您当前的位置:首页 > 发表论文>论文发表

地理信息系统论文和参考文献

2023-02-21 00:28 来源:学术参考网 作者:未知

地理信息系统论文和参考文献

测绘工程论文参考文献

参考文献的著录格式是否规范反映作者论文写作经验和治学态度,下同时也是论文的重要构成部分,也是学术研究过程之中对于所涉及到的所有文献资料的总结与概括。以下是我精心整理的测绘工程论文参考文献,欢迎大家借鉴与参考,希望对大家有所帮助。

[1]于武盛,王守杰,吕锦有等.辽宁省地表水资源分布及成因分析[J].农业科技与装.2008.4(2):25-29

[2]李智慧,姜延辉,郁凌峰.辽宁省水资源时空分布特点及对策[J].东北水利水电.2011(11):30-34

[3]赵秀风,弓丨水隧洞洞内消能问题的研究[D]:(硕士学位论文).郑州:华北水电学院,2006.

[4]袁丹青,陈向阳,白滨等.水力机械空化空蚀问题的研究进展[J]#灌机械,2009.7(27):269-272

[5]肖富仁,苏玮,消能工的发展及其在工程中旳应用[J].水电站设计,1991.7(1):63-69.

[6]李超,管道内部锥阀水流水力特性及消能研究[D]:(硕士学位论文).西安:西安理工大学,2008.

[7]王才欢,肖兴斌,底流消能设计研究与应用现状述评[J].四川水力发电,2000.1(1):79-85.

[8]张慧丽,王爱华,张力春,底流消能及其在工程上的应用[J].黑龙江水利科技.2009.2:82

[9]方神光,吴保生,南水北调中线干渠闸前变水位运行方式探讨[J].水动力学研究与进展,2009.9633-639.

[10]李冰,变水头无压输水隧洞洞内消能和稳定输水研究[D]:(硕士学位论文).郑州.华北水电学院,2007.5.

[11]武汉水利电力学院水力学教研室.水力计算手册[M].水利出版社,1980.

[12]SL20~92.水工建筑物测流规范[S].中国:水利电力出版社,1992.

[13]赵昕,赵明登等,水力学[M],北京:中国电力出版社,2009.

[14]刘亚坤等.水力学[M],北京:中国水利水电出版社,2008.

[15]李桂芬.水工水力学研究进展与展望[J].中国水利水电科学研究院学报,2008.9(3):183-189

[16]左东启等.模型试验的理论和方法[M],北京:水利电力出版社,1988.

[17]SL155—95.水工(常规)模型试验规程[S].中国:水利水电出版社,1995.

[18]中国水利水电科学研究院,水工(专题)模型试验规范(SL156~165-95)[M],水利水电出版社.

[19]电力部水利部水利水电规划设计总院、华北水利水电学院北京研究生部陈肇和等人翻译,泄水建筑物水力计算手册[M],1993.11.

[20]刘士和.高速水流[M].北京:科学出版社,2005.

[21]水利水电科学研究院,南京水利科学研究院编,水工模型试验(第二版)[D],水利出版社,1985.

[1]黄杏元,马劲松,汤勤.地理信息系统概论[M].修订版.北京:高等教育出版社,1990:165-171.

[2]《第二次全国土地调查技术规程》,TD/T1014-2007.北京,中华人民共和国国土资源部,2007.

[3]陈泽民.中国矢量数据交换格式的应用研究[J].武汉大学学报信息科学版,2004,29(5):451-455.

[4]吴文新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,28-29.

[5]Kang-tsungChang著,陈建飞等译.地理信息系统导论[M].北京:科学出版社,2003,43-44.

[6]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.

[7]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1990:130-133.

[8]陈先伟,郭仁忠,闫浩文.土地利用数据库综合中图斑拓扑关系的创建和一致性维护[J].武汉大学报信息科学版,2005,30(4):370-373.

[9]毋河海.关于GIS中缓冲区的建立问题[J].武汉测绘科技大学学报[J].1997,22(4):358-364.

[10]张国辉,胡闻达,李慧智.基于GDI+的缓冲区建立及边界描述方法[J].测绘科学技术学报,2010,27(3):292-232.

[11]冯花平,连文娟,卢新明.求缓冲区算法[J].山东大学学报自然科学版,2005,24(3):57-59.

[12]张欣,陈国雄,钟耳顺.优化栅格细化算法的`线状地物提取[J].地球信息科学,2007,9(3):25-27.

[13]潘瑜春,钟耳顺,刘巧芹.土地资源数据库中线状地物面积扣除技术研究[J].资源科学,2001,24(6):12-17.

[14]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报·信息科学版,2011,36(7):853-856.

[15]尹为华,刘盛庆.ARCGIS在地类面积统计中的应用[J].科技资讯,2012:29.

[16]刘洪江,曹玉香.基于ArcGIS实现地类图斑净面积的计算[J].城市勘测,2012(10)114-116.

[17]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996.

[18]任娜,张道军.基于空间推理及语义的图斑扣除线状地物面积关键算法及其在土地调查建库中的应用[J].安徽农业科学,39(35):22013-22016.

[19]计长飞.土地利用现状图的矢量化方法研究[J].测绘与空间地理信息,2011,34(4):159-163.

[20]马欣,吴绍洪,康相武.线状地物的区域影响模型及其在综合评价中的应用[J].地理科学进展,2007,26(1):87-94.

[1]韩绍伟.GPS组合观测值理论及应用.测绘学报,1995,21(2):8-13.

[2]常青等.GPS载波相位组合观测值理论研究.航空学报,1998,5(19):614-616.

[3]王泽民,柳景斌.Galileo卫星定位系统相位组合观测值的模型研究[J].武汉大学学报(信息科学版),2003,28(6):723-727.

[4]申俊飞,何海波,郭海荣,王爱兵.三频观测量线性组合在北斗导航中的应用[J].全球定位系统,2012,37(6):690-695.

[5]中国卫星导航系统管理办公室.北斗卫星导航系统发展报告(2.0版)[R].2013,12:3-6.

[6]邢喆,王泽明,伍岳.利用模糊聚类方法筛选GPS载波相位组合观测值[J].武汉大学学报(信息科学版),2006,31(1):23-26.

[7]黄令勇,宋力杰,刘先冬.基于自适应聚类算法的GPS三频载波相位组合观测值优化选取[J].大地测量与地球动力学,2011,31(4):99-102.

[8]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2003.

[9]李征航,黄劲松.GPS测量与数据处理[M].武汉大学出版社,2008.

[10]熊伟,伍岳,孙振冰,王泽民.多频数据组合在周跳探测和修复上的应用[J].武汉大学学报(信息科学版),2007,32(4):319-322.

