您当前的位置:首页 > 发表论文>论文发表

发电厂电气部分论文开题报告

2023-02-19 22:38 来源:学术参考网 作者:未知

发电厂电气部分论文开题报告

摘 要 由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。它的功能是将自然界的一次能源通 过发电动力装置转化成电能,再经输、变电系统及配电系统将电能供应到各负荷中心。 电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身的运行的可靠性、灵活性和经济性密切相关。并且对电气设备选择、配电装置配置、继电保护和控制方式的拟定有较大的影响。电能的使用已经渗透到社会、经济、生活的各个领域,而在我国电源结构中火电设备容量占总装机容量的75%。本文是对配有4台200MW汽轮发电机的大型火电厂一次部分的初步设计,主要完成了电气主接线的设计。包括电气主接线的形式的比较、选择;主变压器、启动/备用变压器和高压厂用变压器容量计算、台数和型号的选择;短路电流计算和高压电气设备的选择与校验; 并作了变压器保护。 关键词: 发电厂;变压器;电力系统;继电保护;电气设备

电力系统规划及发电厂电气部分设计 开题报告查重吗

开题报告不查重,最后论文可能查重。

发电厂电气技术论文

  随着信息网络技术发展水平的不断提高,发电厂电气技术也渐渐地被人们所关注。我为大家整理的发电厂电气技术论文,希望你们喜欢。
  发电厂电气技术论文篇一
  发电厂电气自动化技术初探

  摘要:本文分析了发电厂用电系统的特点,通过介绍电气综合自动化系统的功能,探讨了目前电气自动化控制系统的设计思想,展望了将来电气自动化控制系统的发展趋势。

  关键词:发电厂;电气自动化;技术;分析

  中图分类号:TU984 文献标识码:A 文章编号:

  从布置方式和数量上来看,厂用电设备分散安装于各配电室和电动机控制中心,元件数量众多,运行管理信息量大,检修维护工作复杂。与热工系统相比较, 电气设备操作频率低,有的系统或设备运行正常时,几个月或更长时间才操作一次;电气设备保护自动装置要求可靠性高动作速度快,比如保护动作速度要求在40ms 以内完成。在电气设备本身构造上,其具有联锁逻辑较简单、操作机构复杂的特点。在构建ECS时,其系统结构与DCS 的联网方式是确保系统高可靠性的关键。既要实现正常起停和运行操作外,又要实现实时显示异常运行和事故状态下的各种数据和状态并提供相应的操作指导和应急处理措施,保证电气系统在最安全合理的工况下工作。

  1 集中模式

  1.1 原理

  集中模式也就是传统的硬接线方式,将强电信号转变为弱电信号,采用空接点方式和4—20mA标准直流信号,通过电缆硬接线将电气模拟量和开关量信号一对一接至DCS的I/O模件柜,进入DCS进行组态, 实现对电气设备的监控。这种模式又分为直接I/0接人方式和远程I/0接人方式两种,前者是将电缆接至电子间集中组屏,后者是在数据较集中且离主控室较远的电气设备现场设立远程I/0采集柜,然后通过通信方式与 DCS控制主机相连,两者具有相同的实现技术,本质上没有区别。

  1.2 优点

  电气量的采集集中组屏,便于管理,设备运行环境好;硬接线方式成熟,响应速度快。

  1.3 缺点

  1.3.1 电缆数量大,电缆安装工程量大,长距离电缆引进的干扰也可能影响DCS的可靠性。

  1.3.2 DCS系统按“点”收费,不仅投资大,而且只有重要的电气量才能进入DCS,系统监测的电气信息不完整。

  1.3.3 所有信息量均要集中汇总至 DCS系统,风险集中,影响系统可靠性。

  1.3.4 由于 DCS调试一般是最后进行,采用集中模式通常难以满足倒送厂用电的要求。

  1.3.5 没有独立的电气监控主站系统,无法完成较复杂的电气运行管理工作(如防误、事故追忆、继电保护运行与故障信息自动化管理、录波分析等高级应用功能),不能实现电气的“综合自动化”。

