燃煤过程中铬铅去向分析论文
摘 要:对煤炭燃烧后其中的铅、铬等危害环境的重金属元素的转化、迁移方向进行了分析研究,为电厂的环保工作提供了技术支持。
关键词:铅、铬元素;化学提取;分布规律
0 前言
煤炭中含有众多的微量元素,由于消耗量巨大,微量元素通过燃烧途径的迁移、转化,已成为其地球化学循环的重要分支之一。目前,我国煤炭消耗的大户是火电厂。煤炭及燃烧后灰渣中微量元素含量对环境影响巨大,而有关煤中痕量重金属在燃烧过程中的迁移转化规律,特别是在燃烧产物中的分布、形态分配以及环境稳定性的系统研究更少。
1 化学逐级提取法
本文采用的化学逐级提取法:将样品研磨过100目筛,称样品1.0g(准确至0.0001g),放入聚乙烯离心管,同时做平行样,进行逐级分离试验。逐级提取的样品经离心分离后取上清液测定,残渣消化后测定,同时对样品中各元素总量进行测定,以验证形态分离数据的合理性。
2 燃煤过程中微量重金属铬、铅的迁移转化规律研究
灰渣中微量元素的含量高低与燃用煤种、燃烧方式、燃烧温度、燃烧气氛、煤粉细度、元素存在形态等均有紧密的关系,影响因素复杂。
本次研究以河南省某电厂为实例,该厂总装机容量6×200MW,主要燃用山西煤,全厂采用静电除尘、灰渣分除、干除湿排的除灰渣方式。
2.1 入炉原煤、煤粉中铬、铅元素形态分析
由于元素的化学性质及在煤中存在形式不同,导致它们在燃烧中的行为也有所不同。以硫化物和有机物形式结合的元素以及在燃烧温度下易挥发的元素,易于在细微颗粒表面富集,而在燃烧温度下不易挥发的元素,易于留在较大颗粒中。只有深入了解煤中痕量元素的分布形式及化学亲和性,才能对煤燃烧产物中痕量元素的分布做出正确判断。
对采集的入炉原煤、煤粉用化学逐级提取法进行铬、铅的元素形态分析。结果显示,煤中Cr 、Pb均主要以稳定的残渣态存在。其中:
Cr主要以残渣态(80~93%)、铁锰氧化物结合态(5~12%)、有机结合态(2~6%)为主,碳酸盐结合态约0.2~1.2%。不同浸取状态百分含量高低顺序为:残渣态>铁锰氧化物结合态>有机结合态>碳酸盐结合态>>水溶态、可交换态。
Pb主要以残渣态(60~69%)、碳酸盐结合态(13~23%)、铁锰氧化物结合态(15~20%)为主,有机结合态约2~5%。不同浸取状态百分含量高低顺序为:残渣态>碳酸盐结合态>铁锰氧化物结合态>有机结合态>水溶态、可交换态。
2.2 燃煤过程中铬、铅在燃烧产物中的分布规律
入炉原煤、煤粉、灰、渣样中铬、铅含量分析结果表明:
(1)原煤中微量元素含量及分布规律与成煤物质和成煤过程有密切关系,与文献资料相比,电厂煤中Cr含量高于植物低于土壤,而Pb均高,说明Pb比Cr更易于富集在煤中。
(2)入炉煤粉与入炉原煤相比,Cr、Pb含量变化不大,Cr略有增加。电厂使用的钢球属低铬合金铸铁钢球,铬含量为1.83~1.89%,衬瓦铬含量为0.22~0.52%。
根据吨煤球耗121 g/t、煤本身的含铬量10~13mg/kg以及冲灰用水中的'总铬约0.006mg/L计算,由冲灰用水带入生产系统中的铬约占生产系统的0.06~0.07%,由钢球带入生产系统中的铬含量约占生产系统的14.5~18.1%(由于吨煤球耗包含锅炉大小修和清理滚筒时弃去不用的钢球,实际的钢球消耗量更低)。因此,电厂燃用煤是生产过程中铬主要来源。
(3)干灰、炉渣中Cr、Pb含量均较煤有明显升高,说明煤炭燃烧后,Cr、Pb都在干灰、炉渣中进一步富集,Cr更易于在炉渣中富集,Pb更易在干灰中富集。
Cr、Pb属亲氧元素,Cr的熔点和沸点高于Pb(见表1)。熔点高,燃烧时不易挥发,排入大气中少,而富集在灰渣中多;熔点低,燃烧时易挥发,当烟气冷却时,将发生凝聚和结核作用,导致其在细灰粒中有较高含量。结合前面元素形态分析的结果来看,原煤中Pb残渣态含量低于Cr,而碳酸盐结合态、铁锰氧化物结合态高于Cr,也说明Pb比Cr更易于燃烧完全,富集在灰粒中。
比较灰、渣中的铬和铅含量与文献值和国外公开发表的有关飞灰、底灰中元素含量,铬和铅属于该范围内的低值区;与全国土壤水平相比,铬含量与其相接近,铅含量高于土壤水平;与农用粉煤灰中污染物控制标准(GB8173-87)相比,远低于标准。
2.3 不同粒度灰样中铬、铅的分布规律
在煤炭中微量元素向环境传输的过程中,微量元素在燃煤灰样中的粒度分布是一个重要环节。灰样中微量元素的地球化学行为、归宿以及对外环境的效应都与粒度分布有密切关系。 不同电场灰样的粒度构成以及铬、铅元素在不同粒度范围内的含量分布:
(1)#1炉<0.050mm粒子含量约50~75%,#6炉<0.050mm粒子含量约80~88%, #6炉灰较#1炉灰样粒度细。
(2)不同电场,铅、铬含量呈现一定的变化趋势,表现在:#1炉二三电场>#1炉一二电场、#6炉三电场>#6炉二电场>#6炉一电场。 Pb、Cr都更易在细粒径上富集,大部分存在于<0.038~0.125mm灰粒上,最高值均在<0.050mm的颗粒级分,前3级分粒子中元素质量百分含量之和基本均达90%以上,有的达100%。
(3)飞灰中元素含量及富集情况与锅炉类型、燃烧方式有密切关系,充分燃烧,更有利于重金属元素在燃烧产物中富集。#6炉灰渣中的铅、铬含量高于#1炉灰渣,与#6炉燃烧更完全也有关。
2.4 燃煤灰渣中铬、铅形态分布的研究
环境颗粒物中不同化学形态的金属具有不同的化学活性和生物可利用性,因此,环境颗粒物中金属元素的形态分配研究受到人们关注。目前,对土壤、底泥等颗粒物中痕量金属的形态分析研究较多,而从污染源角度出发,对煤燃烧排放颗粒物(灰渣)中痕量重金属的形态分配研究甚少。
