您当前的位置:首页 > 发表论文>论文发表

滁州学院表面活性剂毕业论文

2023-02-19 12:01 来源:学术参考网 作者:未知

滁州学院表面活性剂毕业论文

表面活性剂在化妆品中的应用
摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化
妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。
详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。
关键词:表面活性剂;化妆品;功能;应用
表面活性剂在化妆品中的主要功能包括乳化、分
散、增溶、起泡、清洗、润滑和柔软等。表面活性剂
在化妆品中具有广泛的用途,起着重要的作用。化妆
品中所利用的表面活性剂的性能不仅仅是其单一的
性能,而是利用其多种性能,因此,表面活性剂是
化妆品生产中不可缺少的原料,广泛应用于化妆品
中。
化妆品是指以涂抹、喷、洒或者其他类似方法,
施于人体(皮肤、毛发、指趾甲和口唇齿等),以达
到清洁、保养、美化、修饰和改变外观,或者修正人
体气味,保持良好状态为目的的产品。目前,化妆品
的发展趋势是向疗效性、功能性和天然性方向发展。
1表面活性剂的分类
表面活性剂的分类方法有很多种,根据表面活性
剂的来源进行分类,通常把表面活性剂分为合成表面
活性剂、天然表面活性剂和生物表面活性剂三大类。
1.1合成表面活性剂
合成表面活性剂是指以石油、天然气为原料,通
过化学方法合成制备的表面活性剂。表面活性剂在性
质上的差异,除与烃基的大小和形状有关外,主要与
亲水基团类型有关。一般以亲水基团的结构为依据来
分类,按亲水基团是否带电可将表面活性剂分为离子
型和非离子型两大类,其中离子型表面活性剂又分为
阳离子表面活性剂、阴离子表面活性剂和两性离子表
面活性剂。
1.2天然表面活性剂
20世纪70年代的石油危机对以石油为基本原料
的表面活性剂工业产生了巨大的冲击,引起人们对能
源消耗、工艺生产过程、生态学和石油制品安全性等
一系列问题的思考,从而引发了以天然油脂为原料生
产表面活性剂的重大变革。由于生物新技术的应用,
油脂分离精制技术的发展,植物油脂品种的改良及增
产,使得大量获得价格较低的高纯度的天然油脂成为
可能,新的抗氧化剂的开发成功,解决了天然油脂腐
败变质的问题,再加上人们对安全及环保意识的提
高,以油脂为原料的天然表面活性剂的开发引起人们
的高度重视。目前在天然油脂中最受重视的要数棕榈
油和棕榈仁油。
1.3生物表面活性剂
生物表面活性剂是指由细菌、酵母和真菌等多种
微生物产生的具有表面活性剂特征的化合物。用微生
物生产表面活性剂是20世纪70年代后期国际生物工
程领域中研究的新课题。用微生物制取生物表面活性
剂可以得到许多难以用化学方法合成的产物,在结构
中引进了新的化学基团,而制得的产物易于被生物完
全降解,无毒性,在生态学上是安全的。生物表面活
性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸
系、磷脂系、脂肪酸系和高分子表面活性剂五类。
2表面活性剂的功能
表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消
泡和洗涤去污等多种功能。
当液体与固体表面接触时,气体被排斥,原来的
固-气界面消失,代之以固-液界面,这种现象称
为润湿。从普遍意义而言,润湿是一种流体被另一种
流体自表面取代的过程。
通常把一种物质的颗粒或液滴以及微小的形态分
散到另一介质中的过程叫分散。所得到的均匀、稳定
的体系叫分散体。
乳化是一种液体以微小液滴或液晶形式均匀分散
到另一种不相混溶的液体介质中形成的具有相当稳定
性的多相分散体系的过程。
表面活性剂在水溶液中形成胶束后,具有能使不
溶或微溶于水的有机化合物的溶解度显著增大的能
力,且溶液呈透明状,这种作用称为增溶作用。
由液体薄膜或固体薄膜隔离开的气泡聚集体称为
泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,
液体和气体的界面起主要作用。一般地说,当表面张
力低,膜的强度高时,不论是稳定泡沫还是不稳定泡
沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面
起作用:一方面是增强泡沫液膜的强度;另外,表面
黏度大,膜液体不易流动排出,延缓了液膜破裂,而
增强了泡沫的稳定性。
消泡作用分为破泡和抑泡两种。具有破泡能力的
物质称为破泡剂。有效的消泡剂既要能迅速破泡,又
要能在相当长的时间内防止泡沫生成。
洗涤去污作用是表面活性剂应用最广泛、最具有
实用意义的基本特性。洗涤去污过程是极为复杂的,
与污垢种类、基本性能、表面活性剂和助剂的种类和
结构密切相关,而其过程又是多种表面现象,如吸
附、润湿、渗透、乳化、分散、泡沫和增溶等在不同
情况下的综合效应。
3化妆品的分类
化妆品能对人体面部、皮肤表面、毛发和口腔起
清洁保护和美化作用。化妆品的品种多种多样,分类
方式也各不相同。按使用部位可分为:皮肤用化妆
品、毛发用化妆品、指甲用化妆品和口腔用化妆品。
按使用目的可分为:洁净用化妆品、基础保护化妆
品、美容化妆品和芳香制品,还可根据化妆品本身的
剂型分类。
4化妆品的原料
制造化妆品所用的原料有很多种,据统计大概有
3 000多种。根据化妆品原料在化妆品中所含比例的
大小,可分为基质原料和配合原料。基质原料是调配
各种化妆品的主体,也成为基础原料。膏霜类的油
脂,香粉类的滑石粉等均属基质原料;配合原料是用
来改善化妆品的某些性质和赋予色、香等的辅助原
料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配
合原料。配合原料在化妆品中的比例虽小,但对化妆
品的质量影响却很大。它们之间没有绝对的界限,某
一种原料在化妆品中起着基质原料的作用,而在另一
化妆品中可能仅起着辅助原料的作用。
4.1基质原料
1)油脂类
油脂是组成膏霜类化妆品的基本原料,主要起护
肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物
油脂的主要成分,在常温下呈液态的称为油,呈固态
的称为脂。根据来源又可分为植物性油脂和动物性油
脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏
仁油、花生油、大豆油和棕榈油等。动物油脂包括牛
油、猪油、貂油和海龟油等。这些动植物油脂加氢后
的产物称为硬化油。在化妆品中常用的硬化油有:硬
化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。
2)蜡类
蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化
妆品中主要作为固定剂,增加化妆品的稳定性,调节
其黏度,提高液体油的熔点,使用时对皮肤产生柔软
的效果。依据来源的不同,蜡类也可分为植物性蜡和
动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小
烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫
蜡等。
3)高碳烃类
用于化妆品原料中的烃类主要包括烷烃和烯烃,
它们在化妆品中的主要作用是其溶解作用,净化皮肤
表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤
表面水分的蒸发,提高化妆品的功效。在化妆品中用
的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。
4)粉类
粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等
粉类化妆品的基质原料。一般是不溶于水的固体,经