  2 分层分布式模式

  2.1 原理

  分层分布式模式从逻辑上将ECS划分为三层,即站级监控层、通信层和间隔层(间隔单元)。间隔层由终端保护测控单元组成,利用面向电气一次回路或电气间隔的方法进行设计,将测控单元和保护单元就地分布安装在各个开关柜或其他一次设备附近。网络层由通信管理机、光纤或电缆网络构成,利用现场总线技术,实现数据汇总、规约转换、转送数据和传控制命令的功能。站级监控层通过通信网络,对间隔层进行管理和交换信息。

  2.2 优点

  2.2.1 间隔层测控终端就地安装,减少占用面积,各装置功能独立,组态灵活,可靠性高。

  2.2.2 模拟量采用交流采样,节省二次电缆,降低了成本,抗干扰能力增强,系统采集的数据精度大大提高。

  2.2.3 系统采集的数据量提高,监控信息完整,能实现在远方对保护定值的修改及信号复归,运行维护方便。

  2.2.4 分布式结构方便系统扩展和维护,局部故障不影响其他模块(部件)正常运行。

  2.2.5 设置独立的电气监控主站,便于分步调试和投运,满足倒送电的要求。同时有利于厂用电系统的运行、维护和检修。

  2.3 关键技术

  2.3.1 间隔层终端测控保护单元。分层分布式系统的最大特点就是以间隔层一次设备为单位,现场配置测控保护单元。该单元是保障厂用电系统安全、稳定运行最重要、最有效的技术手段,对其可靠性、灵敏性、速动性和选择性都有很高的要求,因此不宜由DCS来实现保护功能,而应该采用专用保护装置来实现。厂用电系统保护主要有线路、厂用变、电动机综合保护测控装置等,实现微机化保护、实时数据采集、 远方及就地控制以及记录故障数据等功能。

  2.3.2 通信网络。 ECS系统安装工作于高电压、大电场的环境,工作环境恶劣、电磁干扰大,因而通信网络是ECS系统的关键组成部分,通信网络的性能直接影响着自动化监控系统的整体性能。目前较为流行的采用电缆现场总线网络方式,光纤通信亦开始被用户逐步接受。

  通信管理层是间隔层和站控层之间的桥梁,方案中一般采用双冗余的设计思想,按照通信管理机双机热备用或双通道备用原则配置,当数据通信网络中出现问题时,系统能自动切换至冗余装置或通道,以提高系统可靠性。

  2.3.3 监控主站。监控主站安置在站级监控层,实现厂用电电气系统监控和管理,主站配置的设备和规模需要根据发电机机组的容量和运行管理要求进行设计,即可以配置成单机、双机或多机系统,标准的设备主要有数据库服务器、应用和Web服务器、操作员站、工程师站 以及其他网络设备、GPS和打印机。 尽管配置的设备规模不同,但配置的软件以及完成的功能基本一样。软件主要有前置机软件、实时数据库软件、人机界面软件和图形建模软件等。功能主要有系统监控功能、数据管理功能、系统管理功能以及应用分析功能等。

  另外,主站系统可通过多种方式与DCS系统、MIS系统和SIS系统传输数据。

  2.3.4ECS与DCS的协调控制。由于电气系统与热工系统在运行过程和控制要求上有着很多不同之处,所以在设计规划阶段和调度运行过程时必须要考虑 ECS与DCS系统之间的功能分工和协调控制,主要体现在以下几点: 由DCS实现电动机连锁逻辑控制操作,厂用电自动切换逻辑由专用电气装置实现。 由ECS实现继电保护、故障录波和事故追忆等功能的管理。 控制操作主要在DCS操作员工作站进行,DCS系统授权后也可在ECS操作员工作站进行,但要保证控制权的唯一性。

  3 技术的发展趋势

  3.1 嵌入式工业以太网技术的应用

  由于现场总线通信协议技术标准的多样性,难以统一,使其不能满足以上性能要求,而以太网由于其传输速度快、容量大、网络拓扑结构灵活以及低成本等特点,在商业领域和工业领域内得到了大规模的应用。该技术成为建立电气综合自动化中无缝通信的最好选择。

