金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。 意义:人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。种类:金属材料通常分为黑色金属、有色金属和特种金属材料。①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。 性能:一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、多次冲击抗力和疲劳极限等。
[编辑本段]金属材料的疲劳
许多机械零件和工程构件,是承受交变载荷工作的。在交变载荷的作用下,虽然应力水平低于材料的屈服极限,但经过长时间的应力反复循环作用以后,也会发生突然脆性断裂,这种现象叫做金属材料的疲劳。
金属材料疲劳断裂的特点是:
(1)载荷应力是交变的;(2)载荷的作用时间较长;
(3)断裂是瞬时发生的;
(4)无论是塑性材料还是脆性材料,在疲劳断裂区都是脆性的。
所以,疲劳断裂是工程上最常见、最危险的断裂形式。
金属材料的疲劳现象,按条件不同可分为下列几种:
(1)高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。
(2)低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。
(3)热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。
(4)腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。
(5)接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。
金属材料的塑性
塑性是指金属材料在载荷外力的作用下,产生永久变形(塑性变形)而不被破坏的能力。金属材料在受到拉伸时,长度和横截面积都要发生变化,因此,金属的塑性可以用长度的伸长(延伸率)和断面的收缩(断面收缩率)两个指标来衡量。
金属材料的延伸率和断面收缩率愈大,表示该材料的塑性愈好,即材料能承受较大的塑性变形而不破坏。一般把延伸率大于百分之五的金属材料称为塑性材料(如低碳钢等),而把延伸率小于百分之五的金属材料称为脆性材料(如灰口铸铁等)。塑性好的材料,它能在较大的宏观范围内产生塑性变形,并在塑性变形的同时使金属材料因塑性变形而强化,从而提高材料的强度,保证了零件的安全使用。此外,塑性好的材料可以顺利地进行某些成型工艺加工,如冲压、冷弯、冷拔、校直等。因此,选择金属材料作机械零件时,必须满足一定的塑性指标。 字串2
金属材料的硬度
硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。
1.布氏硬度(HB)
以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)
当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的甓壤幢硎荆?HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
3 维氏硬度(HV)
以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值,即为维氏硬度值(HV)。
硬度试验是机械性能试验中最简单易行的一种试验方法。为了能用硬度试验代替某些机械性能试验,生产上需要一个比较准确的硬度和强度的换算关系。
实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。
[编辑本段]金属材料性能
金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。金属很硬.
[编辑本段]机械性能
(一)应力的概念,物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。
(二)机械性能,金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项:
1.强度
这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:
(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPaσb=Pb/Fo式中:Pb?C至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo?C拉伸试样原来的横截面积。
(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs/σb)要小,以提高其安全可靠性,不过此时材料的利用率也较低了。
(3)弹性极限:材料在外力作用下将产生变形,但是去除外力后仍能恢复原状的能力称为弹性。金属材料能保持弹性变形的最大应力即为弹性极限,相应于拉伸试验曲线图中的e点,以σe表示,单位为兆帕(MPa):σe=Pe/Fo式中Pe为保持弹性时的最大外力(或者说材料最大弹性变形时的载荷)。
2.塑性,