[11]伍岳.第二代导航卫星系统多频数据处理理论及应用[D].武汉大学,2005.

[12]楼晓俊,李隽颖,刘海涛.距离修正的模糊C均值聚类算法[J].计算机应用,2012,32(3):646-648.

[13]徐军,陶庭叶,高飞.GLONASS三种载波频率组合值研究[J].大地测量与地球动力学,2013,33(1):86-89.

[14]陶庭叶,高飞,李晓莉.一种高精度GPS卫星钟差预报方法[J].中国空间科学技术,2013-4:56-61.

[15]何伟,陶庭叶,王志平.基于改进FCM的北斗三频组合观测值选取[J].中国空间科学技术(已录用).

[16]何伟,李明,阚起源.抗差加权非等时距GM(1,1)模型在大型建筑物沉降预测中的应用[J].测绘工程,2014-3,34-37.

[17]徐军,陶庭叶,高飞,张京奎.基于GLONASS三频组合观测值的周跳探测与修复[J].大地测量与地球动力学,2013,33(6):45-49.

[18]罗腾,白征东,过静珺.两种周跳探测方法在北斗三频中的应用比较研究[J].测绘通报,2011(4):1-3.

[19]范建军,王飞雪,郭桂蓉.GPS三频非差观测数据周跳的自动探测与改正研究[J].测绘科学,2006,31(5):24-26.

[20]刘旭春,伍岳,黄学斌等.多频组合数据在原始载波观测值预处理中的应用[J].测绘通报,2007(2):14-17.

[21]梁开龙,张玉册.现代化GPS信号的宽巷组合及其求解模糊度研究.测绘通报,2002年第4期:l-3

[22]张成军,许其凤,李作虎.对伪距/相位组合量探测与修复周跳算法的改进[J].测绘学报,2009,38(4):402-407.

[23]刘旭春,伍岳,张正禄.GPS三频数据在周跳和粗差探测与修复中的应用[J].煤炭学报,2006,31(5):334-339.

[24]王帅,高井祥.利用三频组合观测值进行GPS周跳探测与修复[J].测绘科学,2012,37(5):40-42.

GIS发论文

以GIS为核心的数字化成图系统的设计与实现

[摘要]

本文阐述了基于组件式GIS来开发以GIS为核心的数字化成图系统的优越性,以及以GIS为核心的数字化成图系统的设计目标和基础地形要素的编码方案。文中还结合SuperMap Survey的开发过程,介绍了如何设计与实现基于GIS内核的专业数字化成图系统。
It’s necessary to develop a Digital Mapping System(DMS) specially for GIS to solve problems resulting from data conversion between DMS and GIS.In this paper,The advantages of development DMS for GIS based on Components GIS(ComGIS) technology are discussed.In addition,the goals for DMS for GIS are listed and how to encode GIS entities is also explained.Specially,SuperMap Survey is used to discuss the details for develop DMS for GIS.

[关键词]

数字化成图系统 以GIS为核心 组件式GIS 设计目标 SuperMap Survey
Digital Mapping System,for GIS,Component GIS,Goals,SuperMap Survey

1. 引言

数字化成图技术是目前最为常用的成图技术之一,数字化成图系统所提供的电子数据也是GIS一个非常重要的数据来源。数字化成图系统所提供的电子数据与GIS数据之间的无缝联接问题也是当前GIS发展亟需解决的难点问题之一。虽然当前国内外市场上数字化成图系统很多,但到目前为止,都未能很好地解决现有的问题。数字化成图系统所提交的电子数据进入GIS后存在的问题主要表现在:

(1) 在数据转换过程中普遍存在着信息损失。由于传统的数字化成图系统大多是基于CAD内核来开发的,它偏重于对空间几何信息的描述;而GIS则要求空间信息与属性信息联合存储与管理,这就导致了在数据转换的过程中,不仅空间信息会有损失,属性信息损失的情况会更严重。

(2) 数据转入后往往不能直接满足GIS的要求,仍需要大量的后期编辑工作,造成了资源的浪费,延长了系统的建设周期。

(3) GIS基础数据库的维护与更新的难度较大。由于在维护与更新的过程中需要在GIS与数字化成图系统之间进行频繁的数据转换,往往不能直接对基础数据库进行操作,造成了基础数据维护与更新的不便。

(4) 在数据转换的过程中,除了信息损失外,还往往伴随着数据膨胀。数据膨胀的结果有时会导致GIS无法对这些“海量”数据进行管理。

导致上述问题的原因有很多,归纳起来,主要有以下几方面的原因:

(1) 数据的复杂性与多样性。主要表现为现实世界的复杂性与多样性以及对同一空间对象在不同成图系统中描述与表达的不一致性。
(2) 对GIS理解的不同。不同的数字化成图系统的开发人员对GIS理解的不同,再加上缺乏相应的统一标准作为参照,这就导致了数据在表达上的差异性。
(3) 由于受到基础开发平台及开发力量的限制,数字化成图系统往往不能很好地兼顾到GIS对数据的要求。目前,绝大多数的数字化成图系统的开发商都不是GIS基础平台的开发商,这也或多或少地影响了数字化成图系统与GIS之间的沟通。
目前,市场上数字化成图系统较多,按其开发方式来分,主要可以分为两大类:(1)以CAD系统为二次开发平台。这些系统很好地利用了CAD系统灵活的编辑和强大的制图功能,但由于CAD系统与GIS在数据结构上存在着较大的差异,这使得其数据往往不能很好地满足GIS的要求。(2)独立平台的数字化成图系统。这样的系统在开发上虽然不必拘泥于二次开发开台的限制,在开发上具有较大的灵活性。但开发这样的系统,需要完全从底层做起,开发难度高,周期长,投资大。 组件式GIS(Components GIS,ComGIS)技术的出现,为开发以GIS为核心的数字化成图系统提供了一种新的开发手段和开发思路。

2. ComGIS技术及其作为数字化成图系统开发平台的优越性

2.1 什么是组件式GIS技术

组件式软件技术已经成为当今软件技术的潮流之一。基于组件开发(Component-Based Development,简称CBD)是软件开发的一次革命。与诸如面向对象和客户/服务器(Client/Server)等新趋势不同,基于组件开发不只是一种分布计算的新花样,而是一种广泛的体系结构,支持包括设计、开发和部署在内的整个生命周期计算的理念。

由于基于组件开发具有高度的重用性和互用性,所以它将影响应用程序构成的各个方面,包括所有类型的客户机,应用程序服务器和数据库服务器,将对应用程序开发的各个方面产生深刻影响。