  工业以太网技术直接应用于工业现场设备间的通信已成大势所趋。随着以太网通信速率的提高,全双工通信、交换技术的发展,为以太网的通信确定性问题的解决提供了技术基础,从而为以太网直接应用于工业现场设备间通信提供了技术可能。

  利用嵌入式软、硬件,在单片机系统上实现工业以太网技术又称为嵌入式以太网。国外大的电力设备供应商纷纷推出了基于嵌入式以太网的微机保护测控设备 ,国内电力装备制造商开发的最新综合自动化系统中,也把嵌人式以太网成功应用于二次保护控制设备,因而嵌入式以太网是电气综合自动化系统间隔层网络通信的必然发展方向。

  3.2综合智能化技术的应用

  ECS系统控制发展经由计算机控制取代了传统操作盘控制,目前又由计算机控制向综合智能控制和管理发展,主要表现在间隔层和站控层两方面。

  间隔层的保护和测控单元由传统的相对独立设计,向着集保护、测量、控制、远动于一体的综合化及网络化智能保护测控单元发展,直接面向一次设备或设备组合,就地安装,除实现继电保护、实时电量监控、状态信息记录及历史记录等基本功能外,还能与站控层联网实现事故分析、状态监视、微机防误操作和安全保障等功能。

  站控层监控系统由满足基本运行SCADA功能,向全面提高运行和管理自动化水平发展。监控主站采用先进的数据挖掘技术对电气实时数据仓库和历史数据仓库的数据进行分析,提供一系列的高级应用功能。这些功能分为对外和对内两大部分。对外的功能是指给DCS和SIS等其他系统提供数据,实现机组优化控制和优化管理等综合智能控制;对内的功能是指集间隔层装置的监控管理、自动抄表、设备管理、定值管理、故障信息管理、设备在线诊断和小电流接地选线等功能于一体。

  4 结束语

  本文提出了厂用电电气自动化技术的发展趋势,随着IEC国际标准在工业化领域内的认同和应用普及,基于同一国际标准的全开放式的数字化厂用电电气综合自动化将是下一步研究的重点。

  参考文献:

  [1] 庞军.电气自动化监控技术在电厂中的应用发展[J].能源电力,2011,(7).

  [2] 张俊.电力系统中电气自动化技术的探索[J].中国新技术新产品,2010,(9).
  发电厂电气技术论文篇二
  发电厂电气自动化技术应用方法初步研究

  摘 要:随着我国社会经济的不断发展,我国东西部经济发展不平衡也日渐显著,特别是在发电厂自动化技术应用及研究上存在着很大的差距,在一些发展比较缓慢的地区,各种原因造成的安全问题还时有发生。本文就发电厂自动化技术的应用进行了相关问题的探讨和研究,通过对电网系统自动化控制模式的完善,以及对现有成功使用案例的研究,制定出配置更加灵活和更容易维护的自动化控制技术。

  关键词:热工自动化;电气自动化;电气监控系统

  中图分类号:TM76 文献标识码:A 文章编号:1674-7712 (2013) 20-0000-01

  发电厂的自动化控制系统的配置方式和数量相对比较复杂,同时在设计的过程中往往会使用较多的电器元件,所以运行管理中需要控制的信息量十分庞大。多种因素共同造成了对于发电自动控制系统检修工作的复杂性。所以在电器设备的自动化控制中需要提高电器设备的可靠性和运行效率。

  一、发电厂自动化技术基本功能

  发电厂的自动化控制过程中的一个重要工作环节就是对相关信息的搜集,这个工作环节的最主要作用就是将发电厂工作现场的各种模拟数据信息经过计算机系统进行检验,在检验的过程中如果发现被处理数据存在偏差还可以同时进行合理性的矫正,这有利于对重要数据进行整理。一般情况下,对模拟信号进行采集的过程中,同时也要对电流、功率等因素进行测定。在检测过程中检测的数据将通过画面进行直接显示,屏幕上主要显示发电厂工作的所有模拟量、相关的计算量,开关、断路器数据等多种相关数据,处于挂牌检修状态的部分电器元件也将显示在屏幕上。