从前面的研究可看出,铬易富集在灰渣中,铅易富集在干灰中,不同粒径的颗粒具有不同的元素含量,它们均有在细粒子中富集的显著倾向。为研究它们在冲灰过程中以及环境中的释放和迁移,我们用化学逐级提取法研究了不同电场灰粒中六价铬、总铬与总铅的形态分布,从而对其在环境中的行为有一定的了解,为开展污染预防治理提供理论依据。
(1)试验结果。
试验方法同表1,结果见表2。
(2)结果分析。
①无论是干灰还是炉渣,Cr、Pb均主要以稳定的残渣态存在,这部分元素在环境中表现出高的稳定性,随着电厂冲灰过程,仍以颗粒物的形式向土壤或底泥迁移。
②水溶态、可交换态一般认为是由于吸附-解吸作用的颗粒物表面的离子形态,是环境中具较高迁移性的形态。从以上分析可看出,经高温燃烧后,干灰、炉渣中的Cr虽不主要以吸附作用存在于颗粒物中,但其水溶态、可交换态含量均比原煤中含量增加,环境稳定性降低。Pb在干灰、炉渣中的水溶态、可交换态含量基本为0,环境稳定性高。
③干灰中六价铬、Cr的水溶态、可交换态含量高于炉渣,环境稳定性低于炉渣。
④#6炉干灰样中Cr6+、Cr的水溶态、可交换态含量比#1炉高,#6炉灰样中Cr6+、Cr更易迁移到环境中。这与#6炉燃烧更完全有一定的关系,与实际冲灰过程的结果相符。
3 结论
当煤粉进入煤粉炉经高温燃烧后,铬、铅以与原来不同的比例分配在炉渣和除尘器下干灰中,它们在灰渣中进一步富集,由于元素本身及其化合物的物理化学特性差异,铬易于富集在炉渣中,铅则在干灰中的含量更高;铬、铅更易于在细灰粒中进一步富集,大部分存在于<0.038~0.125mm灰粒上,其含量随电场不同的变化趋势均为:三电场>二电场>一电场;充分燃烧,更有利于重金属元素在燃烧产物中的富集。
干灰和炉渣中的Cr、Pb均主要以稳定的残渣态存在,这部分元素在环境中表现出高的稳定性,随着电厂冲灰过程,仍以颗粒物的形式向土壤或底泥迁移;但干灰中的六价铬、Cr在水溶态、可交换态含量增加,环境稳定性降低,变得易在环境中迁移,而Pb的水溶态、可交换态含量基本为0,环境稳定性高。
参考文献
[1]@国家环境监测总站.中国土壤环境背景值[M].北京:中国环境科学出版社,1990.
[3]@金龙珠、吴涤生.石墨炉原子吸收测定河流底泥和煤飞灰中铅、镉、铜和铬[J].环境化学,Vol2No.5,1983:13~19.
[4]@王起超等.燃煤灰渣中微量元素分布规律的研究[J].环境化学,1996,15(1):20~26.
在现代技术中,理化检验是指借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”。下面是我精心推荐的一些理化检验技术论文,希望能对大家有所帮助!
理化检验技术论文篇一:《试谈理化检验质量控制考核中有关技术》
【摘要】 随着最近几年国家科学技术的飞速发展,各项科研工作也不断扩大。理化检验是我国进行科学研究检测的重要组成部分,尤其是在卫生监督管理方面。而理化研究由于其高要求的精密性而要求在检测的过程中必须提高检测的准确率,质量控制是一种提高准确率非常行之有效的方式,对于不同的检测,质控控制的技术也不一样。
【关键词】 理化检验;质量控制;技术分析;物理;化学
理化检验就是借助一些测量工具进行物理、化学方面的测试和检验,因而又称“器具检验”,这种测量工具或器具都是非常精密,比如说一般常用的测量工具有千分尺、千分表、验规、显微镜等等。随着我国对于卫生行业的改革和对卫生监督管理的加强,卫生部门在进行检测的时候就提出了更高的要求,而理化检验是卫生检测的一种重要手段,它为监督执法提供更加精确的检测数据,在劳动卫生监督管理工作中具有重要作用。
1 理化检验质量控制考核中有关技术
根据多年来众多研究者不断的探索发现和 总结 ,理化检验质控考核主要可以分为以下几个方面。
1.1 滤膜上沉着的金属含量分析 这种技术就是运用化学 方法 ,通过添加相关化学剂使其沉淀然后过滤,对过滤金属进行类型、含量多少等分析。滤膜沉着的金属样品的稳定性比较高,在正常环境下不会随着自然环境的变化而发生损失,在进行滤膜上沉着的金属含量分析的过程中需要注意防止灰尘的污染,提取考核样品的时候应注意对工具的消毒、干燥处理,以免发生污染,致使考核结果数据不准确。考核完成后要将样品放入洁净的干燥器中。
1.2 固体盐中金属含量分析 顾名思义,这中理化检验考核技术就是通过对固体盐类中的金属含量和类型进行考核,同滤膜沉着的金属样品一样,固体盐中金属样品也具有较好的稳定性。在提取样品的时候应注意样品量不宜过多,在提取样品前一定要对其进行干燥处理,干燥的时间至少在一个小时以上,考核完成后要将样品放入洁净的干燥器中。
1.3 活性炭管吸附有机毒物含量分析 这种技术考核原理是化学亲和力的作用,因为活性炭管的吸附有机会具有很强的吸附能力,如果运用物理办法则不容易对其进行分离,用化学亲和力将其分离和样品考核分析。在日常的样品保存中要注意防尘和防潮。因而,活性炭管吸附有机毒物样品不适宜保存在冰箱里。
1.4 水溶液中毒物含量分析 水溶液中待检测的毒物考核样品很多,比如:水溶液中氯化氢含量、水溶液中三氧化铬含量等,水溶液中待检测的毒物考核样品的稳定性比较差,在正常自然状态下会随着环境的变化而发生变化,比如当环境温度升高了,就会增大样品水分的自然蒸发,在样品保存的时候,如果水溶液瓶盖密闭不严也会导致水分蒸发。所以,考核水溶液样品的保存非常重要,在保存的时候要注意放在温度不会发生变化的环境里,冰箱或者冷藏箱就是很好的方式,同时还要注意样品瓶是否密封好。
2 样品考核过程中应注意的问题
