您当前的位置:首页 > 发表论文>论文发表

金融计量学论文eviews

2023-02-22 14:34 来源:学术参考网 作者:未知

金融计量学论文eviews

实验三 多元回归模型

【实验目的】
掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】
建立我国国有独立核算工业企业生产函数。根据生产函数理论,生产函数的基本形式为: 。其中,L、K分别为生产过程中投入的劳动与资金,时间变量 反映技术进步的影响。表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
表3-1 我国国有独立核算工业企业统计资料
年份 时间
工业总产值
Y(亿元) 职工人数
L(万人) 固定资产
K(亿元)
1978 1 3289.18 3139 2225.70
1979 2 3581.26 3208 2376.34
1980 3 3782.17 3334 2522.81
1981 4 3877.86 3488 2700.90
1982 5 4151.25 3582 2902.19
1983 6 4541.05 3632 3141.76
1984 7 4946.11 3669 3350.95
1985 8 5586.14 3815 3835.79
1986 9 5931.36 3955 4302.25
1987 10 6601.60 4086 4786.05
1988 11 7434.06 4229 5251.90
1989 12 7721.01 4273 5808.71
1990 13 7949.55 4364 6365.79
1991 14 8634.80 4472 7071.35
1992 15 9705.52 4521 7757.25
1993 16 10261.65 4498 8628.77
1994 17 10928.66 4545 9374.34
资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理
【实验步骤】
一、建立多元线性回归模型
一建立包括时间变量的三元线性回归模型;
在命令窗口依次键入以下命令即可:
⒈建立工作文件: CREATE A 78 94
⒉输入统计资料: DATA Y L K
⒊生成时间变量 : GENR T=@TREND(77)
⒋建立回归模型: LS Y C T L K
则生产函数的估计结果及有关信息如图3-1所示。

图3-1 我国国有独立核算工业企业生产函数的估计结果
因此,我国国有独立工业企业的生产函数为:
(模型1)
=(-0.252) (0.672) (0.781) (7.433)

模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。回归系数的符号和数值是较为合理的。 ,说明模型有很高的拟合优度,F检验也是高度显著的,说明职工人数L、资金K和时间变量 对工业总产值的总影响是显著的。从图3-1看出,解释变量资金K的 统计量值为7.433,表明资金对企业产出的影响是显著的。但是,模型中其他变量(包括常数项)的 统计量值都较小,未通过检验。因此,需要对以上三元线性回归模型做适当的调整,按照统计检验程序,一般应先剔除 统计量最小的变量(即时间变量)而重新建立模型。
二建立剔除时间变量的二元线性回归模型;
命令:LS Y C L K
则生产函数的估计结果及有关信息如图3-2所示。

图3-2 剔除时间变量后的估计结果
因此,我国国有独立工业企业的生产函数为:
(模型2)
=(-2.922) (4.427) (14.533)

从图3-2的结果看出,回归系数的符号和数值也是合理的。劳动力边际产出为1.2085,资金的边际产出为0.8345,表明这段时期劳动力投入的增加对我国国有独立核算工业企业的产出的影响最为明显。模型2的拟合优度较模型1并无多大变化,F检验也是高度显著的。这里,解释变量、常数项的 检验值都比较大,显著性概率都小于0.05,因此模型2较模型1更为合理。
三建立非线性回归模型——C-D生产函数。
C-D生产函数为: ,对于此类非线性函数,可以采用以下两种方式建立模型。
方式1:转化成线性模型进行估计;
在模型两端同时取对数,得:

在EViews软件的命令窗口中依次键入以下命令:
GENR LNY=log(Y)
GENR LNL=log(L)
GENR LNK=log(K)
LS LNY C LNL LNK
则估计结果如图3-3所示。

图3-3 线性变换后的C-D生产函数估计结果
即可得到C-D生产函数的估计式为:
(模型3)
= (-1.172) (2.217) (9.310)

即:
从模型3中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理,而且拟合优度较模型2还略有提高,解释变量都通过了显著性检验。
方式2:迭代估计非线性模型,迭代过程中可以作如下控制:
⑴在工作文件窗口中双击序列C,输入参数的初始值;
⑵在方程描述框中点击Options,输入精度控制值。
控制过程:
①参数初值:0,0,0;迭代精度:10-3;
则生产函数的估计结果如图3-4所示。