基于组件开发的两个重要规范分别是MicroSoft的COM/DCOM和OMG的CORBA。目前Microsoft的COM/DCOM占市场领导地位,已经得到广泛应用,并逐渐成为业界事实上的标准。基于COM/DCOM,MicroSoft推出了ActiveX技术,ActiveX控件是当今可视化程序设计中应用最为广泛的标准组件。

所谓组件式GIS,是指基于组件对象平台,以一组具有某种标准通信接口的、允许跨语言应用的组件提供的GIS。这种组件称为GIS组件,GIS组件之间以及GIS组件与其他组件之间可以通过标准的通信接口实现交互,这种交互甚至可以跨计算机实现。

目前,国内外GIS厂商对组件式GIS平台的发展前景十分看好,纷纷推出了各自的GIS产品。如北京超图地理信息技术有限公司推出的全组件式GIS平台SuperMap2000、北京图原公司开发的MapEngineer、ESRI的MapObjects、MapInfo的MapX等。值得欣慰的是,国产的组件式GIS平台在功能上已经完全可以与国外同类产品相抗衡,在许多方面甚至优于国外同类产品,这使得开发以GIS为核心的数字化成图系统有了更大的选择空间。

2.2 使用组件式GIS开发数字化成图系统的优越性

组件式GIS的出现为开发以GIS为核心的数字化成图系统提供了一种新的开发手段,与传统的开发手段相比较,其优越性主要表现在:

(1) 组件式GIS本身就是一个完整的GIS,其数据模型与GIS的数据模型完全一致。基于此进行开发,可以保证数字化成图系统与GIS之间具有良好的兼容性。
(2) 组件式GIS具有灵活的开发手段。我们可以自由选择自己所熟悉的计算机语言进行开发(如VB,VC,Delphi,C Builder等),而不必专门学习二次开发语言。组件式GIS提供两种不同层次上的开发,一是基于ActiveX控件进行开发;二是直接基于组件式GIS的底层类库(SDK)进行开发。我们可以根据自己的需要灵活选择。
(3) 由于组件式GIS完全封装了GIS的功能,这使是开发人员可以完全专注于专业功能的实现,这就使得开发难度和开发周期大大降低。
(4) 基于组件式GIS开发的数字化成图系统具有良好的可扩充性。组件式GIS可以与包括数字化成图系统在内的其他系统无缝集成,开发人员可以直接使用已经写好的程序代码;组件式GIS平台往往由多个组件组成,开发人员可以根据系统的需要,随时选用新的组件对系统进行升级;在组件平台功能增强的情况下,开发人员甚至不用重新编译整个程序就可直接使用增强的底层功能,这就大大降低了系统维护和升级的难度。

表1 使用ComGIS的开发手段与传统的开发手段的比较

比较内容\开发手段 基于ComGIS平台 基于CAD平台 完全由底层开发
与GIS的兼容性 完全兼容 差 一般
是否以GIS为核心 是 否 很难做到
对空间数据库的支持 好 很差 差
开发难度 低 低 高
开发周期 短 短 长
开发投资 小 小 大
可扩展性 好 一般 较好
开发语言的选择 很多 少 很多
是否支持可视化开发 是 否 是
是否自主版权 是 否 是

3 以GIS为核心的数字化成图系统的设计

3.1 系统的设计目标

传统的数字化成图系统经过多年的发展,已经形成了一套比较完整的理论和技术体系。但是,GIS技术的飞速发展和广泛应用,对数字化成图系统提出了更高的要求,ComGIS技术的出现为传统的数字化成图系统向以GIS为核心的数字化成图系统的转变提供了一个较为理想的开发手段。与传统的数字化成图系统相相比较,以GIS为核心的数字化成图系统在设计上需要达到以下目标:

(1) 以GIS为核心,面向GIS。这就要求在系统的开发过程中充分考虑GIS对数据的要求,解决当前成图系统数据进入GIS所存在的问题。以GIS为核心是整个系统设计的灵魂和精华所在。

(2) 兼顾制图与GIS的双重需求。在满足GIS需要的同时,还必须考虑到制图对于数据表达的要求,其核心是实体的符号化表达。
(3) 开放性设计。不同地区、不同的GIS对数据的要求千差万别,这就要求数字化成图系统具有较大的灵活性和可定制性,以不变应万变。可定制性的内容应包括实体代码、实体属性、实体分层等。
(4) 对空间数据库的支持。近几年来,基于大型关系型数据库(如Oracle,SQL Sever等)的空间数据库技术在GIS工程建设中得到了广泛的应用,如何直接基于空间数据库进行数据的存储、管理、维护与更新是急需解决的问题之一。
(5) 多源数据集成。当前,数字化成图系统的电子数据格式和GIS的数据格式很多,数字化成图系统如果以对这些数据格式有着良好的支持,这会大大降低数据入库的难度,解决GIS工程建设中的数据瓶颈问题。
(6) 操作简便,符合作业人员的作业习惯。面向GIS进行数字化成图系统,工作量的增加是不可避免的。以GIS为核心的数字化成图系统必须提供高效简便的操作方式,以提高作业效率。
(7) 标准化与规范化。
3.2基础地形数据编码的设计

地形数据编码是在GIS中唯一标识某一地物的关键字。基础地形数据编码的设计也是在GIS中进行制图的需要,也是实现基础空间信息共享的基础。基础地形数据的编码是开发以GIS为核心的数字化成图系统的基础,是系统成败的关键之一。在进行基础地形数据编码设计时,必须遵循几个原则:(1)遵从国家和行业标准。(2)方便应用。用户可根据不同的需求,分层和按专题要素提取基础地形要素信息,随意定制专题显示及输出。(3)系统实现便利。在实际进行设计时,可在《国家基础地形要素编码》的基础上加以扩充,以满足系统的实际需要。

在实际系统的开发中,我们采用了基于实体特征的城市基础地理信息分类编码方案。该方案的特点是在地理要素分类的基础上,加入构成地理要素的实体的分类与特征属性,能够较好地满足GIS制图与分析的应用需求。有关该编码的详细内容可参考《基于实体特征的城市基础地理信息分类编码方案》(梁军,金文华)一文,本文不再赘述。

下面是一个地形要素的编码示例
编码 = 地形要素分类码(4位) 地形要素特征码

如: 1 1 1 0 2 0 (三角点点状符号的编码)

3.3 系统的功能设计

在功能设计上,以GIS为核心的数字化成图系统必须兼顾制图与GIS的双重需求。按其工作流程,可将其划分为以下几个模块:

(1) 数据输入模块。在此模块中,应支持目前常见的几种数据采集手段。包括:野外数字化测图(测绘)、扫描图矢量化、其他格式的电子数据(GIS数据和CAD数据)转入。在数据输入模块中,还需支持空间数据库作为其数据源。
(2) 编辑模块。这是以GIS为核心的数字化成图系统的核心模块。在编辑模块中,所有GIS实体的创建过程都必须是由系统完全封装而且是自动完成的。
(3) 查询、统计与分析。基于现有系统,可以直接完成一些常见的、简单的查询、统计与分析功能。
(4) 输出模块。包括几个方面的内容:制图输出、报表输出、其他格式的GIS数据输出、数据直接存入空间数据库。

4.以GIS为核心的数字化成图系统SuperMap Survey的实现

4.1 组件式GIS平台的选择

SuperMap Survey是北京超图地理信息技术有限公司开发的一套完全以GIS为核心的数字化成图系统。在组件式GIS平台的选择上,我们选择了全组件式GIS平台---SuperMap2000作为SuperMap Survey的开发平台。SuperMap2000是北京超图地理信息技术有限公司推出的全组件式GIS平台,与其他的ComGIS平台相比较,SuperMap2000更加适合作为以GIS为核心的数字化成图系统开发的基础平台,这主要是因为:

u SuperMap提供了两种层次的开发手段:ActiveX控件和SDK。特别是提供SDK的开发手段,特别适合开发这样的系统。
u 多组件组成。SuperMap2000由SuperMap核心控件、SuperWorkspace、SuperLegend、SuperTopo、Super3D、SuperLayout等多个组件,在组件的选择上具有很大的灵活性,使得整个系统的扩充性大大增强。
u 开放的线型和符号制作功能。SuperMap 2000 内置功能强大的线型编辑器和符号编辑器,允许用户根据专业需要设计新的线型和符号。
u 强大的制图、编辑和捕捉功能。SuperMap2000提供了可与CAD相媲美的编辑和捕捉功能,缩小了GIS和CAD系统在这方面的差距。
u 独特的多源空间数据无缝集成技术(SIMS)。SuperMap 2000 的数据转换功能可以方便地共享其他GIS软件平台的地理数据,提供了转换多种数据格式的能力。
u 空间数据库支持。通过SuperMap的空间数据库引擎,可以直接支持基于大型关系型数据库(如Oracle,SQL Server等)存储和管理空间数据。

4.2 SuperMap Survey的实现

在开发SuperMap Survey的时候,我们采用了SuperMap的底层SDK,编程语言采用了Visual C 6.0。在SuperMap SDK的支持下,我们针对数字化成图系统的需要进行了功能的扩充。在数据的存储结构上,我们采用了SuperMap2000所提供的SDB格式的数据存储结构,它是最大优点是采用双文件结构,而不是常见的一层一组文件的存储方式,这样就有利于保持数据的完整性。在编辑制图方面,我们对SuperMap底层所提供的编辑功能作了进一步的扩充,增加了适合数字化成图所需要的编辑功能。系统对于空间数据库的支持和其他格式GIS数据的支持,是基于SuperMap2000的空间数据库技术和SIMS技术来实现的。

经过紧张的开发,我们基于SuperMap2000的SDK,现已初步完成了以GIS为核心的数字化成图系统的开发工作,基本上实现了系统的设计目标。在SuperMap Survey中,我们实现了以下功能:

(1) 支持常用的测绘手段进行野外数字化测图。包括测记法(包括电子手簿),内外业一体化数据采集(电子平板)。利用SuperMap Survey可进行常规的大比例尺数字化测图。
(2) 扫描图矢量化。SuperMap Survey支持常见图像格式的图像调入、配准、切边、配准和屏幕矢量化。
(3) 支持基于SQL Server和Oracle等的空间数据库操作。可直接编辑数据库中的数据。
(4) 支持多种格式的GIS数据和CAD数据的导入和导出。
(5) 适合数字化成图系统的编辑和捕捉功能。完全自动化的GIS实体创建。专为地籍测量定制的地籍测量模块。
(6) 提供最为常用的GIS查询、统计和分析功能。
(7) 基于模板的标准图件输出。
(8) 开放性设计。使用SuperMap Survey所提供的参数管理程序可方便地定制各种参数。

图1 基于SuperMap2000开发的以GIS为核心的数字化成图系统

五 结论

以GIS为核心的数字化成图系统的开发,较好地解决了传统的数字化成图系统所提供的电子数据进入GIS所存在的问题,在实际应用中取得了良好的效果。

在系统开发的过程中,我们深深地体会到,以ComGIS作为数字化成图系统的开发平台,与传统的开发技术相比较,开发难度适中,开发周期短,开发投资小,与GIS的兼容性好,是开发以GIS为核心的数字化成图系统的理想选择。

[参考文献]

[1]陈述彭等,《地理信息系统导论》,科学出版社,北京,2000.1
[2]杨德麟等,《大比例尺数字测图的原理、方法和应用》,清华大学出版社,北京,1998.2
[3]宋关福、钟耳顺,”组件式地理信息系统研究与开发”, 《图像图形学报》,Vol.3 No.4 ,1998.4
[4]中科院地理信息产业发展中心,《杭州市土地信息系统基础地形信息编码与分层方案》,2000.2
[5]北京超图地理信息技术有限公司,《理解SuperMap GIS》,2000.9

图片不知道怎么发上来
请自己去参考资料查看

浅谈GIS技术在水利工程中的应用展望论文

浅谈GIS技术在水利工程中的应用展望论文

摘要: 近年来, GIS (地理信息系统) 技术在水利工程应用领域中发挥着技术先导的作用。文章通过分析目前GIS技术在水利规划、水资源管理等水利工程行业的具体应用形式, 结合地理信息学科的发展方向, 展望GIS在水利工程中的应用前景。

关键词: GIS; 水利工程;

1 GIS技术概述

20世纪60年代, 世界上第一个GIS (加拿大地理信息系统CGIS) 诞生, 其核心是用计算机来处理和分析具有空间属性地理信息。GIS技术能够有效地管理地理信息资源, 是其能够有效利用的核心技术。20世纪以来, 计算机和网络技术日的新月异极大地推进了GIS在我国的发展进程, 由于应用后能够明显地提高工作效率和经济效益, 因此, GIS技术已成为资源与环境各领域应用中不可或缺的前沿技术。

近20年, 我国经济水平持续增长, 人民生活质量稳步提高, 同时, 水资源需求与水资源利用率相对不足的矛盾逐渐加剧, 这促使水利工作者不断探索如何利用现代信息技术手段缓解这一矛盾。为有效地利用水资源, 在当前条件下最大限度地发挥水利工程的调节作用, 减少建设、管理人员的投入量, GIS技术作为信息化的体现之一, 在水利工程各环节中的应用范围不断扩大, 应用层次也逐渐深入。通过近年来的发展, GIS的应用形式已从最初单纯的可视化应用过渡为集合分析、模拟、预测等多位一体的复杂应用, 功能也提升为对多时期的地理信息变化进行动态监测和分析比较, 将数据收集、空间分析和决策过程统一打包的应用。实践表明, 通过使用GIS系统, 有利于设计人员对工程进行总体规划, 方便施工人员对实施过程进度和质量把控, 有效提高管理人员的工作效率, 从而提升水利行业整体信息化水平。