2.1 样品考核流程要严格按照规范标准 对于理化检验的质量考核,国家出台了相关的流程规范标准。因此,在实际的操作中要严格按照规范标准,以防出现错误或者测试不准。在考核前应将操作分析的计划详细书写清楚,按照相关指标和标准配置试剂,同时要取少量的考核样品先试验分析,主要是检测其浓度,以决定分析所用考核样品的取样量。在实际的考核过程中,首先做好标准曲线,包括空白点共五个点,每点做六份,计算变异系数小于百分之二,列出回归方程,计算回归系数。为了提高考核的准确率,应该取考核样品3份按标准曲线同样的方法进行操作,然后计算这三次测定的平均值作为最终测定结果,注意还要计算其相对标准值,标准值应小于百分之五,否则就说明误差过大,数据不能作为测定结果。注意书写过程中各种格式及单位等要严格按照标准格式。
2.2 考核过程中各器具及试剂运用的注意事项 首先是实验所用的吸液管,要求必须使用取得计量认证的单位生产的标准计量器具,或者是经过了考核人员本人的校正,因为吸液管的指标参数也会影响着测试的准确性。整个分析考核样品的过程中,要特别注意吸取标准试剂和考核样品溶液的剂量。其次是对实验所用的蒸馏水的注意,样品分析过程中,蒸馏水的质量会深深影响着化学分析铅的空白值,最终影响着分析结果。而分析试剂的纯度也会对分析结果造成很大的影响。因此,在实际考核中,为了保证考核样品结果的准确性,应使用重蒸馏水和分析纯以上试剂,气相色谱的考核用GR级色谱纯试剂。
3 结 语
理化检验质量控制考核并非一项复杂的工程,但是由于其检测结果的重要性就要求了检测结果必须更加的精确,因此在考核过程中必须要保证各项操作严格按照标准规范进行,保护样品不受污染,检测结果 报告 一定按照相关格式要求,全面、准确。通过各方面的规范操作来加强理化检验的质量控制。
参考文献
[1] 黄家钿,李诚,杜宏,张茵,方辰.卫生检验与检疫技术专业实践教学新模式的构建[A].浙江省医学会.2012年浙江省医学 教育 学学术年会论文集[C].浙江省医学会,2012.4.
[2] 关于举办全国材料理化测试与产品质量控制学术研讨会暨《理化检验》创刊40年庆典活动的征文通知(第一号)[J].理化检验(物理分册),2012,02:92.
[3] 张云霞,蔡望伟,周代锋.以素质教育为导向,深化医学院生物化学实验教学改革[J].海南医学,2011,15:135-137.
[4] 张秀丽,廖兴广,张蒙,高葆真.2010年河南省食品卫生微生物检验质量控制考核结果的评价与分析[J].中国卫生检验杂志,2011,07:856-857.
理化检验技术论文篇二:《浅谈茶叶理化检验样品制备技术》
摘要:本文初步分析研究了茶叶理化检验样品的制备技术,并且从挑选与加工新鲜叶子、预处理与磨碎毛茶、均匀混合与分装磨碎样品、检验样品的均匀稳定性、检测特性数值等方面对茶叶理化检验样品制备技术进行了分析,最终提出了对标准化样品进行定值时,可以把定值根据转向实验室所提供的检测相关数据等发展建议,希望可以为我国的茶叶质检事业发展添砖加瓦并且奉献自己的力量。
关键词:茶叶 理化检验 制备样品
全球三大饮料之一便是茶叶,与 其它 饮料相比茶叶更加的实惠和经济,因此茶叶的饮用范围也在逐渐的扩大,拥有越来越大的消费人群,并且已经成为了21世界健康饮品的首先选择对象。可是,伴随着迅速发展壮大的商品经济,日益激烈的市场竞争环境,出现了各种各样的伪劣产品,茶叶也不能被排除之外。为了能够满足商品市场的要求,对各种形式的假茶叶进行严厉打击,有效整顿非常混乱的茶叶市场,迫切需要对茶叶进行理化检验。
一、茶叶理化检验标准化样品概述
对茶叶进行检测的内容包含了检验茶叶的品质、理化标准以及卫生标准等。其中,理化检验程序重点是对出物水浸、水分、茶多酚、咖啡碱等指标进行检验;卫生检验则是对存在于茶叶中的六六六成分等各种残留农药实施检测,以及重金属与微生物等项目的科学检验。
标准化样品具体是指一种或是各种均匀充足以及特点价值已经确定了的物质材料,主要用途是对设备仪器、评测方式以及材料具有的赋值进行校准。当前,通过国家生态环境科学研究院等有关单位研究制作、并且由我国标准物质机构特定销售的是存在于茶叶中的具备赋值特点的无机元素的茶叶标准样品。其它能够对茶叶理化各个指标体现的赋值标准化样品始终没有地方购买。为了可以有效提升全国检测茶叶机构的工作能力,加强检测机构对数据进行测定的可靠性,势必要设计针对茶叶理化各个指标所产生复制标准化样品,这也成为了各个检测单位对实验室检测茶叶项目技术水平客观了解的事实根据。
二、茶叶理化检验标准化样品制备技术
(一)挑选与加工新鲜叶子
影响茶叶理化指标数值的因素主要包括茶树的种类、产茶的时间、原材料的鲜嫩程度以及加工环节等。要想从根本上对原材料整体质量进行控制就需要挑选相同的种类、相同的茶园、根据一致的采摘要求对鲜叶实施采摘。并且在相同的步骤下加工生产等级相同的毛茶样品。需要关注两个方面:一方面是对毛茶所含水平有效控制。保证茶叶品质的重要因素就是茶叶所含的水分,毛茶样品要想成为标准化的茶叶样品,其含有的水分应当在6.5%以下。另一方面是对原材料的鲜嫩程度进行合理控制。加工茶叶使用鲜嫩程度良好的茶叶,不仅消耗较高的成本,同时出现较多的绒毛也对制备均匀样品非常不利。制作茶叶标准化样品,最好选择一芽的对夹叶或者三四叶的新鲜叶子作为原材料,使用二级或者二级以下作为毛茶的原材料。曾经根据以上的要求制作了一些茶叶的相关样品,已经被实验室国家认可组织作为了验证茶叶能力的标准化样品。不但具有较低的成本,并且在开始就已经对其均匀性获得了保障。
(二)预处理与磨碎毛茶