悬赏30分求论文“表面活性剂消除静电的应用”在先急等。3000字。限1天半时间

摘要:综述了生物表面活性剂的种类及其生产菌,介绍了目前常用的两种生产方法:微生物发酵法和酶法合成生物表面活性剂。总结了其在环境工程中的应用,如在废水处理中浮选去除重金属离子,在污染场地的生物修复中用于促进烷烃、多环芳烃(PAHs)的降解,修复受重金属污染的土壤等,并对今后的研究方向做了探讨。

关键词:生物表面活性剂 生物修复 重金属 多环芳烃

生物表面活性剂是微生物在一定条件下培养时,在代谢过程中分泌的具有表面活性的代谢产物。与化学合成表面活性剂相比,生物表面活性剂具有许多独特的属性,如:结构的多样性、生物可降解性、广泛的生物活性及对环境的温和性等[1]。由于化学合成表面活性剂受原材料、价格和产品性能等因素的影响,且在生产和使用过程中常会严重污染环境及危害人类健康。因此,随着人类环保和健康意识的增强,近二十多年来,对生物表面活性剂的研究日益增多,发展很快,国外已就多种生物表面活性剂及其生产工艺申请了专利[2],如乙酸钙不动杆菌生产的一种胞外生物乳化剂已经有了成品出售。国内对生物表面活性剂的研制和开发应用起步较晚,但近年来也给予了高度重视,其中研究最多的就是生物表面活性剂在提高石油采收率以及生物修复中的应用。