2 GIS技术在水利工程中的应用

水利工程为消除水害和开发利用水资源而修建, 重要性不言而喻, 而其本身具有一定的地理空间属性, 对工程的地理环境依赖较高。GIS的发展恰好为水利工程的空间属性提供了可行的表现途径和有效的模拟、分析方法。运用GIS技术, 矢量化地理信息数据, 搭建水利工程地理信息平台, 能够直观地展示工程环境, 结合水利资料, 实现环境分析模拟, 有利于管理人员决策[1]。

目前, GIS在水利工程方面的应用主要表现在以下几方面:

(1) 水利工程规划

GIS技术广泛应用于水库选址、复杂工程布局、工程测量[2]、库容量计算、开挖土石方量计算、工程建设监测[3]、工程变形监测等方面, 促使水利工程规划、管理科学发展。

(2) 水资源管理

运用GIS技术能够确定水资源分区, 建立科学有效的管理模式, 分析水资源量, 直观地展示水资源分布和数量的动态变化, 有助于实现水资源的合理利用。

(3) 防洪减灾

GIS应用主要表现在防汛决策支持系统[4]和洪灾损失评估, 它以GIS为基础, 实现了决策方案、防汛信息、损害范围的直观化和形象化表达, 为全国防汛决策提供有力的技术支撑。

(4) 水土保持

利用GIS技术能够进行水土流失预测和动态监测[4], 查询、统计、分析土地分区和土地利用情况, 有利于重点区域水土流失综合治理措施的制定, 提升治理效果。

(5) 水质监测

建立GIS水质监测应用平台, 能够掌握水质的实时动态变化, 及时辨析污染源头, 有利于地表水、地下水储量分析, 模拟水量调度, 提高水资源利用水平。

(6) 水文预报

通过GIS技术, 整合水文基础数据, 实现基础背景数据管理, 对空间和属性数据的查询, 统计数据以及显示检索, 为水文预报提供基础数据支撑[5]。

3 GIS技术应用展望

随着计算机技术的发展, GIS技术在水利工程应用的内容已从结合地理要素的水利信息查询展示发展到利用GIS空间运算完成水利信息的分析、计算、模拟与统计。近年来, 结合遥感、GPS等前沿技术, 构建3D、4D地理信息系统平台, 实现多维度水工建筑仿真应用已成为水利信息化应用新趋势 (如三维可视化洪水淹没分析与灾情评估系统、4D水利施工管理系统等[6]) 。水利要素具有的空间地理属性促进了GIS在水利应用中的高速发展, 纵观发展历史, 水利GIS应用的发展趋势主要表现为应用内容的发散性扩展及应用技术的融合性集成。

3。1 应用内容扩展

利用GIS技术, 实现工程环境分析模拟的形象化, 并且在一定程度上提高了获取信息的时效性和准确性, 有利于管理和决策。因此, 今后GIS技术将逐渐覆盖水利行业的各个方面, 促使水利信息化进一步发展。

(1) 洪水模拟

利用洪水历史资料, 结合GIS平台, 建立合理的流域模型, 通过可视化模拟, 分析流域洪水成因、洪水特性及其规律;通过地理信息要素分类, 分析各主要河道的自然条件;运用GIS技术, 进行上下游洪水演进模拟分析, 促使建立一定洪水标准下合理的蓄、滞、泄关系及管理措施等。

(2) 供水预案

建立供水、需水、蓄水地理信息管理平台, 通过电子地图可视化展示水源地分布, 有助于研究可能的供水方案与主要工程措施及用水管理与供水水质保证措施。

(3) 水质分析

实现水质采集自动化, 分析地质、水质信息的地理属性, 应用GIS技术研究土壤侵蚀分区;分析各类可能污染源;利用历史资料, 模拟预测不同规划水平年的污染负荷量和水质变化, 以此为基础研究保护水资源应采取的措施。

(4) 工程测量

应用无人机搭载遥感、GPS设备, 采集、处理工程测量数据, 利用GIS技术实现测量数据可视化, 减少外勘人力成本, 提高工程测量的.精度与效率, 便于数据成果的合理应用。

3。2 应用技术深入

(1) GIS技术发掘

随着GIS技术的发展, 多种空间数据结构 (如“真三维”、“时空四维”) [7]应运而生, 面向对象的数据模型和实用的界面语言正处于高速发展阶段, 数据自动输入技术不断完善, 各行各业GIS应用模型开发力度不断加大, GIS的网络共享能力 (webGIS) 不断增强。在这样的大环境中, 水利与GIS的结合必将更加深入, 具体表现为水利数据信息的表达将趋于多维度、丰富性、立体性、共享性, 水利应用模型将趋于结构化、可扩展性, 形成整个水利行业的GIS综合管理平台, 逐渐打开GIS综合系统与水利专业系统共存共荣的局面。

(2) 相关技术集成

鉴于水利空间数据的时间性和复杂性, 单一的GIS技术很难满足水利要素的处理要求。因此, 在水利工程的应用中, “3S”技术 (全球定位系统GPS、遥感RS、地理信息系统GIS) 、无人机技术的集成已成为必然的发展趋势。GPS为GIS的快速定位和更新提供手段, 遥感技术的多谱段、多时相、多传感器和多分辨率的特点, 为GIS不断注入“燃料”, 反过来又可利用GIS支持从遥感影像数据中自动提取语义和非语义信息, 而无人机则可作为遥感设备提供载体[7]。利用无人机航拍, GPS和RS赋予了GIS实时、动态属性。3S技术整体结合所构成的水利地理信息系统是高度自动化、实时化的GIS系统。这种系统不仅具有自动、实时地采集、处理和更新数据的功能, 而且能够分析和运用数据, 为水利各学科应用提供科学的决策咨询。

多媒体地理信息系统 (MGIS) 将文字、图形 (图像) 、声音、色彩、动画等技术融为一体, 为GIS应用开拓了新的领域和广阔的前景[8]。它能够以最直观的方式表达和感知空间地理信息, 以形象化的、可触摸 (触屏) 的甚至声控对话的人机界面操纵空间地理信息处理的技术。应用MGIS的水利地理信息系统将对结构、功能及应用模式的设计产生极大的影响, 使得各类信息的表现形式更丰富, 更灵活, 更友好。