刚刚加工出来的毛茶通常会包含一些杂物。为了能够确保整批毛茶统一的质量标准,迫切需要挑剔全部茶叶,同时除去茶梗与石粒等,可以避免这些杂物对指标 产生的影响。国际相关标准对茶叶理化检验样品进行了规定必须使用磨碎之后的茶叶,因此,在预处理的前提条件下,必须磨碎处理毛茶的样品。磨碎之前,首先要清理干净磨碎设备,其次放入一小部分样品实施磨碎,并且清理掉这些磨碎样品。最后开始对样品正式进行磨碎,选择孔径在0.6毫米到1毫米之间的筛子对磨碎样品进行筛选并且将其作为制备样品。
(三)均匀混合与分装磨碎样品
制备标准化的样品与平常检测使用的样品不同。制备一次样品的数量比较大,为了能够确保样品具有较高的均匀性,必须在进行分装操作之前充分混合均匀筛选后的磨碎样品。样品在混合均匀之后分别盛放在干燥清洁的设备中,盖紧瓶盖,为保存茶叶样品提供一个密闭、干燥、避免阳光照射的环境。
(四)检验样品的均匀稳定性
随机在整体样品中选择超过10个样品后检验其均匀性。检验均匀性可以使用待测项目,选择具有代表性或者对不均匀样品产生敏感的项目。对每一个抽取的样品,通过相同的检测人员在不变的环境条件下测试2次以上。应用单因子方差对检验结果进行分析,充分验证样品之间不会存在显著的差异性,只有这样才能证明其是均匀的样品。在验证茶叶能力所需样品的均匀性检验工作中,选择了总灰分和粗纤维等相关项目检验均匀性。由于前期制备均匀样品工作操作正确,应用单因子方差对上述检验均匀性结果进行验证表明其具有均匀性。上述茶叶项目在密闭与干燥的环境中状态稳定,因此,上述项目应用的样品可以不进行稳定试验。
(五)检测特性数值
检测某一个特性数值,通过需要具备检测茶叶能力的几十家实验室,根据国家规定的检测方法,应用各个实验室之间的联合检测方法,联合定值对应的特质数值。也就是根据相关准则规定的方法,统计和计算各个实验室获得检测结果,最终确定标准化样品各个特性数值体现出的测量的不确定性。
三、茶叶理化检验样品的发展
我国当前正在努力对各种能力开展计划验证,在验证茶叶能力的各项活动中,参与单位具有极高的积极性,参加个别项目的实验室超过了百家。开展工作的过程中,工作人员深刻的意识到制备大量样品非常不容易,在制备样品过程中,怎样保证样品具有均匀性以及对其进行有效检验等工作耗费了较多的财力与精力。因此,相关工作人员认为可以凭借验证茶叶能力这个机会,增加制备验证样品的数量。由于每一次验证茶叶能力之后剩余的样品都已经通过了均匀性检验,同时在验证能力过程中进一步获得确认;通过验证能力又可以产生一些具有较高技术水平的优秀实验室。所以,对标准化样品进行定值时,可以把定值根据转向这些实验室提供的检测相关数据。比如:可以将某种样品相关项目所需的标准数值规定为各个实验室得出的测定数值中的中位值,把标准化的IQR定义为标准偏差。假如能够科学有效的应用这些资源,不但能够大量减少制备与验证茶叶标准化样品所需的成本,同时也促使定值的结果更加无限接近真实数值,符合了各个质检单位对茶叶理化检验标准样品产生的要求。
结束语
目前,在制备茶叶标准样品工作上,茶叶工作者具备了丰富专业的茶叶背景优势,可是要想将验证茶叶能力提升为茶叶的标准化样品,还要对相关的研究程序作出进一步的分析理解,以便可以制备出具有稳定结果、准确定值、均匀样品同时充分发挥法律效力的茶叶标准化样品,也为我国发展茶叶质检工作贡献自己的力量。
参考文献:
[1]GB/T8303―2002.茶磨碎试样的制备及其干物质含量测定[M].中华人民共和国国家标准,2009.
[2]CNAS-GL03.能力验证样品均匀性和稳定性评价指南[M].中国合格评定国家认可委员会2008.
理化检验技术论文篇三:基于工作过程的《食品理化检验技术》课程教学过程设计
食品理化检验技术作为食品营养与检测专业的一门重要的核心课程之一,该课程的教学会直接影响到学生的培养质[]量,因此,需要对课程进行教学过程的设计,来培养学生学习的积极性、主动性和创造性,调动学生的学习兴趣,从而提高教学的课堂效果,教学过程是知识、 经验 、方法、能力的整体综合体现,教学过程既要体现做事的方式方法,又要重视知识的掌握和应用[1-2]。为了搞好该课程的教学工作,本文对《食品理化检验技术》课程进行教学过程设计,通过教学过程设计来保证课堂的教学效果,达到合乎企业要求的人才培养目标。
一、食品理化检验技术课程开发
食品理化检验技术课程的开发是以企业的理化检验的工作过程为导向进行的,将理化检验的工作过程设计成企业岗位需要的工作任务,并以该工作任务为载体设计学习情境,确定开发的流程,具体为首先对食品营养与检测专业进行调研,写出 调研报告 ,分析企业理化检验工作岗位所要求的职业能力和工作能力,根据职业能力和工作能力的要求,分析食品理化检验技术的课程结构,优化出该课程的课程体系,从而分析出课程的教学内容,制定出课程标准和实验实训指导书,然后进行教学设计。
二、教学内容的选择和课程内容结构
在食品理化检验技术课程的教学内容选取上,根据国家和地方食品企业行业发展以及高职食品营养与检测专业的培养目标,按照食品理化检验的工作岗位对学生知识、能力、素质的要求,根据“够用、必需”原则来选取教学内容,按照职业性、实践性的原则选取食品理化实训教学项目。
三、食品理化检验技术教学过程的设计
食品理化检验技术课程的教学过程采用具体的工作任务来引领学生学习的整个过程,按照食品理化检验工作岗位的流程进行设计该课程的教学过程,从工作岗位所需的工作任务来选择理化检验项目,检验项目选择完成后,学生根据检验项目查找资料进行方案设计,方案设计确定出来后,需要教师和学生共同进行反复讨论、修改,通过后才能实施,根据确定的方案,学生在教师的指导下完成实验实训的各项准备工作,然后开始进行实训操作,操作完成,对实训的结果进行分析,再广泛收集教师和学生们的意见,最后教师把问题反馈给学生,避免学生下次出现同类错误。《食品理化检验技术》课程的教学过程设计见图1。