图3-4 生产函数估计结果
此时,函数表达式为:
(模型4)
=(0.313)(-2.023)(8.647)

可以看出,模型4中劳动力弹性 =-1.01161,资金的产出弹性 =1.0317,很显然模型的经济意义不合理,因此,该模型不能用来描述经济变量间的关系。而且模型的拟合优度也有所下降,解释变量L的显著性检验也未通过,所以应舍弃该模型。
②参数初值:0,0,0;迭代精度:10-5;

图3-5 生产函数估计结果
从图3-5看出,将收敛的误差精度改为10-5后,迭代100次后仍报告不收敛,说明在使用迭代估计法时参数的初始值与误差精度或迭代次数设置不当,会直接影响模型的估计结果。
③参数初值:0,0,0;迭代精度:10-5,迭代次数1000;

图3-6 生产函数估计结果
此时,迭代953次后收敛,函数表达式为:
(模型5)
=(0.581)(2.267)(10.486)

从模型5中看出,资本与劳动的产出弹性都是在0到1之间,模型的经济意义合理, ,具有很高的拟合优度,解释变量都通过了显著性检验。将模型5与通过方式1所估计的模型3比较,可见两者是相当接近的。
④参数初值:1,1,1;迭代精度:10-5,迭代次数100;

图3-7 生产函数估计结果
此时,迭代14次后收敛,估计结果与模型5相同。
比较方式2的不同控制过程可见,迭代估计过程的收敛性及收敛速度与参数初始值的选取密切相关。若选取的初始值与参数真值比较接近,则收敛速度快;反之,则收敛速度慢甚至发散。因此,估计模型时最好依据参数的经济意义和有关先验信息,设定好参数的初始值。
二、比较、选择最佳模型
估计过程中,对每个模型检验以下内容,以便选择出一个最佳模型:
一回归系数的符号及数值是否合理;
二模型的更改是否提高了拟合优度;
三模型中各个解释变量是否显著;
四残差分布情况
以上比较模型的一、二、三步在步骤一中已有阐述,现分析步骤一中5个不同模型的残差分布情况。
分别在模型1~模型5的各方程窗口中点击View/Actual, Fitted, Residual/ Actual, Fitted, Residual Table(图3-8),可以得到各个模型相应的残差分布表(图3-9至图3-13)。
可以看出,模型4的残差在前段时期内连续取负值且不断增大,在接下来的一段时期又连续取正值,说明模型设定形式不当,估计过程出现了较大的偏差。而且,模型4的表达式也说明了模型的经济意义不合理,不能用于描述我国国有工业企业的生产情况,应舍弃此模型。
模型1的各期残差中大多数都落在 的虚线框内,且残差分别不存在明显的规律性。但是,由步骤一中的分析可知,模型1中除了解释变量K之外,其余变量均为通过变量显著性检验,因此,该模型也应舍弃。
模型2、模型3、模型5都具有合理的经济意义,都通过了 检验和F检验,拟合优度非常接近,理论上讲都可以描述资本、劳动的投入与产出的关系。但从图3-13看出,模型5的近期误差较大,因此也可以舍弃该模型。
最后将模型2与模型3比较发现,模型3的近期预测误差略小,拟合优度比模型2略有提高,因此可以选择模型2为我国国有工业企业生产函数。

图3-8 回归方程的残差分析

图3-9 模型1的残差分布

图3-10 模型2的残差分布

图3-11 模型3的残差分布

图3-12 模型4的残差分布

图3-13 模型5的残差分布

我们要做计量小论文,用EVIEWS,样本至少30个,不知道怎么下手啊……

首先根据先确定你要分析的问题,然后大概查找一下问题的数据好不好找。
(在国家数据网可以查到许多数据:)
可以分析的问题很多,建议你找自己感兴趣,或者比较在行的领域,
一是因为那样做完Eviews的操作后,分析比来会比较顺手;
二是如果你写自己专业相关的,老师应该会给比较高分。
如果因为学国贸的,你就调查一下影响进出口的因素,
学投资理财,就调查一下储蓄方面的之类的。
建议你这样哈。