4 结语

毋庸置疑, 水利GIS应用的基础是地理空间数据和水利专题要素数据, 相关专业 (如测量专业) 的发展将对其产生明显的限制或促进作用。因此, GIS在水利工程中的应用水平应依据各专业的发展稳步提高, 防止闭门造车, 构建海市蜃楼。

复杂技术集成的GIS在水利工程上的应用将会成为今后一段时期内水利信息化的主要趋势。搭建集工程规划、建设、管理为一体的水利工程综合地理信息平台, 能够实时、有效地展示工程运行情况, 模拟防洪工况, 提高管理决策能力, 为水利信息化事业发展添砖加瓦。

参考文献

[1]刘林宁。地理信息系统在水利工程中的应用探讨[J]。农村经济与科技, 2016, 27 (18) :65。

[2]鞠尊洲。3S技术在水利工程测量中的应用[J]。科技信息 (学术研究) , 2008 (14) :239—240。

[3]李蕾。浅谈在水利工程建设管理中信息技术的应用[J]。建设科技, 2016 (17) :93。

[4]王芳, 卜倩倩。探析计算机地理信息系统在水利中的应用[J]。资源节约与环保, 2015 (03) :154。

[5]赵晓敏, 李本怀。GIS技术在水文预报中的应用—以长春新立城水库为例[J]。水利技术监督, 2013, 21 (02) :64—66。

[6]刘丹, 刘萍, 樊耔均。GIS在水利现代化中的应用和发展趋势[J]。硅谷, 2012, 5 (24) :43+42。

[7]张会玲。GIS技术应用及未来发展趋势[J]。信息系统工程, 2012 (04) :98—99。

[8]董凤服, 刘洋。GIS技术的发展趋势[J]。网络与信息, 2007 (08) :65。

工程测量参考文献

工程测量参考文献

参考文献是在学术研究过程中对某一著作或论文的整体的参考或借鉴,关于工程测量论文参考文献有哪些?以下是我整理的工程测量参考文献,仅供参考,欢迎大家阅读。

[1] 李青岳. 工程测量学[M]. 北京: 测绘出版社,1984

[2] 李青岳, 陈永奇. 工程测量学[M]. 北京: 测绘出版社,1995

[3] 张正禄. 工程测量学[M]. 武汉: 武汉大学出版社,2002

[4] 张正禄等. 工程的变形监测分析与预报[M]. 北京: 测绘出版社, 2007

[5] 张正禄等. 地下管线探测和管网信息系统[M]. 北京: 测绘出版社, 2007

[6] 黄声享,郭英起,易庆林.GPS在测量工程中的应用[M]. 北京:测绘出版社,2007

[7] 张希黔,黄声享,GPS在建筑施工中的应用[M]. 北京:中国建筑工业出版社, 2005

[8] 黄声享,尹 晖,蒋征. 变形监测数据处理[M]. 武汉:武汉大学出版社, 2004

[9] 张正禄主编. 工程测量学[M].武汉:武汉大学出版社,2002

[10] 尹晖 编著.时空变形分析与预报的理论和方法[M].北京:测绘出版社,2002

[11] 张正禄等. 工程测量学[M]. 武汉: 武汉大学出版社, 2005

[12] 齐民友等. 概率论与数理统计[M]. 高等教育出版社, 2002.

[13] 张正禄等. 科傻系统使用说明书[M], 2006.

[14] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社,2003.

[15] 潘正风,杨正尧等. 数字测图原理与方法[M]. 武汉: 武汉大学出版社, 2004

[16] 李庆海,陶本藻. 概率统计原理和在测量中的应用[M]. 北京: 测绘出版社, 1982

[17] 张正禄, 吴栋材等. 精密工程测量[M]. 北京: 测绘出版社, 1992

[18] 吴翼麟, 孔祥元等. 特种精密工程测量[M]. 北京: 测绘出版社, 1993

[19] 陈龙飞, 金其坤. 工程测量[M]. 上海: 同济大学出版社, 1990

[20] 于来法, 杨志藻. 军事工程测量学[M]. 北京: 八一出版社, 1994

[21] 覃辉等. 土木工程测量[M]. 上海: 同济大学出版社, 2004

[22] 王兆祥等. 铁道工程测量[M] . 北京: 铁道出版社, 1998

[23] 陈永奇, 李裕忠等. 海洋工程测量[M]. 北京: 测绘出版社, 1991

[24] 吴子安, 吴栋材. 水利工程测量[M]. 北京: 测绘出版社.1990

[25] 钱东辉. 水电工程测量学[M]. 北京: 中国电力出版社.1998.

[26] 秦昆, 李裕忠等. 桥梁工程测量[M]. 北京: 测绘出版社, 1991

[27] 吴栋才, 谢建纲等. 大型斜拉桥施工测量[M]. 北京: 测绘出版社, 1996

[28] 张项铎, 张正禄. 隧道工程测量[M]. 北京: 测绘出版社, 1998

[29] 田应中,张正禄等. 地下管线网探测与信息管理[M]. 北京: 测绘出版社, 1998

[30] 冯文灏. 工业测量[M]. 武汉: 武汉大学出版社, 2004

[1]黄杏元,马劲松,汤勤.地理信息系统概论[M].修订版.北京:高等教育出版社,1990:165-171.

[2]《第二次全国土地调查技术规程》,TD/T1014-2007.北京,中华人民共和国国土资源部,2007.

[3]陈泽民.中国矢量数据交换格式的应用研究[J].武汉大学学报信息科学版,2004,29(5):451-455.

[4]吴文新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003,28-29.

[5]Kang-tsungChang著,陈建飞等译.地理信息系统导论[M].北京:科学出版社,2003,43-44.

[6]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.

[7]黄杏元,汤勤.地理信息系统概论[M].北京:高等教育出版社,1990:130-133.

[8]陈先伟,郭仁忠,闫浩文.土地利用数据库综合中图斑拓扑关系的创建和一致性维护[J].武汉大学报信息科学版,2005,30(4):370-373.

[9]毋河海.关于GIS中缓冲区的建立问题[J].武汉测绘科技大学学报[J].1997,22(4):358-364.

[10]张国辉,胡闻达,李慧智.基于GDI+的缓冲区建立及边界描述方法[J].测绘科学技术学报,2010,27(3):292-232.

[11]冯花平,连文娟,卢新明.求缓冲区算法[J].山东大学学报自然科学版,2005,24(3):57-59.

[12]张欣,陈国雄,钟耳顺.优化栅格细化算法的线状地物提取[J].地球信息科学,2007,9(3):25-27.

[13]潘瑜春,钟耳顺,刘巧芹.土地资源数据库中线状地物面积扣除技术研究[J].资源科学,2001,24(6):12-17.

