好的液化用原料
煤。
煤间接液化可制取液体烃类。煤经气化后,合成
气通过F-T合成,可以制取液体烃类,如汽油、柴油、
石腊等化工产品及化工原料。
3结语
综上所述,巨野煤田第三煤层大槽煤属于低灰、
低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资
源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是
国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用
煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的
重要原料。因此,菏泽大力发展煤气化合成氨和甲醇
并拉长产业链搞深度加工是必然的正确选择。

选煤技术论文

在万方数据下载一片论文,拿来与你分享!!
选煤方法的确定
0前言
选煤工艺流程的选择应以原料煤性质、用户对产品的要
求、最大产率和最高经济效益等因素为依据,科学确定简单、
高效、合理可行并且能够满足技术经济要求的工艺流程。选
择具有先进技术和生产可靠的分选方法;根据用户的要求能
分选出不同质量规格的产品;在满足产品质量要求的前提下
获得最大精煤产率,同时力求最高的经济效益和社会效益。
选煤方法是制定选煤工艺流程的核心问题。选煤方法
的确定主要取决于煤的可选性和产品质量要求,也要考虑煤
的种类、粒度、地区水资源条件、能够获取的设备技术水平以
及技术经济上的合理性等其他因素。跳汰选煤方法在大多
数国家煤炭分选比例中占有主导地位,但是近年来我国在重
介质选煤规模和技术水平方面有了较大的发展和提高,尤其
是三产品重介质旋流器选煤的应用更是有了长足进展。本
文就选煤方法进行阐述。
l跳汰选煤法
跳汰选煤法工艺流程简单、生产能力强、维护管理方便、
生产成本低、分选极易选和易选性煤可以获得较高的数量效
率。在处理一般可选性煤时,也能达到较好的工艺指标,因
此,在选煤厂设计中普遍采用。跳汰选煤法的适应性强。分
选粒级宽,分选上限可达50—100姗,下限为0.3—0.5 mill。
既可以分级入选,也可以不分级人选。跳汰选煤法的分选效
率受给料性质影响较大,在细粒物料多、可选性差的条件下,
分选效率会显著下降。跳汰机对于易选煤的分选精度与重
介质选相当,但是,在要求出低灰精煤产品时,如果分选密度
低于1.40 g/cm,时,可能由于可选性变难,造成跳汰机难以
操作,无法保证正常分选效果。跳汰机排矸不受分选密度高
的限制,但是对于原煤中块矸含量很多,特别是矸石易于泥
化条件下,采用动筛跳汰机排矸也是选煤设计的特点,这样
可以将泥岩矸石尽早从系统中排出,对后续主选工艺非常有
利。近年来,对跳汰机的结构进行了大量的改进。数控风阀
和排矸自动化技术都有了明显的提高,跳汰分选效率得到很
大的提高,对于易选和一般性可选的煤,在技术经济合理的
情况下,仍然可以采用选煤方法。
2重介质选煤法
重介质选煤法是重力选煤方法中重要的方法之一适宜
分选难选和极难选煤,它的分选粒级宽。目前,在重力场中
分选时,块煤重介质分选粒度上限一般为300 mm,最大可达
1 000 mill,下限为3—6 mm。如果在离心力场中(如重介质旋
流器内)分选,分选粒度下限为0.15—0.2 mm,甚至更小些。