  自动化系统中的检测警报功能能够使得工作人员将发电厂的全部设备的运行信息的实时状态了如指掌,在进行数据监控的同时还能够将系统的信息结合画面的功能显示出来。如在发电厂中的模拟量如果发生超越极限的情况,监视功能控制系统就会自动地将发生越界的对象的名称、编号、时间以及相关参数值等多种重要数据显示出来,同时进行打印和上传,还能够对发生次数进行计算。警报分为事故警报和预告警报两种方式,这两种方式通过不同的颜色进行显示,通过分析不同的颜色进行区分。

  在进行实际操作的工作过程中主要分为两级别控制、现场自动控制、上机控制和DCS控制着四种控制方法,其中后三种控制方式比第一种控制方式更为灵活,具有更强的可操作性,命令操作的顺序成为操作优先级,保证合理的操作优先级可以确保控制系统的一致性和安全性,能够极大地提高安全生产的效率。一旦发电厂的某些重要设备发生安全事故,控制系统将会对信息进行及时上传,通过计算机的计算进行快速反应,同时制定出最合理的解决方案。在事故处理结束后会自动对数据进行分析和储存,得出系统性的解决办法,预防类似事故的再次发生。

  二、发电厂的新型电气化自动控制技术

  随着发电厂自动化控制系统科技的不断发展,一种建立在先进信息化平台上的发电厂自动化控制系统越来越多地应用于生产领域。其中ECS系统在发电厂电气控制系统中应用比较广泛的一种系统,这种系统具有计算机处理、信号的采集与处理、现场总线技术、以太网、继电保护等技术综合研发。应用计算机、现场总线、以太网、信号处理、继电保护等技术实现对发电厂的发电机、变压设备、电动机、反馈线等电器设备以及电气化装置的测量、处理、控制、保护、监测、故障分析、保护等多种功能。这种系统采用了分层式的系统架构,自下向上分别为控制层、管理层和间隔层,其中控制层包括了硬件服务、工作站硬件等方面的工作硬件。主要通过电抄表、录波分析等应用软件进行各种工作系统的通信连接。

  ECS工作系统采用了一体化设计的方式将管理层和站控层进行了一体化设计,保证了组态调试可以一次性完成,极大地提高了调试的工作效率,同时从整体的角度完善了系统的通信工作功能,保证了通信层和间隔层之间的通信速度,并且使用DCS、MIS等数据端作为通讯接口,使得ECS和DCS之间的相互通信不受限制,还可以节省大量通信线缆和变送器设备,降低工作成本。同时系统采用了先进的自动化设备,完全实现了不受通讯限制的独立运行,保证了系统工作的安全性和可靠性。

  GCS监控系统的间隔层使用的测控系统具有比较完善的屏蔽和隔离组件,因此该系统的抗干扰能力较强,能够适用于各种复杂的工作环境。而且系统中还使用了新型的冗余技术,实现了双线网络控制、站控设备冗余以及双层以太控制等多种模式控制,从工作效率上确保了工作系统的稳定性。工作系统中的安全部件当中还设置有防火墙等多种杀毒措施,并且根据网络分段和数据加密等多种方式提高了网络信息传输的安全性。除此之外,在ECS工作系统中还增加了系统的自我诊断和自我恢复的功能,这是传统电器设备所不具备的。这就使得监控系统的间隔层、站控层和管理层具备了自我修复的功能。在通信层和管理层之间还添加了一种类似于熔断的网络数据中断方式,这就在很大程度上提高了监控系统自我修复的效率。同时在通信管理层中使用了双通道进行数据的备份、恢复和及时上传,提高了信息传输和信息数据处理的效率。系统采用了具有更高性能的微处理器,硬件的配置上也选择了具有多个CPU的智能化结构主机,确保在巨大数据计算工作量时不至使得硬件损坏,同时在操作系统上使用了领先水平的嵌入式多个任务可以同时进行操作的操作系统,这就极大地提高了数据的处理速度和处理效率,保证了发电厂的工作效率和安全工作系数,保证了发电厂的固定财产和工作人员的生命财产安全。