1 生物表面活性剂的种类及其生产菌

1.1 生物表面活性剂的种类

化学合成表面活性剂通常是根据它们的极性基团来分类,而生物表面活性剂则通过它们的生化性质和生产菌的不同来区分。一般可分为五种类型:糖脂、磷脂和脂肪酸、脂肽和脂蛋白、聚合物和特殊表面活性剂[1]。

1.2 生物表面活性剂的生产菌

大多数生物表面活性剂是细菌、酵母菌和真菌的代谢产物。这些生产菌大多是从油类污染的湖泊、土壤或海洋中筛选得到的。如Banat等[3]从油泥污染的土壤中分离得到两株生物表面活性剂的菌株:芽孢杆菌AB-2和Y12-B。表1列出了一些主要的生物表面活性剂的种类及其生产菌[2,4]。

表1 生物表面活性剂的种类及其生产菌

生物表面活性剂
生产菌

海藻糖脂
石蜡节杆菌(Arthrobacter paraffineus)

棒状杆菌(Corynebacterium spp.)

红平红球菌(Rhodococus erythropolis)

鼠李糖脂
铜绿假单胞菌(Pseudomonas aeruginosa)

槐糖脂
解脂假丝酵母(Candida lipolytica) 球拟酵母(Torulopsis bombicola)

葡萄糖、果糖、蔗糖脂
棒状杆菌(Corynebacterium spp.)

红平红球菌(R.. erythropolis)

纤维二糖脂
玉蜀黍黑粉菌(Ustilago maydis)

脂多糖
乙酸钙不动杆菌(Acinetobacter calcoaceticus RAG1)

假单胞菌(Pseudomonas spp.)

脂肽
枯草芽孢杆菌(Bacillus subtilis)

地衣芽孢杆菌(Bacillus licheniformis) 荧光假单胞菌(Pseudomonas fluorescens)

鸟氨酸,赖氨酸,缩氨酸
氧化硫硫杆菌(Thiobacillus thiooxidans)

盐屋链霉菌(Streptomyces sioyaensia)

葡萄糖杆菌(Gluconobacter cerinus)

磷脂
氧化硫硫杆菌(T. thiooxidans)

脂肪酸
野兔棒状杆菌(Corynebacterium lepus)

石蜡节杆菌(Arthrobacter paraffineus)

2 生物表面活性剂的生产

目前,可以通过两种途径生产生物表面活性剂:微生物发酵法和酶法。

采用发酵法生产时,生物表面活性剂的种类、产量主要取决于生产菌的种类、生长阶段,碳基质的性质,培养基中N、P 和金属离子Mg2+、Fe2+的浓度以及培养条件(pH、温度、搅拌速度等)。 如Davis等[5]在成批培养枯草芽孢杆菌时发现,在溶解氧耗尽和限氮条件下可得最大浓度(439.0 mg/L)的莎梵婷。Kitamoto等[6]利用南极假丝酵母的休止细胞生产甘露糖赤藓糖醇脂,对培养条件进行优化后,最高产量可达140 g/L。发酵法生产生物表面活性剂的优点在于生产费用低、种类多样和工艺简便等,便于大规模工业化生产,但产物的分离纯化成本较高。

与微生物发酵法相比,酶法合成的表面活性剂分子多是一些结构相对简单的分子,但同样具有优良的表面活性。其优点在于产物的提取费用低、次级结构改良方便、容易提纯以及固定化酶可重复使用等,且酶法合成的表面活性剂可用于生产高附加值产品,如药品组分。尽管现阶段酶制剂成本较高,但通过基因工程技术增强酶的稳定性与活性,有望降低其生产成本。

3 生物表面活性剂的提取

发酵产物的提取(也称下游处理)费用大约占总生产费用的60%,这是生物表面活性剂产品商业化的一个主要障碍。生物表面活性剂的最佳提取方法随发酵操作及其物理化学性质的不同而不同。其中溶剂萃取是最常用的提取方法,如Kuyukina等[7]利用甲基-叔丁基醚萃取红球菌生产的生物表面活性剂,可以获得较高产率10 mg/L。超滤是用于提取生物表面活性剂的一种新方法。Lin等[8]用分子量截止值为30000 Da的超滤膜从发酵液中提取枯草芽孢杆菌产生的脂肽类生物表面活性剂莎梵婷,收率达95%。Mattei等设计了一套连续提取生物表面活性剂的装置,应用切面流过滤法能连续提取产物,产率高达3 g/L[1]。能与连续发酵生产配套的产物提取方法有泡沫分离、离子交换树脂法等。Davis等[9]用泡沫分离法连续提取枯草芽孢杆菌产生的莎梵婷,收率达71.4%。鼠李糖脂的提取过程是先离心过滤除去细胞,再通过吸附色谱将鼠李糖脂浓缩在安珀莱特XAD-2树脂上,后用离子交换色谱法提纯,最后将液体蒸发和冷冻干燥可得纯度为90%的成品,收率达60%[2]。