给料的粒度上限,主要由重介质旋流器的人料管直径决定,
目前末煤用重介质旋流器分选粒度上限为13—25 mm,大直
径无压给料重介质旋流器的人料粒度上限可达50一80 mm。
重介质分选可实现稳定的低密度分选,分选精度高,能
够生产出高质量的精煤并得到较好的分选指标。重介质分
选易于实现自动控制,人为操作因素小,块煤分选机分选效
率可达95%,重介质旋流器约达90%左右。块煤重介质分选
机无论是作为选矸还是作为主要分选设备,在我国都得到很
大的发展。但是块煤重介质分选机在排矸分选密度大于
1.80 g/cm3时,重介质悬浮液难以配制,这时可以考虑采用
单段跳汰机。
重介质旋流器随着技术发展,入选粒度上限已扩大到38
.80 mm。已在更多的选煤厂设计中得到应用。当要求出块
煤产品时,采用有压人料重介旋流器不利于保护块煤产品,
但有效分选下限较低。三产品无压入料重介质旋流器是近
年来发展起来的一项新技术,它的特点是能以单一低密度重
介质悬浮液系统一次分选出质量合格的精煤、中煤和矸石产
品,相对有压人料重介质旋流器能够减少矸石泥化,省略了
一套高密度重介质悬浮液的制备、循环、回收系统,简化了流
程,降低了成本。三产品无压人料重介质旋流器分选技术已
在国内众多炼焦煤选煤厂得到应用。
重介质选煤流程较为复杂,设备、管道、阀门容易磨损,
维修养护工作量较大。在操作、调节方面的要求更严格,保
证设备正常运行对生产控制自动化要求更高。随着新的耐
磨材料的使用,设备、管道等磨损严重的问题逐渐得到一定
程度的解决,而介质耗量较大仍是困扰我国重介质选煤的一
个主要问题。当原煤中矸石易于泥化,细泥含量很大的时
候,工作悬浮液的密度、粘度等特性参数会发生很大变化,导
致分选效果变坏,也会给脱介和介质系统带来许多问题,此
时,选择重介质选,特别是有压入料重介质旋流器时,应当十
分谨慎。目前采用重介质选煤法的主要是炼焦煤选煤厂,对
于动力煤选煤厂是否采用应当进行全面技术经济比较。
3煤泥浮选法
浮选既是煤泥分选方法,也是选煤厂洗水净化的有效方
法。随着采煤机械化程度不断提高,煤矿开采深度加大,原
煤中<0.5 mnl的粉煤量也越来越多,一般可达20%以上,因
此回收这部分精煤更加重要,浮选作为煤泥分选的惟一有效
方法也就得到更为广泛的应用。近年来,浮选机的发展迅
速,浮选柱技术得到推广应用,而微泡浮选机和喷射式浮选
机也在许多选煤厂得到应用,浮选设备向着大型、高效方向
发展。浮选成本虽然较高,但是对于炼焦煤选煤厂来说,回
收大量浮选精煤仍然可以获得可观的经济效益。
4摇床选煤法
摇床能够处理13 inn3以下的易选末煤和煤泥,它的优点
是结构简单、易操作、分选效果好、生产成本低、分选下限可
达200网目,由于摇床对细粒煤分选效果好,对于硫铁矿含
量高的高硫煤脱硫具有较好的脱硫效果,因此,在我国煤炭
含硫量较高的西南地区选煤厂中得到一些应用。从高硫煤
中回收硫铁矿,既可以减少高硫煤使用对环境带来的污染,
也可以向化工、化肥等行业提供工业原料,因此得到愈来愈
多的重视和应用。摇床的主要缺点是单层摇床单位面积处
理能力低,占地面积大。多层悬挂式摇床在很大程度上弥补
了普通摇床的缺点,而双头离心摇床则有效地降低了分选下
限,提高了对煤中硫铁矿的脱除能力。近年来摇床也作为从