[14]唐原彬,张丰,刘仁义.一种维护线状地物基本单元属性逻辑一致性的平差方法[J].武汉大学学报信息科学版,2011,36(7):853-856.

[15]尹为华,刘盛庆.ARCGIS在地类面积统计中的应用[J].科技资讯,2012:29.

[16]刘洪江,曹玉香.基于ArcGIS实现地类图斑净面积的计算[J].城市勘测,2012(10)114-116.

[17]边馥苓.地理信息系统原理和方法[M].北京:测绘出版社,1996.

[18]任娜,张道军.基于空间推理及语义的图斑扣除线状地物面积关键算法及其在土地调查建库中的应用[J].安徽农业科学,39(35):22013-22016.

[19]计长飞.土地利用现状图的矢量化方法研究[J].测绘与空间地理信息,2011,34(4):159-163.

[20]马欣,吴绍洪,康相武.线状地物的区域影响模型及其在综合评价中的应用[J].地理科学进展,2007,26(1):87-94.

[1]吴战广,张献州,张瑞,杨龙杰。基于物联网三层架构的地下工程测量机器人远程变形监测系统[J].测绘工程,2017,02:42-47+51.

[2]付海军。浅谈工程测量技术的发展及应用[J].工程建设与设计,2016,16:5-6.

[3]赵红强,成晓倩,韩瑞梅。多基线数字近景摄影测量在建筑工程中的应用[J].测绘与空间地理信息,2016,12:33-36.

[4]张冠海。工程测量中测绘新技术的应用分析[J].化工管理,2017,01:84.

[5]何屹雄,花向红,许承权,姚周祥,黎洋。全站仪建筑物立面图测量方法研究及工程实践[J].测绘地理信息,2017,01:10-13.

[6]冯志成。工程测量中应用GPS控制测量平面及高程精度[J].工程建设与设计,2017,01:111-113.

[7]练伟东。提高水利工程测量水平的措施探析[J].住宅与房地产,2017,03:285.

[8]丛林,孙梅君。城市规划管理中工程测量的作用探讨[J].住宅与房地产,2017,03:142.

[9]黄维。建筑工程测量模式对测量精度的影响分析[J].住宅与房地产,2017,03:196.

[10]程永刚。浅谈建筑工程测量对于工程质量的作用和意义[J].江西建材,2017,02:228.

[11]缪健军。建筑工程测量中数字测量技术应用分析[J].宏观经济管理,2017,S1:68-69.

[12]尤潇华。大伙房输水工程TBM2标隧洞测量贯通控制技术研究[J].东北水利水电,2017,01:8-10+71.

[13]张健,魏峰,詹勇。现代工程测量新技术在水利工程的应用探析[J].科技创新与应用,2017,03:219-220.

[14]岳太恒。土木工程施工中的测量施工分析[J].科技创新与应用,2017,01:251.

[15]高爽。浅析摄影测量与遥感在工程测量中的应用[J].中国新技术新产品,2017,03:98.

[16]胡杨。测绘新技术在工程测量中的应用[J].科技与创新,2017,03:157-158.

[17]史雨露,李宗义。现代测绘技术在工程测量中的应用[J].四川水泥,2017,01:340.

[18]崔继忠。数字化测量技术在工程测量中的应用[J].科技创新与应用,2017,04:282.

[19]卢秋羽,殷润浩,张俊毅。数字测量技术在建筑工程测量中的应用[J].四川水泥,2017,01:282.

[20]杨紫薇。数字测量技术在建筑工程测量中的应用[J].中国新技术新产品,2017,02:95-96.

[21]赵海龙。工程测量技术现状与发展[J].门窗,2017,01:235.

[22]吴涌泉,石频。现代测绘技术在工程测量中的'应用[J].门窗,2017,01:240.

[23]胡斐。施工测量在建筑工程中的作用[J].山西建筑,2017,03:205-206.

[24]张建媛。浅论建筑工程测量技术的应用[J].江西建材,2017,03:216.

[25]汤棹颖。路桥工程测量中GPS的应用现状与发展趋势分析[J].福建建材,2017,01:27-28.

[26]王献奇,张翠萍。激光跟踪测量在大型水轮发电机组安装工程的应用[J].水电与新能源,2017,02:22-25.

[27]徐辉,袁子喨。发电工程测量中UTM投影变形的处理与实践[J].工程勘察,2017,03:53-58.

[28]罗毅。GPS测量技术在工程测量中的应用[J].工程技术研究,2017,02:48+50.

[29]王芳,戴建安,晏承志,孟伟。工程测绘中GPS测量技术的应用研究[J].资源信息与工程,2017,01:129-130.

[30]王学强。工程测量中GPS控制测量高程精度分析[J].江西建材,2017,05:208-209.

[31]罗琼。无人机航空摄影测量技术在电力工程测量中的应用分析[J].通讯世界,2016,23:179-180.

[32]杨天。精密工程测量中全站仪三角高程精度分析[J].四川建材,2017,02:187+191.

[33]陆立飞。浅论GPS(RTK)在工程测量中的应用及其优点[J].世界有色金属,2017,01:83+85.

[34]李宇。工程测量中GPS技术存在的问题及其解决措施[J].世界有色金属,2017,01:69+71.

[35]熊金鹤。现代技术在工程测量中应用的探讨[J].世界有色金属,2017,01:57+59.

[36]史晓峰。影响工程测量中的精度因素及控制分析[J].地下水,2017,01:117+172.

[37]庞秀淼,李胜利。免棱镜全站仪在工程测量中的应用[J].资源信息与工程,2017,01:116-117.

[38]陈晨。现代测绘技术在工程测量中的应用研究[J].资源信息与工程,2017,01:126-127.

[39]唐信东。新技术在建筑工程测量中的应用分析[J].江西建材,2017,05:214.

[40]张树升。建筑工程中测量技术的应用分析[J].江西建材,2017,05:217+221.

工程测量参考文献二:

[41]杨雪芬。浅析工程测量技术及应用[J].低碳世界,2017,03:97-98.

[42]张城泉。探讨RTK技术在市政工程测量中的应用[J].工程建设与设计,2017,02:7-8.

[43]朱庆伟,王家伟,王涛。工程测量中高精度对中杆设计研究[J].西安科技大学学报,2017,02:280-284.

[44]王文贤。工程测量与现场施工管理的关系[J].交通世界,2017,08:126-127.

[45]刘勇。GPS测量技术及其在工程测量中的应用[J].世界有色金属,2017,02:92-93.

[46]张欣,王章朋,罗斌,丁剑。基于参考线方法的大型建筑工程放样测量[J].施工技术,2017,06:136-138.

[47]李宗义,史雨露。工程测量在信息化测绘战略跨越中的拓展[J].四川水泥,2017,02:278.