4 生物表面活性剂在环境工程中的应用

许多化学合成表面活性剂由于难降解、有毒及在生态系统中的积累等性质而破坏生态环境,相比之下,生物表面活性剂则由于易生物降解、对生态环境无毒等特性而更适合于环境工程中污染治理。如:在废水处理工艺中可作为浮选捕收剂与带电胶粒相吸以除去有毒金属离子,修复受有机物和重金属污染的场地等。

4.1 在废水处理工艺中的应用

用生物法处理废水时,重金属离子对活性污泥中的微生物菌群常会产生抑制或毒害作用,因此,在用生物法处理含重金属离子的废水时须进行预处理。当前,常用氢氧化物沉淀法除去废水中的重金属离子,但其沉淀效率受氢氧化物溶解度的限制,应用效果不甚理想;浮选法用于废水预处理时又常因所用浮选捕收剂在其后续处理过程中难降解(如化学合成表面活性剂十二烷基磺酸钠),易产生二次污染而受限制,因此,有必要开发易生物降解、对环境无毒害的替代品,而生物表面活性剂恰好具有这一优势。但是,国内外对这一方面的应用研究很少,直到最近才有报道。Zouboulis 等[10]研究了生物表面活性剂作为捕收剂除去广泛存在于工业废水中的两种有毒金属离子:Cr4+和Zn2+。结果表明,莎梵婷和地衣芽孢杆菌素在pH为4 时均能很好地从废水中分离吸附了Cr4+的αFeO(OH)或Cr4+与 FeCl3•6H2O形成的螯合物,极大地提高了Cr4+(50 mg/L)的去除率,几乎可达100%;在pH为6时,莎梵婷对螯合物中的Zn2+(50 mg/L)去除率高达96%,而在相同条件下,地衣芽孢杆菌素的处理效果不明显,去除率为50%左右。

材料专业毕业论文开题报告

材料专业毕业论文开题报告

开题报告是指开题者对科研课题的一种文字说明材料。这是一种新的应用写作文体,这种文字体裁是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家收集的关于材料专业毕业论文开题报告,欢迎大家阅读!

论文题目: 高聚物对水泥抗蚀性能的影响

1、国内外研究现状、水平及存在的问题:

随着建筑科技的进步与发展,一种新型化学建材正悄悄的却又以飞快的速度在中国建筑界得到应用和发展,这就是聚合物水泥基复合材料。聚合物水泥基复合材料通常按其化学构成大致分为两类,一类是以聚合物为基、水泥作为填充料组合成的,最常见的如目前大量应用于工程防水的“聚合物水泥防水涂料”;另一类是以水泥为基,以聚合物单体或数种聚合物对水泥进行改性而组合成的材料,如各种聚合物水泥混凝土及各种聚合物水泥砂浆等[1]。原则上讲,聚合物水泥是聚合物改性水泥,它保持了水泥水化物的一系列优点,并用聚合物的优点弥补了水泥制品的不足。因此,聚合物水泥显示出了较大的抗压、抗冲击、抗穿刺能力及耐磨性,优良的抗渗性、抗腐蚀性及抗老化性,适当的弹性模量,而不需要刻意追求高的断裂延伸率[2]。