(1)布氏硬度(代号HB),用一定直径D的淬硬钢球在规定负荷P的作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下表面积为F的压痕,以试件的单位表面积上能承受负荷的大小表示该试件的硬度:HB=P/F。在实际应用中,通常直接测量压坑的直径,并根据负荷P和钢球直径D从布氏硬度数值表上查出布氏硬度值(显然,压坑直径越大,硬度越低,表示的布氏硬度值越小)。布氏硬度与材料的抗拉强度之间存在一定关系:σb≈KHB,K为系数,例如对于低碳钢有K≈0.36,对于高碳钢有K≈0.34,对于调质合金钢有K≈0.325,…等等。
(2)洛氏硬度(HR)用有一定顶角(例如120°)的金刚石圆锥体压头或一定直径D的淬硬钢球,在一定负荷P作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下某个深度的压痕。由洛氏硬度机自动测量压坑深度并以硬度值读数显示(显然,压坑越深,硬度越低,表示的洛氏硬度值越小)。根据压头与负荷的不同,洛氏硬度还分为HRA、HRB、HRC三种,其中以HRC为最常用。洛氏硬度HRC与布氏硬度HB之间有如下换算关系:HRC≈0.1HB。除了最常用的洛氏硬度HRC与布氏硬度HB之外,还有维氏硬度(HV)、肖氏硬度(HS)、显微硬度以及里氏硬度(HL)。这里特别要说明一下关于里氏硬度,这是目前最新颖的硬度表征方法,利用里氏硬度计进行测量,其检测原理是:里氏硬度计的冲击装置将冲头从固定位置释放,冲头快速冲击在试件表面上,通过线圈的电磁感应测量冲头距离试件表面1毫米处的冲击速度与反弹速度(感应为冲击电压和反弹电压),里氏硬度值即以冲头反弹速度和冲击速度之比来表示:HL=(Vr/Vi)?1000式中:HL-里氏硬度值;Vr-冲头反弹速度;Vi-冲头冲击速度(注:实际应用装置中是以冲击装置中的闭合线圈感应的冲击电压和反弹电压代表冲击速度和反弹速度)。冲击装置的构造主要有内置弹簧(加载套管,不同型号的冲击装置有不同的冲击能量)、导管、释放按钮、内置线圈与骨架、支撑环以及冲头,冲头主要采用金刚石、碳化钨两种极高硬度的球形(不同型号的冲击装置其冲头直径有不同)。优点:里氏硬度计的主机接收到冲击装置获得的信号进行处理、计算,然后在屏幕上直接显示出里氏硬度值,便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值,同时可折算出材料的抗拉强度σb,还可以将测量结果储存、直接打印输出或传送给计算机作进一步的数据处理。 4.韧性
金属材料在冲击载荷作用下抵抗破坏的能力称为韧性。通常采用冲击试验,即用一定尺寸和形状的金属试样在规定类型的冲击试验机上承受冲击载荷而折断时,断口上单位横截面积上所消耗的冲击功表征材料的韧性:αk=Ak/F单位J/cm2或Kg•m/cm2,1Kg•m/cm2=9.8J/cm2αk称作金属材料的冲击韧性,Ak为冲击功,F为断口的原始截面积。5.疲劳强度极限金属材料在长期的反复应力作用或交变应力作用下(应力一般均小于屈服极限强度σs),未经显著变形就发生断裂的现象称为疲劳破坏或疲劳断裂,这是由于多种原因使得零件表面的局部造成大于σs甚至大于σb的应力(应力集中),使该局部发生塑性变形或微裂纹,随着反复交变应力作用次数的增加,使裂纹逐渐扩展加深(裂纹尖端处应力集中)导致该局部处承受应力的实际截面积减小,直至局部应力大于σb而产生断裂。在实际应用中,一般把试样在重复或交变应力(拉应力、压应力、弯曲或扭转应力等)作用下,在规定的周期数内(一般对钢取106~107次,对有色金属取108次)不发生断裂所能承受的最大应力作为疲劳强度极限,用σ-1表示,单位MPa。除了上述五种最常用的力学性能指标外,对一些要求特别严格的材料,例如航空航天以及核工业、电厂等使用的金属材料,还会要求下述一些力学性能指标:蠕变极限:在一定温度和恒定拉伸载荷下,材料随时间缓慢产生塑性变形的现象称为蠕变。通常采用高温拉伸蠕变试验,即在恒定温度和恒定拉伸载荷下,试样在规定时间内的蠕变伸长率(总伸长或残余伸长)或者在蠕变伸长速度相对恒定的阶段,蠕变速度不超过某规定值时的最大应力,作为蠕变极限,以表示,单位MPa,式中τ为试验持续时间,t为温度,δ为伸长率,σ为应力;或者以表示,V为蠕变速度。高温拉伸持久强度极限:试样在恒定温度和恒定拉伸载荷作用下,达到规定的持续时间而不断裂的最大应力,以表示,单位MPa,式中τ为持续时间,t为温度,σ为应力。金属缺口敏感性系数:以Kτ表示在持续时间相同(高温拉伸持久试验)时,有缺口的试样与无缺口的光滑试样的应力之比:式中τ为试验持续时间,为缺口试样的应力,为光滑试样的应力。或者用:表示,即在相同的应力σ作用下,缺口试样持续时间与光滑试样持续时间之比。抗热性:在高温下材料对机械载荷的抗力。
[编辑本段]化学性能
金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。
[编辑本段]物理性能
金属的物理性能主要考虑:
(1)密度(比重):ρ=P/V单位克/立方厘米或吨/立方米,式中P为重量,V为体积。在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。
(2)熔点:金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。(3)热膨胀性随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。热膨胀性与材料的比热有关。在实际应用中还要考虑比容(材料受温度等外界影响时,单位重量的材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。