急求大好人的一篇有关计量经济学的论文,用eview5分析,有红包谢谢谢谢

计量经济学课程论文  小组成员:  组长:  指导教师:  日期:2010/年5月27日  2006年我国各城市的GDP变动的多因素分析  摘要:本文主要通过对各城市同一时期的GDP进行多因素分析,建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。  关键词:GDPY(亿元)多因素分析模型计量经济学检验  一、引言部分  GDP(国内生产总值)指一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果,从价值形态看,它是所有常住单位在一定时期内生产的全部货物和服务价值超过同期中间投入的全部非固定资产货物和服务价值的差额,即所有常住单位的增加值之和。GDP在创造的同时也被相应的生产要素分走了,主要体现为劳动报酬和利润。在现代社会政府还要以税收的形式拿走一部分GDP。本文主要研究就业人数L(万人)、各地区资本形成总额K(亿元)剔除价格影响因素即商品零售价格指数P(上年=100)之后对各城市同一时期的GDP的影响。  二、文献综述  注:2006年各城市同一时期的GDP总量的数据来源于《中国统计年鉴2007》;  2006年就业人数L(万人)的数据来源于《中国统计年鉴2007》;  2006年资本形成总额K(亿元)的数据来源于《中国统计年鉴2007》,本表按2006年价格计算;  2006年商品零售价格指数P(上年=100)的数据来源于《中国统计年鉴2007》;  三、研究目的  通过研究各个城市在同一时期的GDP建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。掌握建立多元回归模型和比较、筛选模型的方法。  四、实验内容  根据生产函数理论,生产函数的基本形式为:。其中,L、K分别为产出GDP的过程中投入的劳动与资金,本文未考虑时间变量即技术进步的影响。上表列出了我国2006年我国各个城市的GDP的有关统计资料;其中产出Y为各城市同一时期的GDP(可比价),L、K分别为2006年年末职工人数和各地区资本形成总额(可比价)。  五、建立模型并进行模型的参数估计、检验及修正  (一)我们先建立Y1与L的关系模型:  其中,Y1——各个城市在同一时期的实际GDP(亿元)  L——2006年年末职工人数(万人)  模型的参数估计及其经济意义、统计推断的检验  利用EVIEWS软件,经回归分析,作出Y1与L的散点图如下:  利用EVIEWS软件,用OLS方法估计得:  DependentVariable:Y1  Method:LeastSquares  Date:05/27/10Time:14:45  Sample:136  Includedobservations:31  VariableCoefficientStd.Errort-StatisticProb.  C-1647.264517.2169-3.1848610.0034  L14.994170.71254921.042990.0000  R-squared0.938534Meandependentvar7387.979  AdjustedR-squared0.936415S.D.dependentvar6367.139  S.E.ofregression1605.545Akaikeinfocriterion17.66266  Sumsquaredresid74755513Schwarzcriterion17.75517  Loglikelihood-271.7712F-statistic442.8073  Durbin-Watsonstat1.503388Prob(F-statistic)0.000000  可见,L的t值显著,且系数符合经济意义。从经济意义上讲,劳动每增加一单位,都可以使实际GDP相应增加14.9941,这在一定条件下可以实现。另外,修正可决系数为0.936415,F值为442.8073,明显通过了F检验。且L的P检验值为0,小于0.05,所以通过了P值检验  (二)建立Y1与K1的关系模型:  其中,Y1——各个城市在同一时期的实际GDP(亿元)  K1——各地区资本形成总额(实际投入额)(亿元)  模型的参数估计及其经济意义、统计推断的检验  利用EVIEWS软件,经回归分析,作出Y1与K1的散点图如下:  利用EVIEWS软件,用OLS方法估计得:  DependentVariable:Y1  Method:LeastSquares  Date:05/27/10Time:17:16  Sample:136  Includedobservations:31  VariableCoefficientStd.Errort-StatisticProb.  C-705.0563393.0357-1.7938730.0833  K12.2411060.08675125.833850.0000  R-squared0.958357Meandependentvar7387.979  AdjustedR-squared0.956921S.D.dependentvar6367.139  S.E.ofregression1321.537Akaikeinfocriterion17.27332  Sumsquaredresid50647333Schwarzcriterion17.36583  Loglikelihood-265.7364F-statistic667.3880  Durbin-Watsonstat1.697910Prob(F-statistic)0.000000  可见,K1的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加2.241106,这在一定条件下可以实现。