图1 食品理化检验技术教学过程的设计
四、推行基于工作过程的项目导向、任务驱动教学法
六价铬的测定方法(二苯碳酰二肼分光光度法)
中华人民共和国国家标准
Water quality-Determination of chromium(VI)-1.5Diphenylcarbohydrazide spectrophotometric method
1 适用范围
1.1 本标准适用于地面水和工业废水中六价铬的测定
1.2 测定范围
试份体积为50ml,使用光程长为30mm的比色皿,本方法的最小检出量为0.2μg六价铬,最低检出浓度为0.004mg/L,使用光程为10mm的比色皿,测定上限浓度为1.0mg/L。
1.3 干扰
含铁量大于1mg/L显色后呈黄色。六价钼和汞也和显色剂反应,生成有色化合物,但在本方法的显色酸度下,反应不灵敏,钼和汞的浓度达200mg/L不干扰测定。钒有干扰,其含量高于4mg/L即干扰显色。但钒与显色剂反应后10min,可自行褪色。
2 原理
在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色化合物,于波长540nm处进行分光光度测定。
3 试剂
测定过程中,除非另有说明,均使用符合国家标准或专业标准的分析纯试剂和蒸镏水或同等纯度的水,所有试剂应不含铬。
3.1 丙酮。
3.2 硫酸
3.2.1 1+1硫酸溶液
将硫酸(H2SO4,ρ=1.84g/ml,优级纯)缓缓加入到同体积的水中,混匀。
3.3 磷酸:1+1磷酸溶液。
将磷酸(H3PO4,ρ=1.69g/ml,优级纯)与水等体积混合。
3.4 氢氧化钠:4g/L氢氧化钠溶液。
将氢氧化钠(NaOH)1g溶于水并稀释至250ml。
3.5 氢氧化锌共沉淀剂
3.5.1 硫酸锌:8%(m/v)硫酸锌溶液。
称取硫酸锌(ZnSO4•7H2O)8g,溶于100ml水中。
3.5.2 氢氧化钠:2%(m/v)溶液。
称取2.4g氢氧化钠,溶于120ml水中。
用时将3.5.1和3.5.2两溶液混合。
3.6 高锰酸钾:40g/L溶液。
称取高锰酸钾(KMnO4)4g,在加热和搅拌下溶于水,最后稀释至100ml。
3.7 铬标准贮备液。
称取于110℃干燥2h的重铬酸钾(K2Cr2O7,优级纯)0.2829±0.0001g,用水溶解后,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含0.10mg六价铬。
3.8 铬标准溶液。
称取5.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含1.0
0μg六价铬。使用当天配制此溶液。
3.9 铬标准溶液。
称取25.00ml铬标准贮备液(3.7)置于500ml容量瓶中,用水稀释至标线,摇匀。此溶液1ml含5.
00μg六价铬。使用当天配制此溶液。
3.10 尿素:200g/L尿素溶液。
将尿素〔(NH2)2CO〕20g溶于水并稀释至100ml。
3.11 亚硝酸钠:20g/L溶液。
将亚硝酸钠(NaNO2)2g溶于水并稀释至100ml。
3.12 显色剂(Ⅰ)。
称取二苯碳酰二肼(C13H14N4O)0.2g,溶于50ml丙酮(3.1)中,加水稀释至100ml,摇匀。贮于棕色瓶,置冰箱中。色变深后,不能使用。
3.13 显色剂(Ⅱ)。
称取二苯碳酰二肼2g,溶于50ml丙酮(3.1)中,加水稀释至100ml,摇匀。贮于棕色瓶,置冰箱中。色变深后,不能使用。
注:显色剂(Ⅰ)也可按下法配制:称取4.0g苯二甲酸酐(CaH4O),加到80ml乙醇中,搅拌溶解(必要时可用水溶微温),加入0.5g二苯碳酰二肼,用乙醇稀释至100ml。此溶液于暗处可保存六个月。使用时要注意加入显色剂后立即摇匀,以免六价铬被还原。
4 仪器
一般实验仪器和:
4.1 分光光度计。
注:所有玻璃器皿内壁须光洁,以免吸附铬离子。不得用重铬酸钾洗液洗涤。可用硝酸、硝酸混合液或合成洗涤剂洗涤,洗涤后要冲洗干净。
5 采样与样品
实验室样品应该用玻璃瓶采集。采集时,加入氢氧化钠,调节样品PH值约为8。并在采集后尽快测定,如放置,不要超过24h。
6 步骤
6.1 样品的预处理
6.1.1 样品中不含悬浮物,是低色度的清洁地面水可直接测定。
6.1.2 色度校正:如样品有色但不太深时,接6.3步骤另取一份试样,以2ml丙酮(3.1)代替显色剂,其他步骤同6.3。试份测得的吸光度扣除此色度校正吸光度后,再行计算。
6.1.3 锌盐沉淀分离法:对混蚀、色度较深的样品可用此法前处理。
取适量样品(含六价铬少于100μg)于150ml烧杯中,加水至50ml。滴加氢氧化钠溶液(3.4),调节溶液PH值为7~8。在不断搅拌下,滴加氢氧化锌共沉淀剂(3.5)至溶液PH值为8~9。将此溶液转移至100ml容量瓶中,用水稀释至标线。用慢速滤纸干过滤,弃去10~20ml初滤液,取其中50.0ml滤液供测定。
注:当样品经锌盐沉淀分离法前处理后仍含有机物干扰测定时,可用酸性高锰酸钾氧化法破坏有机物后再测定。即取50.0ml滤液于150ml锥形瓶中,加入几粒玻璃,加入0.5ml硫酸溶液(3.2.1)、0.5ml磷酸溶液(3.3),摇匀。加入2滴高锰酸钾溶液(3.6),如紫红色消褪,则应添加高锰酸钾溶液保持紫红色。加热煮沸至溶液体积约剩20ml。取下稍冷,用定量中速滤纸过滤,用水洗涤数次,合并滤液和洗液至50ml比色管中。加入1ml尿素溶液(3.10),摇匀。用滴管滴加亚硝酸钠溶液(3.11),每加一滴充分摇匀,至高锰酸钾的紫红色刚好褪去。稍停片刻,待溶液内气泡逸尽,转移至50ml比色管中,用水稀释至标线,供测定用。