1923 年克莱森(Cresson)首次申请了有关聚合物硬化水泥体系的专利。他把天然橡胶乳液作为填料加入道路路面建筑材料中。1924年,Lefebure申请了用天然橡胶乳液使水泥砂浆及水泥混凝土改性的专利,第一次提出了用聚合物对水泥砂浆及混凝土进行改性的概念。从此,拉开了混凝土中添加聚合物的历史性序幕。1932年,Band第一个提出了利用人造橡胶改性水泥砂浆及水泥混凝土,也获得了专利。20世纪40 年代,人们先后尝试了用合成聚合物乳胶改性,以及把聚乙烯乙酸酯也用于改性的方法。50年代,这一领域的研究与尝试开始受到各国材料界专家学者的重视,并获得了很多项研究成果,许多成果在工程上也都得到了广泛的应用。60-70年代, 人们开始研究用液态和固态的聚合物,诸如聚合物单体、树脂、聚合物乳胶粉等对水泥砂浆及水泥混凝土进行改性。80年代,各国都投入了大量的人力、物力、财力,对混凝土改性进行了研究,随着科研成果的不断出现,这一领域也得到了极大的推动,研究水平得到了极大的提升。美国是世界上聚合物水泥基复合材料研究开发的先行国家,最早于50年代就开始了对其进行实际应用的尝试。

由于我国在聚合物水泥基复合材料方面的研究起步比较晚,所以,至今还没有出台相关方面的行业标准与测试方法。多数学者认为聚合物水泥基材料的增强机理主要是由于剔除了粗骨料,降低了细集料的粒径,从而提高匀质性,使集料所得集配曲线为非连续性的;另外聚合物在水泥浆内部聚结成网络结构,起到了很好的阻裂增韧作用。近年来,人们逐渐开始从微观结构方面对聚合物改性水泥基材料进行研究,认为聚合物颗粒的分散和聚合物薄膜的形成是聚合物水泥改性的主要原因。研究认为聚合物从两方面影响了改性水泥浆的结构: (1)混合后一部分聚合物粒子吸附在水泥颗粒表面,形成薄膜;(2)另一部分聚合物分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后,聚合物在孔中形成薄膜[3]。此外,关于聚合物在改性水泥砂浆中的分布,目前还存在一些异议。 按照著名的Ohama[4] 模型,聚合物均匀分散在水相中,随着水泥水化,水分减少,聚合物逐渐凝聚成膜,因而聚合物主要存在于改性砂浆的孔隙中。 Su[5] 等对新拌改性水泥浆水相成分的分析表明,在拌合开始就有相当多的聚合物被吸附在水泥颗粒表面,他们还发现,拌合初期被吸附在水泥颗粒表面的聚合物的量与聚合物乳液种类和乳液掺量有关。 通过含氯聚合物改性砂浆的EDAX 分析表明,在聚合物改性砂浆中,水泥浆体与骨料之间的界面上聚合物的含量较高。 Ollit rault-Fichet 等的研究也说明,聚合物颗粒最初会被水泥颗粒吸附,并最终被包埋在水化水泥的颗粒之中[6]。

在实际工程中,硅酸盐水泥易在酸和酸盐溶液中遭受侵蚀是因为:(1)硅酸盐水泥中含有大量的氢氧化钙及高碱性的水化C-S-H 凝胶、水化铝酸钙等水化产物,酸溶液中的H+与Ca(OH)2发生中和反应,使水泥石碱度急剧降低,进而造成高碱性水化硅酸钙和水化硫铝酸钙等水化产物分解,转变成低碱性水化产物,最后变成无胶结能力的SiO2·nH2O 及Al(OH)3等;(2)硫酸盐溶液中的硫酸根能和水泥石中的Ca(OH)2及水化铝酸钙等[7]发生化学反应,生成有膨胀性的石膏和钙矾石晶体,当这些结晶体在水泥石毛细孔隙中逐渐积累和长大,产生孔内应力,当应力大于临界破坏应力时,造成水泥试样破坏。由于水泥石本身也不密实,有很多毛细孔通道,使砂浆产生渗透性,使得水泥的使用性能下降。同时,侵蚀性介质容易进入其内部,以致由其配制的砂浆易受到腐蚀,导致水泥材料的耐久性下降。普通水泥砂浆不饱满、不密实,不能有效地形成具有防水抗渗作用的整体不透水层。它也存在抗压强度低、耐腐蚀能力不高等缺陷,其使用范围也受到了很大的局限。

而聚合物改性水泥由于聚合物及活性成分的掺入,改善了聚合物水泥砂浆的物理、力学及耐久性能,扩大了其应用范围。对水泥性能的改善主要体现在如下几个方面:

(1) 活性作用 聚合物乳液中有表面活性剂,能够起减水作用。同时对水泥颗粒有分散作用,改善砂浆和易性,降低用水量,从而减少了水泥的毛细孔等有害孔,提高砂浆的密实度和抗渗透能力。