另外,修正可决系数为0.956921,F值为667.3880,明显通过了F检验。且K1的P检验值为0,小于0.05,所以通过了P值检验  通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1的关系模型优于Y1与L的关系模型。因此,在以Y1与K1的关系模型为基础模型的条件下,建立二元关系模型。  (三)建立Y1与K1和L的二元关系模型  其中,Y1——各个城市在同一时期的实际GDP(亿元)  K1——各地区资本形成总额(实际投入额)(亿元)  L——2006年年末职工人数(万人)  利用EVIEWS软件,用OLS方法估计得  DependentVariable:Y1  Method:LeastSquares  Date:05/27/10Time:17:23  Sample:136  Includedobservations:31  VariableCoefficientStd.Errort-StatisticProb.  C-1369.643303.2218-4.5169680.0001  K11.3367960.1761047.5909360.0000  L6.5222681.1906065.4781070.0000  R-squared0.979900Meandependentvar7387.979  AdjustedR-squared0.978464S.D.dependentvar6367.139  S.E.ofregression934.3899Akaikeinfocriterion16.60943  Sumsquaredresid24446367Schwarzcriterion16.74820  Loglikelihood-254.4462F-statistic682.5040  Durbin-Watsonstat1.633165Prob(F-statistic)0.000000  可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为0.978464,F值为682.5040,明显通过了F检验。且K1和L的P检验值为0,均小于0.05,所以通过了P值检验。  通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1和L的关系模型优于Y1与K1的关系模型。因此,建立二元关系模型更符合实际经济情况。  (四)建立非线性回归模型——C-D生产函数。  C-D生产函数为:,对于此类非线性函数,可以采用以下两种方式建立模型。  方式1:转化成线性模型进行估计;  在模型两端同时取对数,得:  在EViews软件的命令窗口中依次键入以下命令:  GENRLNY1=log(Y1)  GENRLNL=log(L)  GENRLNK1=log(K1)  LSLNY1CLNLLNK1  则估计结果如图所示。  DependentVariable:LNY1  Method:LeastSquares  Date:05/27/10Time:17:29  Sample:136  Includedobservations:31  VariableCoefficientStd.Errort-StatisticProb.  C0.2423450.1981801.2228530.2316  LNK10.6665000.0827078.0585380.0000  LNL0.4933220.0881285.5977750.0000  R-squared0.988755Meandependentvar8.504486  AdjustedR-squared0.987951S.D.dependentvar1.037058  S.E.ofregression0.113834Akaikeinfocriterion-1.416379  Sumsquaredresid0.362831Schwarzcriterion-1.277606  Loglikelihood24.95388F-statistic1230.946  Durbin-Watsonstat1.295173Prob(F-statistic)0.000000  可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为0.987951,F值为1230.946,明显通过了F检验。且K1和L的P检验值为0,均小于0.05,所以通过了P值检验。  通过对以上模型的可决系数、调整可决系数、F检验的比较,明显的,该模型最优。因此,选用该模型为以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立的最优多元线性回归模型。  六、总结  综上所述,我们采用截面数据拟合的模型成功的反映各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)间的数量关系,是一个成功的模型。从模型中看出,各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)有非常密切的关系,与柯布-道格拉斯(C-D)生产函数密切吻合,验证了柯布-道格拉斯(C-D)生产函数的正确。  参考文献:  1、《国民经济核算——国家统计年鉴2007》  2、《价格指数——国家统计年鉴2007》  3、《中国国内生产总值核算》,作者:许宪春编著,