  三、结束语

  综上所述,发电厂的自动化控制系统是由一组独立分布的计算机控制系统进行控制的,和电厂的运行电气相比,这个方案比较经济且更加具有可行性。随着信息网络技术发展水平的不断提高,网络化的信息技术工作效率也越来越高,在不久的将来将全面实现发电厂电气控制系统工作的完全自动化,同时最终实现和DCS系统的合并,实现较大规模的信息资源共享,这将使得电力系统自动化控制进入到一个新的发展阶段。

  参考文献:

  [1]冯兴林.高速公路交通监控系统技术应用的探讨[J].中国新技术新产品,2012.

  [2]邵景峰,杨丽萍,李永刚.整经机网络化监控系统软件设计[J].太原理工大学学报,2013.

  [3]张煜明,厉红娅.新加坡D2563K6型高架门座起重机的电气系统[J].起重运输机械,2011.

  [4]吴胜强,李铁,尹德胜.DJK型无线调车机车信号及监控系统的推广应用[J].铁道通信信号,2012.

  
看了“发电厂电气技术论文”的人还看:

1. 电厂电气方面的技术论文

2. 电厂电气方面的技术论文(2)

3. 电气自动化技术论文范文

4. 电气专业论文范文

5. 电气工程及其自动化专业论文

变压器 开题报告

变压器 开题报告

变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯),是利用电磁感应原理制成的静止用电器。

1 、国内外对变压器差动保护的研究现状

变压器常有的保护有过电流保护、电流速断保护、瓦斯保护等。但他们有一些不足之处,过电流保护动作时限比较长,切除故障不迅速;电流速断保护由于“死区”的影响使保护范围受到限制;瓦斯保护只反映变压器的内部故障,但不反映外部故障。而变压器差动保护就是为了解决这问题的。

差动保护分为纵差动保护和横差动保护,纵差动保护用于单回路,横差动保护用于双回路。变压器差动保护是纵差保护。变压器差动保护是根据基尔霍夫定律产生的,保护原理简单,易实现,是变压器的主保护之一。一般容量在6.3mva以上应装设纵差动保护,差动保护是利用故障时产生的不平衡电流来动作,保护灵敏度很高,动作迅速。经过许多人的研究,变压器差动保护已经得到很好的发展,保护的正确动作率有了很大的提高。

由于变压器自身的原因、互感器的误差、保护装置等方面的因素,造成变压器不平衡电流,它是引起差动保护误动作的一个重要原因。为了解决这个问题,现在的差动保护装置都采用比率动作曲线,传统的基于ct变压器比率制动曲线,由于ct饱和等因素,斜率一般都较大,曲线较高,改用ect后,由于ect不饱和且具有良好的线性,因此比率制动作曲线不需要制定太高,甚至可以指定成水平线。

另外,励磁涌流也是在研究变压器差动保护是不可避免的问题,这个问题通过加励磁涌流闭锁来消除,经过大量研究,现在主要闭锁原理有以下几种:

二次谐波闭锁原理,利用励磁涌流时存在大量的二次谐波,而非励磁涌流时二次谐波很小的原理,形成了二次谐波闭锁,在实际中使用最多的方法之一。但是,随着电力系统的发展,这种方法出现了越来越大的问题,突出的表现就是由于电力系统各种电容的影响,变压器内部故障下二次谐波含量可能变得很高,但在励磁涌流时二次谐波又可能变得很低(当变压器饱和磁通较低时),所以这种方法需要进一步改进。

间断角原理和波形对称原理,是观察励磁涌流波形,发现涌流存在很小波变化方法。此方法解决了傅里叶算法不能完全提出暂态信号的特征的'缺点,适合于电力系统的暂态分析。由于需要较高的采样率,装置的硬件成本变高,同时,电力系统正常情况下也存在高次谐波可能影响判断,所以此方法也需要发展完善。