洗矸中脱硫的主要设备。
5螺旋分选机选煤法和螺旋滚筒分选机
螺旋分选机适于处理13 inrtl以下的易选末煤和粗煤泥。
在实际应用中主要用于粗煤泥的分选,最佳分选粒度为1—
0.075 mill或2—0.10mill,有效分选粒度为6—0.075 mill,介于
跳汰选与浮选之间。螺旋分选机本身没有运动部件,占地面
积小。其缺点是高度大,设备参数不易确定和调整。螺旋分
选机可以和浮选机组成联合流程,分别处理粗煤泥和细煤
泥。可以有效地降低生产成本。
螺旋滚筒分选机用于处理6咖以上的物料。它以人选
原煤中小于0.3 mm的粉煤作为介质与水混合形成较稳定的
悬浮液,所以,又称为自生介质滚筒。螺旋滚筒分选机流程
简单,并具有拆装方便的特点,可以作为简易选煤设备用于
动力煤、炼焦煤(易选、中等可选)、脏杂煤及煤矸石的分选。
6水介质旋流器选煤法
水介质旋流器的突出优点是去掉了介质回收与净化工
艺过程,与其他高效分选设备配合使用,可以减少主要分选
设备的人选量,可用来处理易选末煤或粗煤泥。与其他末煤
或粗煤泥的分选设备相比,它的处理能力大,但是它只能保
证一种产物的质量合格,因此,水介质旋流器的使用应当考
虑两段选及联合流程,一般将水介质旋流器用做初选设备。
水介质旋流器本身没有运动部件,系统简单,生产成本低,但
其分选效率不高,国内外资料表明,其可能偏差E值在0.09
一O.21之间。
7 干选法j
传统的干法风力分选、风力跳汰和风力摇床分选效率
低,要求人料分级比小,水分低,世界各国已很少采用。我国
从20世纪80年代开始研究空气重介质流化床干法选煤工
艺,1992年,一座50 t/'h空气重介质流化床干法选煤示范厂
在七台河市投入使用,可以用来处理难选或极难选煤。空气
重介质选煤厂主要包括人选原煤准备系统、选煤系统、重介
质的脱介和回收系统、供风和除尘系统以及产品运输系统。
空气重介质分选研究为干法选煤开拓了良好的发展前景。
我国吸收了无风干式摇床和风选机的优点后,研制出了复合
式干法分选机。复合式干法分选机的人料粒度范围是80—0
衄,在宽粒度级别的情况下,细粒物料与空气形成气一固两
相混合介质,这种自生介质的分选作用可以提高分选效果。
实际应用表明,在宽粒度级别(80—0 ram)情况下分选效果较
好,而对于6—0 mm粉煤的分选效果不理想。目前,复合式
干法分选机在我国东北、西北等严寒和干旱地区的一些选煤
厂中应用。干法选煤对于缺水地区、以及遇水容易泥化的煤
种具有实际应用意义。
8 结束语
选煤方法的选择是选煤工艺的流程设计中的重要环节。
相关因素是多方面的,如:原煤粒度组成特性(含粒度组成)、
密度特性(含可选性);硫分构成及其赋存嵌布特性;产品结
构(含市场需求);分选效率;分选加工费用;相关的基建投资
费用;综合经济效益等。因此,选煤方法的确定必须作全面
的技术经济多方案比较,择优选用。现代化选煤厂最主要的
特点是效率高,这体现在能够适合人选原煤煤质特性的合理
的选煤工艺,能够实现用户所要求的产品结构。新的国家标
准<煤炭洗选工程设计规范)C.B50359----2005规定:选煤方法
应根据原煤性质(如粒度组成、密度组成、可选性、可浮性、硫
分构成及赋存特性、矸石岩性)、产品要求、分选效率、销售收
入、生产成本、基建投资等相关因素,经过技术经济综合比较
后确定。