(4)磁性能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。
(5)电学性能主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。
[编辑本段]工艺性能
金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:
(1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。
(2)可锻性:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。
(3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。
(4)可焊性:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。
快速成型技术的原理、工艺过程及技术特点:
快速成型属于离散/堆积成型。它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。
快速成型的工艺过程具体如下:
l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、 CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。
2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平面来逼近原来的模型,每个小三角形用 3 个顶点坐标和一个法向量来描述,三角形的大小可以根据精度要求进行选择。 STL 文件有二进制码和 ASCll 码两种输出形式,二进制码输出形式所占的空间比 ASCII 码输出形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。典型的CAD 软件都带有转换和输出 STL 格式文件的功能。
3 )三维模型的切片处理。根据被加工模型的特征选择合适的加工方向,在成型高度方向上用一系列一定间隔的平面切割近似后的模型,以便提取截面的轮廓信息。间隔一般取0.05mm~0.5mm, 常用 0.1mm 。间隔越小,成型精度越高,但成型时间也越长,效率就越低,反之则精度低,但效率高。
4 )成型加工。根据切片处理的截面轮廓,在计算机控制下,相应的成型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工作台上一层一层地堆积材料,然后将各层相粘结,最终得到原型产品。
5 )成型零件的后处理。从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在高温炉中进行后烧结,进一步提高其强度。
快速成型技术的分类:
快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology),例如:光固化成型(SLA )、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(Jetting Technoloy),例如:熔融沉积成型(FDM)、三维印刷( 3DP )、多相喷射沉积( MJD )。下面对其中比较成熟的工艺作简单的介绍。
1、SLA(Stereolithogrphy Apparatus)工艺 SLA 工艺也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。 1988 年美国 3D System公司推出商品化样机SLA-I,这是世界上第一台快速成型机。SLA 各型成型机机占据着 RP 设备市场的较大份额。
SLA 技术是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后.未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
SLA 方法是目前快速成型技术领域中研究得最多的方法.也是技术上最为成熟的方法。 SLA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys公司的Michael Feygin于 1986 年研制成功。LOM工艺采用薄片材料,如纸、塑料薄膜等。片材表面事先涂覆上一层热熔胶。加工时,热压辊热压片材,使之与下面已成型的工件粘接。用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。再在新层上切割截面轮廓。如此反复直至零件的所有截面粘接、切割完。最后,去除切碎的多余部分,得到分层制造的实体零件。
LOM 工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。因此成型厚壁零件的速度较快,易于制造大型零件。工艺过程中不存在材料相变,因此不易引起翘曲变形。工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以 LOM 工艺无需加支撑。缺点是材料浪费严重,表面质量差。