神经网络方法以及模糊控制理论等识别方法是比较新兴的方法。神经网络方法过程比较繁琐,需要大量的数据,但它充分发挥了人脑计算能力强、自学能力强、容错性、自适应性等优点,

是研究和发展的一个重要方向。模糊控制理论是将多个输入量及相关的保护判据给予不同的置信度,通过模糊理论得到最终的跳闸决策,提高了判断的准确性。间断角原理是一种清晰、直观、抗过励磁能力强的方法,但需配置相应的a/d芯片级cpu,提高了硬件成本,同时观擦波形可以发现励磁涌流还存在非对称性,因此形成波形对称原理。它比间断角原理更易实现,但在对称涌流时无法判别,因此,这两种方法都需要大量实验来确定,实现比较复杂。 差有功法、磁通判别法及基于变压器模型的判别法,利用了电流信号和电压信号,比只使用电流信号更有优势。差有功功率的理论基础是:变压器故障时主要增加有功功率,而其他情况下主要增加无功功率。磁通判别法的理论基础是:非内部故障时,变压器运行在正常的磁化曲线上;而故障时偏离磁化曲线运行。基于变压器模型的判别方法是根据变压器模型得出的变压器恒等式,在故障时恒等式关系不成立,而判别故障与否,可利用电流、电压信号计算出变压器的漏感、电阻以及励磁阻抗,利用他们的变化与否判断是否涌流,这三种方法都是从物理机理出发,原理简单,准确性高,但受多方面因素影响,整定较困难,还有待进一步研究。

目前,针对电力变压器励磁涌流的判别,国内外学者提出了许多新原理和新方法,但这些方法都由不足之处且还处在实验阶段,需要进一步验证才能采用。实际中最多的还是二次谐波检测,这种检测方法会在变压器空载合闸时出现差动保护动作或是在发生内部故障时出现保护拒动的情况。因此,需要进一步探索快速、准确的区分变压器励磁涌流和内部故障电流的新方法,提高变压器差动保护的性能。

国外早在1941年就有和应涌流现象的报导。当时在查找变压器差动保护误动原因过程中,发现较大暂态激励电流不仅出现在刚合闸的变压器中,也出现在已并网运行的变压器中。通过现场波形记录、实验测试和电流表达式的数学推导对合应涌流现象进行了深入的分析,并讨论了和应涌流对变压器差动保护及过电流保护的影响。saied通过数值仿真一台变压器空投充电,另外一台空载、负荷或有并联电容器的变压器正在并联运行时,两台变压器的电流、磁链和公共连接点的电压变化,对影响和应涌流的部分因素进行分析。bronzeado h s等通过仿真分析并联和串联变压器两种系统结构形式,指出空投一台变压器时,励磁涌流在系统与变压器间产生了一种暂态和应作用,不仅使空投变压器的励磁涌流的幅值和持续时间发生变化,而且在运行变压器中将产生和应涌流,结果导致运行变压器差动保护误动和长时间的谐波过电压。随着变压器线圈中的电阻值减小,和应涌流现象将增多。王怀智等通过对220kv系统中两台主变的空投试验再次说明了和应涌流的存在,并指出了它对变压器差动保护的影响。试验记录表明采用二次谐波“或”门制动可防止和应涌流导致差动保护误动。

2 研究的背景、目的及意义电力变压器是发电厂和变电站中的主要电气设备,它的安全运行与否直接关系到系统能否稳定正常地工作。随着电力容量及电压等级的增加,变压器造价越来越昂贵,如果因故障遭到破坏,其检修度大,检修时间长,经济损失惨重。因此要有一个安全、可靠、灵敏的变压器保护方案,这一直是国内外电力系统学者们研究的热点。变压器差动保护的关键问题是如何鉴别励磁涌流和内部故障,国内外许多专家和学者对此进行了大量的研究,也取得了很多有益的成果。