6.1.4 二价铁、亚硫酸盐、硫代硫酸盐等还原性物质的消除:
取适量样品(含六价铬少于50μg)于50ml比色管中,用水稀释至标线,加入4ml显色剂(Ⅱ)(3.13),混匀,放置5min后,加入1ml硫酸溶液(3.2)摇匀。5~10min后,在540nm波长处,用10或30mm光程的比色皿,以水做参比,测定吸光度。扣除空白试验测得的吸光度后,从校准曲线查得六价铬含量。用同法做校准曲线。
6.1.5 次氯酸盐等氧化性物质的消除:
取适量样品(含六价铬少于50μg)于50ml比色管中,用水稀释至标线,加入0.5ml硫酸溶液(3.2)、0.5ml磷酸溶液(3.3)、1.0ml尿素溶液(3.10),摇匀。逐滴加入1ml亚硝酸钠溶液(3.11),边加边摇,以除去由过量的亚硝酸钠与尿素反应生成的气泡,待气泡除尽后,以下步骤同6.3(免去加硫酸液和磷酸溶液)。
6.2 空白试验
按同试样完全相同的处理步骤进行空白试验,仅用50ml水代替试样。
6.3 测定
取适量(含六价铬少于50μg)无我色透明试份,置于50ml比色管中,用水稀释至标线。加入0.5ml硫酸溶液(3.2)和0.5ml磷酸溶液(3.3),摇匀。加入2ml显色剂(Ⅰ)(3.12),摇匀。5~10min后,在540nm波长处,用10或30mm的比色皿,以水做参比,测定吸光度,扣除空白试验测得的吸光度后,从校准曲线(6.4)上查得六价铬含量。
注:如经锌盐沉淀分离,高锰酸氧化法处理的样品,可直接加入显色剂测定。
6.4 校准
向一系列50ml比色管中分别加入0、0.20、0.50、1.00、2.00、4.00、6.00、8.00和10.0ml铬标准溶液(3.8或3.9)(如经锌盐沉淀分离法前处理,则应加倍吸取),用水稀释至标线。然后按照测定试样的步骤(6.1或6.3)进行处理。
从测得的吸光度减去空白试验的吸光度后,绘制以六价铬的量对吸光度的曲线。
7 结果的表示
7.1 计算方法
六价铬含量c(mg/L)按下式计算:
式中:m--由校准曲线查得的试份含六价铬量,μg;
v--试份的体积,ml。
六价铬含量低于0.1mg/L,结果以三位小数表示;六价铬含量高于0.1mg/L,结果以三位有效数字表示。
7.2 精密度和准确度
7.2.1 七个实验室测定含六价铬0.08mg/L的统一分发标准溶液按6.3步骤测定结果如下:
7.2.1.1 重复性
实验室内相对标准偏差为0.6%。
7.2.1.2 再现性
实验室间总相对标准偏差为2.1%。
7.2.1.3 准确度
相对误差为0.13%。
7.2.2 北京市环保监测中心组织北京市9个实验室对配制值为0.250mg/L美国环保局质控样品、浓度水平为0.392mg/L电镀废水(6个实验室)、浓度水平0.122mg/L制革废水(7个实验室)协同试验结果如下:
7.2.2.1 重复性
质控样品实验室内相对标准偏差为2%;电镀废水实验室内相对标准偏差为2.8%;制革废水实验室内相对标准偏差为4.9%。
7.2.2.2 再现性
质控样品实验室间相对标准偏差为4%;电镀废水实验室间相对标准偏差为10%;制革废水实验室间相对标准偏差16%。
7.2.2.3 准确度
质控样品相对误差为0.4%。
这个就是具体的国标法,呵呵,今年我的论文就是有关这个的,有什么不明白的可以加Q:530078090,祝你成功啦……
原子吸收光谱法在环境常规监测中的应用
西南科技大学分析测试中心 张伟
〔摘要〕原子吸收光谱分析法(AAS)在环境分析化学中广泛使用。本文简述了近年来AAS在环境常规监测中的应用进展。
〔关键词〕原子吸收光谱法环境监测应用
原子吸收光谱法(AAS),因其灵敏度高、干扰小、精密度高、准确性
好及分析速度快、测试范围广等诸多优点,在环境分析化学中广泛使
用。20世纪80年代末,国家环保局在《环境监测技术规范》中的地表水
和废水、大气和废气、生物测定部分,就将原子吸收光谱法列为《环境监
测技术规范》中有关金属元素的标准分析方法。
1.水环境监测
适时地对地表水质量现状及发展趋势进行评价,对生产和生活设
施所排废水进行监视性监测是常规环境监测的两项基本任务。原子吸
收光谱分析主要应用于水环境中重金属的监测。龙先鹏[1]采用火焰原子
吸收光谱法直接测定水中微量铜、铅、锌、镉元素的含量,在0-1.00mg/L
范围内,被测元素浓度与吸光度呈线性关系,相关系数不小于0.9990;
最低检出限分别为0.001、0.01、0.0008、0.0005mg/L,相对标准偏差分别
为1.16%、1.22%、1.15%、1.16%;该方法对标准样品的测试结果与国家
标准方法基本一致,相对偏差均不大于7.0%。张美月等[2]以二乙胺基二
硫代甲酸钠为配位剂、Triton X-114为表面活性剂,采用浊点萃取-火
焰原子吸收光谱法测定水样中的痕量镉,检测限为0.238μg/L,富集倍
数为55,加标回收率为98%-102%;分离富集方法简单、安全、快捷,结
果令人满意。陆九韶等[3]利用Al3+与Cu(Ⅱ)-EDTA发生定量交换反应,
通过测定水相残余铜,从而间接测定水和废水中的铝。
在线富集是原子吸收光谱检测分析发展的热点之一。高甲友[4]用含
黄原脂棉的微型柱对试样中的Cd2+在线富集、盐酸洗脱后,采用火焰原
子吸收光谱法在线测定水中的镉离子。富集50 mL溶液时此方法灵敏
度可提高68倍。陈明丽等[5]用溴化十六烷基三甲胺(HDTMAB)改性的天
然斜发沸石微填充柱,建立了顺序注射在线分离富集电热原子吸收法
测定水中Cr(Ⅵ)及铬形态分布的方法;测定铬的检出限达到0.03μg/L,