(2) 桥键作用 聚合物分子中的活性基因与水泥水化中游离的Ca2+、Al3 + 、Fe2 + 等离子进行交换, 形成特殊的桥键,在水泥颗粒周围发生物理、化学吸附,成连续相,具有高度均一性,降低了整体的弹性模量,改善了水泥浆物理的组织结构及内部应力状态,使得承受变形能力增加,产生微隙的可能性大大减少。即使产生微裂隙,由于聚合物的桥键作用,也可限制裂缝的发展。

(3) 充填作用 聚合物乳液迅速凝结,形成坚韧、致密的薄膜,填充于水泥颗粒之间,与水泥水化产物形成连续相填充了孔隙,隔断了与外界联系的通道[8]。从而阻止了腐蚀性介质进入水泥石内部,提高了抗腐蚀和抗渗能力。

孙炎[9]曾研究冷混合沥青混凝土,用于道路工程;聚合物改性砂浆用于钢筋混凝土结构的永久模板,结果证明它们都可以更好地防止氯离子渗透和更好地抗碳化作用,从而提高钢筋混凝土结构的耐久性,掺加有硬沥青的钢桥面也具有更高的抗腐蚀性能[10]。鉴于此我们可以通过在水泥中掺杂沥青和石腊,来改善水泥的内部结构并填充其内部孔隙,从而提高水泥的抗蚀性,解决水泥抗蚀性较差的问题。

2、选题的目的、意义:

在我国,尤其是西部地区的盐碱地、盐湖区以及地下水中普遍存在着硫酸盐对水泥混凝土的侵蚀。在某些特种工业设施中,还存在有硫酸和硫酸盐的混合腐蚀以及H2S、CO2腐蚀等。从一些实例中我们可以看出,破坏水泥混凝土的主要原因一般都不是机械应力, 而是多种腐蚀或者是自身内部发生化学反应。这就引起了人们对水泥混凝土的耐久性能的讨论。因此,研究水泥的抗腐蚀性能不仅对建筑材料具有至关重要的作用,而且会对提高各种工程建筑的耐久性能有重大的经济价值和使用价值。关于聚合物对水泥砂浆改性的主要途径是在其中加入能起到改性作用的聚合物。从前人的研究中可看到,聚合物水泥基复合材料都显著高于普通混凝土的`力学性能,比如抗折强度、抗压强度、粘结强度等都得到了极大的提高。与普通硅酸盐材料相比,聚合物水泥基复合材料有着自身的优势见表1。

表1 聚合物水泥基复合材料与普通混凝土的比较 性能

材料 普通混凝土 PCC

W/C 0.4~0.6 0.1~0.16

断裂 1 50~60

冲击 5 80

密度 3.1~3.2 2.5

抗拉强度 0.2~0.4 2~3

抗折强度 5~7 150~200

抗压强度 40~50 200~300

此外,聚合物水泥基复合材料还具有良好的耐化学腐蚀、抗渗性、低温下的抗裂性等。这就使得聚合物改性水泥基复合材料在一定范围内部分取代了钢铁、高分子材料(像MDF 水泥基复合材料制作的唱片、轮胎都是具体的实例)[11]。它能提高水泥石的抗腐蚀能力主要是因为聚合物的添加提高了提高水泥石的密实度。混凝土结构正常情况下可以存在至少30年,但如果存在源于生物的硫酸腐蚀不过短短几年就会被破坏掉[12]。修复或完全取代这种腐蚀结构越来越有必要,但这种修复代价昂贵一直不能满足社会。然而通过沥青或石蜡对水泥进行改性,可大大提高水泥的抗蚀性,这无疑会节约了资源,减少了不必要的浪费,为社会积累更多的财富。

3、实施方案及主要研究手段:

3.1、实验方案

3.1.1、原材料的准备;

(1) 沥青粉的研制

制得分别过200目和300目筛的沥青粉,并适量添加矿物掺合料来减小沥青粉的粒度。

(2) 石蜡粉的研制

通过在石蜡中添加矿物掺合料来粉磨石蜡,并制得掺有石蜡的粉末。

3.1.2、正交实验

(1) 因素水平表

因素 水平  用量(V%) 粒度(目) 温度(℃)

1 2(0.2) 100 100

2 4(0.4) 200 120

3 6(0.6) 300 150

(2) 根据正交表L9(34)列出以下几组实验:

序号  用量(V%)  粒度(目) 温度(℃)