近些年来,在操作过程中引起的多次变压器差动保护误动情况引起广泛注意。2003年11月7日华能井冈山电厂发生一起机组非计划停运故障,在合#2主变出口断路器的过程中,#2主变差动保护动作导致#1发电机与系统解列停运,后查明是由于和应涌流导致变压器差动保护误动引起的。目前由于电网分层分区级大容量变压器的逐步投运,局部电网结构发生了根本性的变化,电力系统中和应涌流引起变压器差动保护误动的事故不断增加,因此和应涌流问题引起人们的关注。

和应涌流与合闸励磁涌流特征不完全相同,运行变压器本身没有故障,方向与空投变压器相反,和应涌流的峰值是先增大后减小,峰值出现的时刻与相邻变压器交相呼应,并且误动发

生在相邻变压器空投完成一段时间后,持续很长时间都不衰减,易导致电流互感器暂态饱和,误动原因更具有隐蔽性。前人的研究工作针对空载合闸或外部故障切除后电压恢复时变压器本身励磁涌流的产生机理、波形特征与变化特点进行的,而对并联或串联运行中变压器的和应涌流对变压器差动保护的影响分析并不多。因此有必要对和应涌流的产生机理和特点进行深入研究,揭示其本质,进而提出可行的措施,消除隐患,提高供电可靠性。

综述资料

变压器保护的发展历史,1931年r·e·cordray提出出比率差动的变压器保护标志着差动保护为变压器主保护时代的到来,1941年,c·d·hayward首次提出了利用谐波制动的差动保护,1958年,r.l.sharp和w.e.glassburn提出了利用二次谐波鉴别变压器励磁涌流的方法,并在模拟式保护中加以实现,同时还提出差动加速的方案,以差动加速、比率差动、二次谐波制动来构成整个谐波制动式保护的主体,延续至今。微机变压器保护的研究开始于60年代末70年代初。1969年,rockerfeller首次提出数字式变压器保护的概念,揭开了数字式变压器保护研究的序幕,之后o.p.malik和degens研究了变压器保护的数字处理和数字滤波分析;1972年,skyes发表了计算机变压器谐波制动方案,使得微机变压器保护的发展向前迈进。近年来,出现了数字信号处理器dsp,不仅提高了微机保护数据采样与计算的速度和精度,甚至改变了微机保护装置的设计方案,在保护装置中实现复杂的算法。

电力变压器是电力系统中最重要的电气主设备之一,作为电能的传输枢纽。大型变压器结构复杂、造价昂贵,一旦发生故障损坏,维修工作难度大,经济上损失重大。近年来,随着电力系统的发展,电压等级的升高,大容量变压器的应用不断增多。大容量变压器采用纠结式绕组,易于产生匝间短路,因此,故障率相对较高。为了保障变压器安全、可靠地运行,电力工作者不断深入分析其运行特性,研究新原理与方法,提高变压器保护的性能。针对差动保护中的励磁涌流问题,国内外积极研究各种方法予以解决,例如,二次谐波制动、间断角、电压制动、磁通特性原理和等值电路法等。还有一些新兴学科和方法运用到变压器的保护中进行研究。随着计算机及网络技术的迅速发展,高性能的微处理器芯片的不断产生,微机变压器保护装置的性能不断得到改善,整个微机保护系统正向集成化,人工智能化,网络化,保护、控制、测量、数据通信一体化,标准化方向发展。

3 论文的主要研究内容

1 对变压器差动保护的基本原理进行阐述,分析了可能引起差动保护继电器误动作的原因,并简单介绍了一些防范措施。

2 对变压器励磁涌流的产生机理及其性质进行分析和研究,综述了变压器差动保护的现状和发展趋势。研究了变压器励磁涌流的各种鉴别方法,并对其进行分析和评价。提出了消除产生励磁涌流,实现对励磁涌流的抑制方法。

3 利用励磁涌流偏向时间轴一侧的特点,解释了和应涌流的产生机理及其变化特点,指出和应涌流产生的本质原因是由于合闸变压器励磁涌流流过系统电阻使得其他变压器工作母线电压偏移,导致铁芯饱和造成的。讨论了和应涌流对变压器差动保护的危害并提出相应的一些防范措施。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页