精密度3.7%。用本法测定标准水样GBW08608中的铬,所得结果与标
准值相符。冷家峰等[6]对螯合树脂富集-火焰原子吸收光谱法测定天然
水体中痕量铜和锌的在线富集条件、干扰因素等进行研究,在线富集倍
数达到两个数量级,在灵敏度与石墨炉原子吸收光谱法相当情况下,提
高了测定准确度。
痕量金属元素化学形态的分析比单纯元素的分析要复杂、困难得
多,除要求测定方法灵敏度高、选择性好外,还要求分离效能高。联用技
术,特别是色谱-原子吸收光谱联用,综合了色谱的高分离效率与原子
吸收光谱检测的专一性的优点,是解决这一问题的有效手段。刘华琳等[7]
自行设计了一种紫外在线消解氢化物发生接口,并将高效液相色谱-紫
外在线消解-氢化物发生原子吸收联用仪器(HPLC-UV-HGAAS)用于
砷的形态分析,以砷甜菜碱、砷胆碱、亚砷酸盐(As(Ⅲ))及砷酸盐(As(V))
等进行了分离测定,实现了将分离后不能直接用于氢化物发生的大分子,
通过紫外“在线”消解成小分子砷化合物的目的。李勋等[8]采用电化学氢化
物发生与原子吸收光谱联用技术有效地实现了无机砷的形态分析。在
电流为0.6 A和1A条件下,As(III)和As(V)在0-40μg/L浓度范围内均呈
良好的线性关系。As(III)和As(V)检出限分别为0.3μg/L和0.6μg/L;该方
法成功应用于食用鲜牛奶中无机砷的形态分析。
2.土壤、底泥和固体物分析
景丽洁等[9]采用微波消解法预处理待测土壤,火焰原子吸收分光光
度法测定污染土壤消解液中的锌、铜、铅、镉、铬5种重金属。土壤中锌、
铜、铅、镉、铬的相对标准偏差分别为1.2%、1.9%、1.2%、5.2%和1.8%。
方法简便、灵敏、准确,适用于污染土壤中重金属含量的测定。卢卫[10]采
用悬浮液进样平台石墨炉原子吸收法测定土壤的痕量汞,精密度为
5.9%,检出限达到1.2×10-12g。宫青宇[11]采用直接固体进样、添加基体改
进剂技术测定土壤中重金属铅含量,避免了土壤中复杂基体的影响,实
现了土壤样品中铅的快速分析。王北洪等[12]采用了“硝酸-氢氟酸-过
氧化氢”三酸消化体系和密封高压消解罐法对土壤样品进行消化,以原
子吸收光谱法测定其中的铜、锌、铅、铬、镉。结果表明:采用该法测定土
壤中的重金属时,测定结果准确可靠,实验条件易于控制,能够满足环
境监测分析的要求,可以作为一种可行的土壤重金属元素分析方法。
程滢等[13]把河流底泥经过氢氟酸和高氯酸消化,用火焰原子吸收
法测定其中的铜,获得较好的结果。王畅等[14]利用流动注射系统中串联
的阴、阳离子交换微型柱分离、NH4NO3+抗坏血酸和H2SO4两种洗脱液
同时逆向洗脱,实现了对底泥可利用态铬中Cr(Ⅵ)和Cr(Ⅲ)同时在线分
离和原子吸收光谱法测定。在交换时间2 min,洗脱50 s,Cr(Ⅵ)和Cr(Ⅲ)
回收率分别为85.4%-94.8%和96.7%-106%。此法对实际样品中不同
价态铬进行测定,铬回收率可达95%。Cr(Ⅵ)和Cr(Ⅲ)的检出限和最大
相对标准偏差分别为0.9μg/L、6.4%和2.7μg/L、3.5%。王霞等[15]用冷
原子吸收光谱法测定固体废物浸出液中的汞含量,检出限为0.02μg/L,
回收率在91%-101%之间。方法简便快速,线性范围宽。
3.大气环境质量监测
邹晓春等[16]以微孔滤膜采样、钯或镍作改进剂,用石墨炉原子吸收光
谱法测定居住区大气中硒,检出限为3.45ng/mL,线性范围为0-50ng/mL,
回收率94.6%-102.0%;其中砷对测定硒有一定干扰,其它金属元素对
测定无干扰。邹晓春在此基础上又对居住区大气中的镍进行了测定,检
出限为0.12 ng/mL,线性范围为0-35 ng/mL,回收率为95.1-102.1%,其
他金属元素对测定镍未见明显干扰[17]。
冯新斌等[18]对原有的光谱仪器进行简单改装,建立了两次金汞齐-
冷原子吸收光谱法测定大气中的微量气态总汞的方法,检出限达到
0.05ng;100μL饱和汞蒸气连续测定结果表明其相对标准偏差<1.41%。
在0-2.0ng汞量范围内标准工作曲线线性关系良好。并且运用该法,对
贵州省万山汞矿、丹寨汞矿、清镇汞污染农田、省农科院和中国科学院
地球化学研究所等地大气气态总汞进行了测定。
综上所述,原子吸收光谱法在环境监测分析中应用取得了不少成
果,但在应用范围上还有待扩大,如在污染物的化学形态研究上尚待深
入等。总之,随着环境监测事业的发展,原子吸收光谱法因具有其它方
法所不能比拟的优势,必将在环境化学分析中展现广阔的应用前景。
参考文献
〔1〕龙先鹏.火焰原子吸收分光光度法直接测定水中微量铜、铅、锌、
镉〔J〕.化学分析计量,2008,17(1):53-54.
〔2〕张美月,李越敏,杜新等.浊点萃取-火焰原子吸收光谱法测定
水样中的痕量镉〔J〕.河北大学学报(自然科学版),2009,29(4):407-411.
〔3〕陆九韶,覃东立,孙大江等.间接火焰原子吸收光谱法测定水和废
水中铝〔J〕.环境保护科学,2008,34(3):111-113.
〔4〕高甲友.流动注射在线富集-火焰原子吸收光谱法测定水中痕
量镉〔J〕.冶金分析,2007,27(1):61-63.
〔5〕陈明丽,邹爱美,仲崇慧等.改性沸石填充柱在线分离富集电热原
子吸收法测定水中铬(Ⅵ)及铬的形态分布〔J〕.分析科学学报,2007,23(6):
627-630.
〔6〕冷家峰,高焰,张怀成等.在线鳌合树脂富集火焰原子吸收光谱法
测定天然水体中铜和锌〔J〕.理化检验-化学分册,2005,41(8):556-560.