[48]潘雨竹。公路工程中工程测量技术的应用分析[J].江西建材,2017,06:225+228.

[49]章锦杰。任务驱动教学法在中职“建筑工程测量”综合实训课中的实践与探索[J].新课程研究(中旬刊),2017,02:63-65.

[50]姚海军。现代工程测量技术的发展与应用[J].工程技术研究,2017,03:77+105.

[51]张莞玲。数字化测绘技术在工程测量中的应用[J].工程技术研究,2017,03:78+102.

[52]田峰,苏宗跃。基于工程测量技术的发展趋势浅析[J].中国新技术新产品,2017,08:88-89.

[53]许东昕。电力线路设计工程中的测量设备结合卫星地图的应用[J].工程技术研究,2017,03:121+126.

[54]胡兴强。浅论GPSRTK技术在工程测量中的应用[J].科技风,2017,03:272.

[55]李晓伟。轨道精密工程测量技术在地铁轨道运营维护中的应用研究[J].铁道勘察,2017,02:1-6.

[56]王素权。RTK技术在水利工程测量中的应用分析[J].建材与装饰,2017,01:276-277.

[57]黄勇。对于工程测绘测量技术应用的分析与研究[J].世界有色金属,2017,03:198-199.

[58]郭伟。GPS实时动态(RTK)测量在工程测量中的应用研究[J].工程建设与设计,2017,07:54-55+58.

[59]张元。建筑工程测量模式对测量精度的影响分析[J].世界有色金属,2017,03:16-17.

[60]娄义康。建筑工程施工测量的精度要求探讨[J].世界有色金属,2017,03:13-14.

[61]何民华。浅谈建筑工程测量在施工中的应用[J].科技展望,2017,09:29.

[62]付鹏程。高职院校工程测量教学改革探讨[J].科技资讯,2017,06:161+163.

[63]王秀春。建筑工程测量技术在实际应用中存在的问题及应对策略[J].江西建材,2017,10:215+219.

[64]屈秀杰。工程测量与三维测绘技术的发展探讨[J].世界有色金属,2017,04:205+207.

[65]黄勇。工程测量的重要性与测量技术及其发展方向[J].世界有色金属,2017,04:230-231.

[66]王恩强。地质工程测量中新型测绘技术的应用探究[J].世界有色金属,2017,04:238+240.

[67]孙立业。论工程测量在施工质量管理中的重要性[J].世界有色金属,2017,04:203-204.

[68]李石贵。浅谈高速铁路精密工程测量技术的特点[J].价值工程,2017,15:126-127.

[69]李贝,陈羽,孙平,李冰,刘万锋。滚动摩擦系数工程测量方法与验证[J].工程机械,2017,04:29-32+7-8.

[70]许康艳。浅谈数字化测绘技术在建筑工程测量中的应用[J].江西建材,2017,11:215+218.

[71]宁林春,方荣华,黄辰虎,王玉春。海港工程浚后测量的实施[J].海洋测绘,2017,02:39-41+50.

[72]王朕。论建筑工程测量中的数字测量技术[J].中国新技术新产品,2017,11:71-72.

[73]何小文。建筑工程测量施工的放样方法及具体运用分析[J].中国高新技术企业,2017,07:170-171.

[74]王恩强。地质工程测量中新型测绘技术的应用探究[J].世界有色金属,2017,04:238+240.

[75]郭刚,贾卫国,张社安,李静,张静波。配电网工程电缆长度测量仪的研制与应用[J].河北电力技术,2017,02:19-21.

[76]何小文。建筑工程测量中存在的问题及应对措施分析[J].中国高新技术企业,2017,08:155-156.

[77]廖全军。浅析数字化技术在工程测量中的应用[J].中国高新技术企业,2017,08:165-166.

[78]赵敏。现代测绘技术在工程测量中的应用及完善策略[J].工程技术研究,2017,05:70-71.

[79]冯宇华。工程测量与三维测绘技术发展探析[J].中国高新技术企业,2016,03:149-150.

[80]霍栋良。影响工程测量精度的因素及控制分析[J].江西建材,2016,01:243.

公共交通方面的论文参考文献啊

1] 王德,耿慧志,胡晓华,林旋. 时距概念在城镇体系规划中的应用——以浙江省上虞市为例[J]城市规划, 2001,(07) . [2] 朱才斌,林坚. 现代城市中心区功能特征与启示[J]城市发展研究, 2000,(04) . [3] 陈雪明. 地理信息系统技术在美国城市交通规划中的应用[J]城市规划汇刊, 1996,(02) . [4] 杨丽娟,牛玲. 公交优先是城市公共交通的战略方针[J]城市公共交通, 2001,(03) . [5] 黄解军,潘和平,万幼川. 构建智能交通推动数字城市的发展[J]城市规划汇刊, 2002,(03) . [6] 潘海啸,张瑛. 上海市轨道交通发展与公共交通运输导向开发区简介[J]城市规划汇刊, 2002,(04) . [7] 傅国伟,郭京菲. 面向可持续发展的水资源管理问题的探讨[J]城市环境与城市生态, 1997,(01) . [8] 杨新苗,王炜,顾维平,周明保. 公交线路客流模糊神经网络预测模型[J]公路交通科技, 2000,(04) . [9] 王殿海,吴娟,栗红强. 典型线路公共汽车票价确定方法研究[J]公路交通科技, 2000,(06) . [10] 潘海啸. 快速交通系统对形成可持续发展的都市区的作用研究[J]城市规划汇刊, 2001,(04) . [11] 欧阳安蛟. 容积率影响地价的作用机制和规律研究[J]城市规划, 1996,(02) . [12] 张奎福. 公共交通在城市交通发展中的位置[J]北京规划建设, 1997,(06) . [13] 胡润洲. 城市公共交通专用道(路): 提高大城市公交运输水平的重要途径[J]城市规划, 1997,(03) . [14] 杨晓光,马林. 有关城市公交专用道(路)之设计要点及优先控制管理系统[J]城市规划, 1997,(03) . [15] 陆锡明,陈必壮. 上海实行公交专用路的设想[J]城市规划, 1997,(03) . [16] 何磊. 快速公共交通引导城市走健康之路[J]城市规划, 2002,(03) . [17] 李秀辉,张世英. PPP与城市公共基础设施建设[J]城市规划, 2002,(07) . [18] 覃煜,晏克非,赵童. 城市综合客运交通体系中换乘研究[J]长沙交通学院学报, 2000,(02) . [19] 孙明洁. 世纪之交的中国城市等级规模体系[J]城市规划汇刊, 2000,(01) . [20] 史春华,杨晓光,曾松. 城市公交专用道的设置与设计[J]城市轨道交通研究, 2000,(02) .

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页