《燃煤锅炉清洁燃烧技术的研究与探讨》这方面的论文?

下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧

一、前言
众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。
近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。

二、煤气化分相燃烧技术
烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。
一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。
气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。
煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。

煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。
原煤首先在气化室缺氧条件下燃烧和气化热解,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。
原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。
表一:气化室内各层的作用及主要化学反应
层区名 作用及工作过程 主要化学反应
灰层 分配气化剂,借灰渣显热预热气化剂
氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热
2C+O2=2CO 放热
还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热
H2O+C=CO+H2 放热
CO+H2O=CO2+H2 吸热
干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。
干燥层 使煤料进行干燥

在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。
原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。

三、煤气化分相燃烧锅炉的结构特点及应用
锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。
煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图)
气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。
在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。

燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。
对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。
设计煤气化分相燃烧锅炉时,应注意的几点:
1、合理布置煤气出口和煤焦出口的位置和大小;
2、煤焦的温度控制;
3、气化剂进口和进煤口;
4、合理设置二次风和防爆门;
5、气化室与燃烧室的水循环要合理。
由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为0.2t/h~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。
下面以一台DZL2t/h锅炉为例,改造前后对比见表二。
表二:DZL2t/h锅炉改造前后对比
改造前 改造后 比较
热效率 73% 78% 提高5%
耗煤量(AII) 380kg/h 356kg/h 节煤6.3%
适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广
锅炉外形体积 5.4×2×3.2m 5.9×2×3.2m 长度约增加一米
环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求

该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。

四、煤气化分相燃烧锅炉的特点
传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是:
(1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放;
(2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟;
(3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成;
(4)原煤中的硫大多在燃烧过程中氧化成SO2;
(5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。
煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点:
1、烟尘浓度、烟气黑度低,环保性能好。
在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。
2、节约能源、热效率高。
煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。
3、氮氧化物的排放低
在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在0.7-1.0之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。
4、有一定的脱硫作用
煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。
5、操作和控制简单易行
煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。
6、燃烧稳定,煤种适应性强
煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。

五、结束语
实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。

燃煤脱硫的简史及其发展

一、燃烧前煤脱硫技术

主要为煤炭洗选脱硫,即在燃烧前对煤进行净化,去除原煤中部分硫分和灰分。分为物理法、化学法和微生物法等。

1、物理法:主要指重力选煤,利用煤中有机质和硫铁矿的密度差异而使它们分离。该法的影响因素主要有煤的破碎粒度和硫的状态等。主要方法有跳汰选煤,重介质选煤,风力选煤等。

2、化学法:可分为物理化学法和纯化学法。物理化学法即浮选;化学法又包括碱法脱硫,气体脱硫,热解与氢化脱硫,氧化法脱硫等。

3、微生物法:在细菌浸出金属的基础上应用于煤炭工业的一项生物工程新技术,可脱除煤中的有机硫和无机硫。

我国当前的煤炭入洗率较低,大约在 20%左右,而美国为 42%,英国为94.9%,法国为 88.7%,日本为 98.2%。提高煤炭的入洗率有望显著改善燃煤二氧化硫污染。然而,物理选洗仅能去除煤中无机硫的 80%,占煤中硫总含量的 15%~30%,无法满足燃煤二氧化硫污染控制要求,故只能作为燃煤脱硫的一种辅助手段。

二、燃烧中煤脱硫技术

煤燃烧过程中加入石灰石或白云石作脱硫剂,碳酸钙、 碳酸镁受热分解生成氧化钙、氧化镁,与烟气中二氧化硫反应生成硫酸盐,随灰分排出。在我国采用的燃烧过程中脱硫的技术主要有两种:型煤固硫和流化床燃烧脱硫技术。

1、型煤固硫技术:将不同的原料经筛分后按一定比例配煤,粉碎后同经过预处理的粘结剂和固硫剂混合,经机械设备挤压成型及干燥,即可得到具有一定强度和形状的成品工业固硫型煤。固硫剂主要有石灰石、大理石、电石渣等,其加入量视含硫量而定。燃用型煤可大大降低烟气中二氧化硫、一氧化碳和烟尘浓度,节约煤炭,经济效益和环境效益相当可观,但工业实际应用中应解决型煤着火滞后、操作不当会造成的断火熄炉等问题。

2、流化床燃烧脱硫技术:把煤和吸附剂加入燃烧室的床层中,从炉底鼓风使床层悬浮进行流化燃烧,形成了湍流混合条件,延长了停留时间,从而提高了燃烧效率。其反应过程是煤中硫燃烧生成二氧化硫,同时石灰石煅烧分解为多孔状氧化钙,二氧化硫到达吸附剂表面并反应,从而达到脱硫效果。流化床燃烧脱硫的主要影响因素有钙硫比,煅烧温度,脱硫剂的颗粒尺寸孔隙结构和脱硫剂种类等。为提高脱硫效率,可采用以下方法:

(1)改进燃烧系统的设计及运行条件

(2)脱硫剂预煅烧

(3)运用添加剂,如碳酸钠,碳酸钾等

(4)开发新型脱硫剂

三、 燃烧后烟气脱硫技术

烟气脱硫的基本原理是酸碱中和反应。烟气中的二氧化硫是酸性物质,通过与碱性物质发生反应,生成亚硫酸盐或硫酸盐,从而将烟气中的二氧化硫脱除。最常用的碱性物质是石灰石、生石灰和熟石灰,也可用氨和海水等其它碱性物质。共分为湿法烟气脱硫技术、干法烟气脱硫技术、半干法烟气脱硫技术三类,分别介绍如下:

1、湿法烟气脱硫技术

湿法烟气脱硫技术是指吸收剂为液体或浆液。由于是气液反应,所以反应速度快,效率高,脱硫剂利用率高。该法的主要缺点是脱硫废水二次污染;系统易结垢,腐蚀;脱硫设备初期投资费用大;运行费用较高等。

(1)石灰石—石膏法烟气脱硫技术

该技术以石灰石浆液作为脱硫剂,在吸收塔内对烟气进行喷淋洗涤,使烟气中的二氧化硫反应生成亚硫酸钙,同时向吸收塔的浆液中鼓入空气,强制使亚硫酸钙转化为硫酸钙,脱硫剂的副产品为石膏。该系统包括烟气换热系统、吸收塔脱硫系统、脱硫剂浆液制备系统、石膏脱水和废水处理系统。由于石灰石价格便宜,易于运输和保存,因而已成为湿法烟气脱硫工艺中的主要脱硫剂,石灰石—石膏法烟气脱硫技术成为优先选择的湿法烟气脱硫工艺。该法脱硫效率高(大于95%),工作可靠性高,但该法易堵塞腐蚀,脱硫废水较难处理。

(2)氨法烟气脱硫技术

该法的原理是采用氨水作为脱硫吸收剂,氨水与烟气在吸收塔中接触混合,烟气中的二氧化硫与氨水反应生成亚硫酸氨,氧化后生成硫酸氨溶液,经结晶、脱水、干燥后即可制得硫酸氨(肥料)。该法的反应速度比石灰石—石膏法快得多,而且不存在结构和堵塞现象。

另外 ,湿法烟气脱硫技术中还有钠法、双碱脱硫法和海水烟气脱硫法等,应根据吸收剂的来源、当地的具体情况和副产品的销路实际选用。

2、半干法烟气脱硫技术

主要介绍旋转喷雾干燥法。该法是美国和丹麦联合研制出的工艺。该法与烟气脱硫工艺相比,具有设备简单,投资和运行费用低,占地面积小等特点,而且烟气脱硫率达75%—90%。

该法利用喷雾干燥的原理,将吸收剂浆液雾化喷入吸收塔。在吸收塔内,吸收剂在与烟气中的二氧化硫发生化学反应的同时,吸收烟气中的热量使吸收剂中的水分蒸发干燥,完成脱硫反应后的废渣以干态形式排出。该法包括四个在步骤:1)吸收剂的制备;2)吸收剂浆液雾化;3)雾粒与烟气混合,吸收二氧化硫并被干燥; 4)脱硫废渣排出。该法一般用生石灰做吸收剂。生石灰经熟化变成具有良好反应能力的熟石灰,熟石灰浆液经高达15000~20000r/min的高速旋转雾化器喷射成均匀的雾滴,其雾粒直径可小于100微米,具有很大的表面积,雾滴一经与烟气接触,便发生强烈的热交换和化学反应,迅速的将大部分水分蒸发,产生含水量很少的固体废渣。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页