3、SLS(Selective Laser Sintering)工艺 SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于 1989 年研制成功。 SLS工艺是利用粉末状材料成型的。将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。
烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。
SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。这使SLS工艺颇具吸引力。SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
4、3DP (Three Dimension Printing)工艺三维印刷工艺是美国麻省理工学院E-manual Sachs等人研制的。已被美国的Soligen公司以DSPC(Direct Shell Production Casting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。
3DP 工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。
用粘结剂粘接的零件强度较低,还须后处理。先烧掉粘结剂,然后在高温下渗人金属,使零件致密化,提高强度。
5 . FDM (Fused Depostion Modeling)工艺 熔融沉积制造( FDM )工艺由美国学者Scott Crump于 1988 年研制成功。 FDM 的材料一般是热塑性材料,如蜡、 ABS 、尼龙等。以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结。
FDM技术描述
FDM技术是由Stratasys公司所设计与制造,可应用于一系列的系统中。这些系统为FDM Maxum,FDM Titan,Prodigy Plus以及Dimension。FDM技术利用ABS,polycarbonate(PC),polyphenylsulfone (PPSF)以及其它材料。这些热塑性材料受到挤压成为半熔融状态的细丝,由沉积在层层堆栈基础上的方式,从3D CAD资料直接建构原型。该技术通常应用于塑型,装配,功能性测试以及概念设计。此外,FDM技术可以应用于打样与快速制造。
国家计委和科技部日前共同发布了《当前优先发展的高技术产业化重点领域指
南(2001年度)》,确定了当前应优先发展的十个产业的141个高技术产业
化重点领域新型金属材料产业优先发展的领域如下:
1、稀土材料及其应用
稀土是信息产业、绿色能源和环境保护等产业的重要支撑材料我国稀土储量
、产量和出口量均占世界首位
已形成较齐全的工业体系
近期产业化的重点是:高性能稀土永磁材料及制品、稀土催化材料、稀土贮氢
材料、稀土发光材料、超大磁致伸缩材料、高温超导材料、稀土硫化物涂料及颜料
的规模生产;加快发展高纯稀土氧化物和高纯稀土单质分离提取工业化生产技术和
装备;加快稀土在钢铁冶金、有色金属、玻璃、特种陶瓷、石油化工及农业等方面
的应用
2、复合金属材料制备工艺及其成套设备
由于异质金属复合材料的性能功能化和较低的成本及应用范围广泛,提高了传
统金属材料的发展潜力
近期产业化的重点是:建设铝-不锈钢、铝-钢、钛-钢、铜-钢带液-固相
复合工艺生产线
表面复合精饰技术制
备薄覆层(0.008-0.1mm)金属复合板带生产线;开发颗粒增强铝基复
合材料规模化生产技术、半固态成形技术、连续包敷复合高速钢材料及制品,并实
现产业化
3、高性能密封材料及制品
密封件是保证机械装备高效、长期、安全和稳定运行的重要基础件
其技术水
平、质量及性能直接影响配套主机产品质量和运行可靠性我国密封材料及制品经
过十多年的发展和技术引进,形成了一定的生产能力和规模
一般产品能满足各类
主机的配套要求,但高压、高速、精密、耐高温低温和耐腐蚀的密封件与国际水平
有较大差距
近期产业化的重点是:轿车及中高档轻型车动力传动、减振、制动系统用密封
材料及制品规模化生产示范基地建设;重大成套设备中高压、液压、气动系统用密
封件;电力设备中高温、高压机械密封;石化工业中高速透平压缩机非接触气膜密
封;金属磁流体动密封
4、纳米材料和特种粉末及其制品
纳米材料因其纳米效应而具有特殊的性能和广泛的用途
是目前科技发展重要
热点之一近年来
我国在纳米材料的研究开发和应用方面取得了很大进展
形成
了一批拥有自主知识产权的技术并开始产业化
近期产业化的重点是:以纳米粉体材料、纳米膜材料、纳米催化材料和纳米晶
金属材料为重点
实现低成本、环境友好以及质量稳定的规模化生产;加快纳米材
料规模化应用于信息、通信、医疗和环保等新兴产业以及能源、交通、化工、建材
、纺织和轻工等基础产业,改进性能,提高效率
促进技术进步;加快发展粉末冶
金摩擦材料、高温合金粉末以及高纯超细陶瓷粉体材料
链接:
二十一世纪将是材料-电子一体化的世纪作为新型功能材料家庭中的重要成员,形状记忆合金在工程机械和日常生活中得到了广泛的应用由形状记忆合金构成的结构简单、控制灵活、功率密度大的各类记忆合金驱动器,在轻型机器人及小型化系统中具有独特的技术优势本文详细阐明了形状记忆合金的晶体学、热力学特性,概述了该材料的几种典型应用实例在此基础上,综述了这一功能材料的应用优势
可以从材料的发展史如石器、青铜器、铁器、非金属等的过程,谈材料科学的重要性。因为科学技术的发展过程,实际也是新型材料的发展过程。
要引用资料(数据或事例)说明新材料及材料科学的发展与民生及国民经济的密切关系。