〔7〕刘华琳,赵蕊,韦超等.高效液相色谱-在线消解-氢化物发生
原子吸收光谱联用技术〔J〕.分析化学,2005,33(11):1522-1526.
〔8〕李勋,戚琦,薛珺等.电化学氢化物发生与原子吸收光谱联用对鲜
牛奶中无机砷的形态分析〔J〕.食品研究与开发,2007,28(11):121-123.
〔9〕景丽洁,马甲.火焰原子吸收分光光度法测定污染土壤中5种重
金属〔J〕.中国土壤与肥料,2009,(1):74-77.
〔10〕卢卫.悬浮液进样平台石墨炉原子吸收法测定土壤中痕量汞〔J〕.
化学工程与装备,2009,(3):100-101.
〔11〕宫青宇.直接固体进样-石墨炉原子吸收法测定土壤中铅含
量〔J〕.内蒙古科技与经济,2009,6:69.
〔12〕王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱
法测定土壤重金属〔J〕.农业工程学报,2008,24(Supp.2):255-259.
〔13〕程滢,张莘民.火焰原子吸收分光光度法测定鱼内脏及河流底
泥中的铜〔J〕.环境监测管理与技术,2003,15(2):28-30.
〔14〕王畅,谢文兵,刘杰等.流动注射分离-原子吸收光谱法测定底
泥中生物可利用态Cr(Ⅵ)和Cr(Ⅲ〔)J〕.分析化学,2007,35(3):451-454.
〔15〕王霞,张祥志,陈素兰等.冷原子吸收光谱法测定固体废物浸出
液中汞〔J〕.光谱实验室,2008,25(5):981-984.
〔16〕邹晓春,李红华,徐小作.居住区大气中硒的原子吸收光谱法研
究〔J〕.现代预防医学,2004,31(6):879-880.
〔17〕邹晓春.石墨炉原子吸收光谱法测定居住区大气中镍〔J〕.职业
与健康,2000,16(6):36-37.
〔18〕冯新斌,鸿业汤,朱卫国.两次金汞齐-冷原子吸收光谱法测定
大气中的微量气态总汞〔J〕.中国环境监测,1997,13(3):9-11.
毕业论文答辩的目的
毕业论文答辩的目的,对于组织者——校方,和答辩者——毕业论文作者是不同的。校方组织毕业论文答辩的目的简单说是为了进一步审查论文,即进一步考查和验证毕业论文作者对所著论文论述到的论题的认识程度和当场论证论题的能力;进一步考察毕业论文作者对专业知识掌握的深度和广度;审查毕业论文是否学员自己独立完成等情况。
第一,进一步考查和验证毕业论文作者对所著论文的认识程度和当场论证论题的能力是高等学校组织毕业论文答辩的目的之一。一般说来,从学员所提交的论文中,已能大致反映出各个学员对自己所写论文的认识程度和论证论题的能力。但由于种种原因,有些问题没有充分展开细说,有的可能是限于全局结构不便展开,有的可能是受篇幅所限不能展开,有的可能是作者认为这个问题不重要或者以为没有必要展开详细说明的;有的很可能是作者深不下去或者说不清楚而故意回避了的薄弱环节,有的还可能是作者自己根本就没有认识到的不足之处等等。通过对这些问题的提问和答辩就可以进一步弄清作者是由于哪种情况而没有展开深入分析的,从而了解学员对自己所写的论文的认识程度、理解深度和当场论证论题的能力。
第二,进一步考察毕业论文作者对专业知识掌握的深度和广度是组织毕业论文答辩所要达到的目的之二。通过论文,虽然也可以看出学员已掌握知识面的深度和广度。但是,撰写毕业论文的主要目的不是考查学员掌握知识的深广度,而是考查学员综合运用所学知识独立地分析问题和解决问题的能力,培养和锻炼进行科学研究的能力。学员在写作论文中所运用的知识有的已确实掌握,能融会贯通的运用;有的可能是一知半解,并没有转化为自己的知识;还有的可能是从别人的文章中生搬硬套过来,其基本涵义都没搞清楚。在答辩会上,答辩小组成员把论文中有阐述不清楚、不祥细、不完备、不确切、不完善之处提出来,让作者当场作出回答,从而就可以检查出作者对所论述的问题是否有深广的知识基础、创造性见解和充分扎实的理由。
第三,审查毕业论文是否学员独立完成即检验毕业论文的真实性是进行毕业论文答辩的目的之三。撰写毕业论文,要求学员在教师的指导下独立完成,但它不像考试、考查那样,在老师严格监视下完成,而是在一个较长的时期(一般为一个学期)内完成,难免会有少数不自觉的学生会投机取巧,采取各种手段作弊。尤其是像电大、函大等开放性大学,学员面广、量大、人多、组织松散、素质参差不齐,很难消除捉刀代笔、抄袭剽窃等不正之风的出现。指导教师固然要严格把关,可是在一个教师要指导多个学员的不同题目,不同范围论文的情况下对作假舞弊,很难做到没有疏漏。而答辩小组或答辩委员会有三名以上教师组成,鉴别论文真的能力就更强些,而且在答辩会上还可通过提问与答辩来暴露作弊者,从而保证毕业论文的质量。
对于答辩者(毕业论文作者)来说,答辩的目的是通过,按时毕业,取得毕业证书。学员要顺利通过毕业论文答辩,就必须了解上述学校组织毕业论文答辩的目的,然后有针对性的作好准备,继续对论文中的有关问题作进一步的推敲和研究,把论文中提到的基本树料搞准确,把有关的基本理论和文章的基本观点彻底弄懂弄通。
三、毕业论文成绩评分方式
各个院校要求不同,可以由指导教师成绩,检查评阅成绩,答辩小组成绩3部分综合而来.
1论文阶段须提交材料
各个院校要求不同,例如:任务书,开题报告,文献综述,论文,论文档案袋,论文中期检查表,汇报表,论文成绩册,指导教师工作手册等
2答辩委员会
1)答辩工作在学院领导下,由答辩委员会主持进行
2)答辩委员会主要由专业课教师组成,可聘请部分基础课教师或专业基础课教师参加,答辩委员会的责任是主持答辩工作,统一评分标准和要求,对有争议的成绩进行裁决,并综合指导教师,交叉评阅教师,答辩小组的成绩及评语,决定学生的最终成绩.最终成绩经主管院长审核后,由学院统一向学生公布
3)答辩委员会可下设若干答辩小组,答辩小组一般由3—5人(包括秘书1名)组成,组长应由具有副教授及以上职称的教师担任