计量经济学论文

关于我国城镇居民储蓄存款模型的计量经济分析
(我的姓名等信息就省略了啊 呵呵)
内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。
关键词:居民储蓄存款 实证分析 主要因素
一、问题的提出
1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。
二、文献综述
我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响:
1.收入因数
收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。
2.利息率
传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。
3.物价水平
物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。
4.收入分配
凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。
三、变量的选取及分析
目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。
由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。
四、数据及处理
本文模型数据样本为从1979-2002年。
年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数
1979 0.06368087 0.264869934 3.78 0.02 0.16
1980 0.08740586 0.220385089 5.04 0.059804 0.15
1981 0.07093626 0.104176446 5.4 0.024052 0.15
1982 0.08105586 0.139165412 5.67 0.01897 0.15
1983 0.09963501 0.093723563 5.76 0.015071 0.16
1984 0.13025584 0.245357008 5.76 0.027948 0.19
1985 0.15161502 0.184241122 6.72 0.08836 0.19
1986 0.17454542 0.280700971 7.2 0.060109 0.2
1987 0.2175453 0.167515864 7.2 0.072901 0.23
1988 0.17862152 0.219728929 7.68 0.185312 0.23
1989 0.2721202 0.199827095 11.12 0.177765 0.23
1990 0.32760614 0.123579703 9.92 0.021141 0.24
1991 0.31032443 0.163667824 7.92 0.028888 0.25
1992 0.3016907 0.228819425 7.56 0.053814 0.27
1993 0.3199061 0.311233327 9.26 0.131883 0.3
1994 0.42486435 0.397210898 10.98 0.216948 0.28
1995 0.44898036 0.261076104 10.98 0.147969 0.28
1996 0.40903477 0.198208003 9.21 0.060938 0.29
1997 0.30935015 0.127739779 7.17 0.007941 0.3
1998 0.25777978 0.108852141 5.02 -0.026 0.295
1999 0.21234608 0.134557035 2.89 -0.02993 0.3
2000 0.1239205 0.125688358 2.25 -0.01501 0.32
2001 0.24155306 0.14364071 2.25 -0.0079 0.33
2002 0.29897822 0.173106495 2.03 -0.01308 0.319
数据来源:各年份的《中国统计年鉴》
注:Y代表城镇居民储蓄率
X1代表城镇居民收入增长率
X2代表一年期储蓄利率
X3代表通货膨胀率
X4代表城镇居民基尼系数
五、模型及处理
基于以上数据,建立的模型是:
Y=β1+β2X1+β3X2+β4X3+β5X4+u
β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。
β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。
β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。
β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。
β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。
u是随机误差项。
对Y做回归
利用eviews最小二乘估计结果如下

Variable Coefficient Std. Error t-Statistic Prob.
C -0.264646 0.045525 -5.813154 0.0000
X1 0.317426 0.175678 1.806864 0.0875
X2 0.024054 0.003688 6.523093 0.0000
X3 0.024476 0.205508 0.119099 0.9065
X4 1.127523 0.149318 7.551127 0.0000
R-squared 0.897971 Mean dependent var 0.234065
Adjusted R-squared 0.875298 S.D. dependent var 0.116109
S.E. of regression 0.041002 Akaike info criterion -3.360748
Sum squared resid 0.030260 Schwarz criterion -3.113901
Log likelihood 43.64860 F-statistic 39.60525
Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000
根据以上结果,初步得出的模型为
Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4.
1.经济意义的检验
该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。
2.统计检验
从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。
3.多重共线性的检验
从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到:
Y=β1+β2X1+β3X2+β5X4+u

Variable Coefficient Std. Error t-Statistic Prob.
C -0.271487 0.041322 -6.570056 0.0000
X1 0.314787 0.113799 2.766177 0.0119
X2 0.024487 0.003178 7.704986 0.0000
X4 1.145280 0.137886 8.305987 0.0000
R-squared 0.897094 Mean dependent var 0.229740
Adjusted R-squared 0.881658 S.D. dependent var 0.115517
S.E. of regression 0.039739 Akaike info criterion -3.461967
Sum squared resid 0.031583 Schwarz criterion -3.265624
Log likelihood 45.54360 F-statistic 58.11739
Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000
从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。
因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
4.异方差性检验
对新模型进行异方差性的检验,运用white检验,得到如下结果:

White Heteroskedasticity Test:
F-statistic 2.669433 Probability 0.054505
Obs*R-squared 11.50596 Probability 0.073942
Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。
5.自相关性的检验
从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d <dw=1.556039<4- d ,表明不存在自相关。
6.最终结果
从上面的计量分析中最后得到我国城镇居民的储蓄存款模型:
Y= -0.271487+0.314787X1+0.024487X2+1.145280X4
(0.041322) (0.113799) (0.003178) (0.137886)
t= (-6.570056) (2.766177) (7.704986) (8.305987)
R2= 0.897094 df=20 F=58.11739 DW=1.556309
六、结论与建议
1.模型的实证分析
城镇居民的收入增长率变化对居民的储蓄率变化的影响还是比较明显的,储蓄率对收入增长率的弹性为0.314787, 在其他条件不变的情况下,居民的收入变化1%,储蓄率同方向变化0.314787%。
利率变动对实际的储蓄率变动的影响并不是十分的重要,弹性仅为0.024487。这方面有很多的原因,其中对未来预期的不确定性是一个很重要的原因,尤其是1998年以后,随着住房、医疗、教育等方面的改革,人们的储蓄倾向受预期的影响更大。这方面从人民银行数次通过降息来调整储蓄量,但是效果并不明显也可以看出来。
基尼系数对储蓄率的影响非常大,弹性达到了1.145280。这里可以看出,收入分配的均等程度对储蓄的影响非常明显。这是由于收入高的群体的储蓄倾向要明显的高于收入低的群体。
2.对宏观经济的政策建议
基于基尼系数对储蓄率的很大的影响,因此,国家应该重视对分配领域的调节,加大对低收入的者的转移支付,切合中国实际的对税收领域进行改革,缩小社会的贫富差距:
1)不要"逼"老百姓花钱,而要针对不同收入阶层,采取不同对策,引导居民消费
首先,增加中低收入居民的个人相对收入,在分配政策上进一步缩小收入差距;进行微观层面的改革和合适的福利体系改革,大力提高人们的收入预期;控制教育和医疗费用,降低人们的支出预期,减少公众的焦虑;积极发展消费信贷,尤其是助学贷款,减少人们为教育而储蓄的需要,让其"有钱花"。
其次,引导高收入居民向更高层次的消费过渡,努力提高其消费倾向,增加消费供给,让其"有地方花钱",从而抑制储蓄倾向的进一步提高。
2)不要"逼"老百姓投资,而要不断增加金融创新,努力改善投资环境,刺激居民投资
目前的储蓄高增长主要是由于居民收入的持续增长、消费和投资的增速缓慢、居民手持现金的逐步减少而引起,充分暴露出我国经济架构的严重失衡。因此,必须采取相应的措施缓解储蓄增长的势头,并积极引导储蓄向投资转化:
第一,提供多样化的金融工具,不断开发新的金融产品,大力发展商业保险和社会保险,拓宽居民投资渠道,引导居民储蓄资金的合理分流。
第二,进一步发展和完善股票市场,规范上市公司的市场行为,逐步建立完善的、公开的信息披露制度,增强居民的投资信心。
第三,大力发展债券市场,尤其是企业债券市场,充分发挥债券融资的优势,加大企业从资本市场直接融资的比重。
第四,积极引导民间投资,用新型的融资方式拓宽民间投融资的渠道。稳定发展民营金融机构;建立民间投资退出机制;加强民间投资的信用体系建设。
3.模型的不足
在实际经济活动中,人们的预期对储蓄率的影响是非常明显的。由于这方面的影响很难用数据来描述以及碍于本文作者水平有限,所以本模型没有反映人们的预期对储蓄率的影响。

参考文献
1.何德旭:10万亿储蓄的多视角分析[N]。金融时报,2003-05-19.
2.屈宏斌:居民储蓄高增长堪忧[N]。经济观察报, 2003-03-31.
3.张锐:高储蓄挑战宏观政策[N]。世纪经济报道, 2003-04-29.
4.郭树清:深化投融资体制改革与完善货币政策传导机制[J].金融研究,2002,(2)。
5.武少俊:强化消费需求启动措施,保证经济持续快速增长[J].金融研究,2003,(5)
6.潘雅琼:我国城乡居民储蓄存款余额的趋势预测[J].统计与决策,2003(6)
7.刘隽亭,乔瑞红:我国居民储蓄持续增长的原因及特点分析[J].天津商学院学报,2005(2)
8.李焰:关于利率与我国居民储蓄关系的探讨[J].经济研究,1999(11)
9.韩汉君:中国的居民储蓄存款及其利率弹性[J].上海经济研究,1999(9)
10.庞皓:计量经济学.科学出版社,2008-1

求助一篇计量经济学论文 字数3000字 关于eviews的

发送给你两封邮件,10来篇相关论文,查收下哈~ 希望对你有帮助!

以后还需要检索论文的话可以再向我或者其他举手之劳队员提问哦,举手之劳助人为乐!

——百度知道 举手之劳团队 队长:晓斌11蓝猫

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页