指标

腐蚀前 抗压强度

(MPa) 抗Na2SO4腐蚀强度 (MPa) 抗Na2CO3腐蚀强度(MPa)

1 2(0.2) 100 100 2

2(0.2)

200

120

6

3 2(0.2) 300 150 4 4(0.4) 100 120 5 4(0.4) 200 150 6 4(0.4) 300 100 7 6(0.6) 100 150 8 6(0.6) 200 100 9

6(0.6)

300

120

注:括号内为石蜡的用量

3.1.3、以硅酸盐水泥为基体,按以上正交方案分别掺加沥青、石蜡成型,每种高聚物与水泥的复合分别作空白样,3天强度测试样,腐蚀样。分别测定抗压强度,抗硫酸盐及碳酸盐侵蚀的能力。

3.1.4、在把水泥块放入腐蚀液中前和从腐蚀液中取出,分别称取其质量,查看其质量损失。

3.1.5、每一个过程留样分别作物相分析和微观分析,进行腐蚀机理分析。

3.1.6、通过各组实验试样的对比,确定聚合物在水泥中的最优抗蚀配比。

3.2、研究手段

(1)用扫描电镜观察沥青、石蜡改性水泥的微观形貌,以及硫酸盐、碳酸盐腐蚀后的微观形貌。

(2)用X射线衍射仪分析沥青、石蜡改性水泥的物相组成。

(3)用压汞仪测试水泥试样的孔结构;

(4)利用粒度分析仪测试各添加物的粒径。

4、选题的创新之处:

目前已有许多聚合物乳液(如苯丙乳液、纯丙乳液、乙丙乳液等) 用于水泥砂浆的改性,而采用沥青和石腊这两种聚合物对水泥砂浆进行改性的研究却相对较少。实验利用沥青和石腊高分子的熔胀性,在水泥水化过程中,沥青和石腊受外界刺激产生一定的熔胀从而填充水泥石的内部孔隙,提高水泥的密实度,达到提高水泥抗蚀性的目的。

5、预期研究成果:

沥青、石蜡与水泥混合成型后,一部分沥青、石蜡颗粒填充在水泥孔隙里,另一部分沥青、石蜡颗粒在一定外界条件影响下分散在孔中的液相中,当自由水完全被水化和蒸发消耗掉后形成膜。这两方面共同作用大大提高了水泥的密实度并阻止了腐蚀液与水泥浆体的接触,从而使水泥的抗蚀性能得到改善。

参考文献:

[1] 陈建辉, 黄金莲. 小议聚合物基水泥基复合材料[J]. 建筑技术开发, 2004, 31(10):115-116.

[2] 袁大伟. 聚合物水泥若干问题探讨[J]. 中国建筑防水, 2001,(4): 22-24

[3] 王茹, 王培铭. 聚合物改性水泥及材料性能和机理研究进展[J]. 材料导报, 2007, 21(1): 93-96.

[4] Ohama Y. Polymer2based admixtures[J ]. Cement and Concrete Composites ,1998 ,20 (3):189-212.

[5] Su Z , Sujata K, Bijen J M J M , et al. The evolution of the microstructure in styrene acrylate polymer modified cement pastes at the early stage of cement hydration[J]. Advn Cem Bas Mat ,1996 , (3): 87-93.

[6] 钟世云, 王培铭. 聚合物改性砂浆和混凝土的微观形貌[J]. 建筑材料学报, 2004, 7(2): 168-173.

[7] 吴国林, 文梓芸, 殷素红. 土壤聚合物耐酸性能的研究[J]. 新型建筑材料, 2006, 2: 5-7.

[8] 张文渊. TK聚合物砂浆在混凝土表面修补加固中的应用[J]. 腐蚀与防护, 2003, 24(7):300-302.

[9] 孙炎, 徐晓蕾, 钱玉林. 我国混凝土聚合物复合材料的研究现状及发展[J]. 建筑技术,2007, 38(1): 12-14.

[10] Yang Jun. Study on low temperature performance ofGus sa sphalt on steel decks with hard bitumen[J]. Journal of Southeast University (English Edition), 2003, 19(2): 160-164.

[11] 李民强. 聚合物水泥基复合材料研究及进展[J]. 广东建材, 2007 , 7 : 10-12.

[12] J. Monteny, N De Belie, E Vinck.,W Verstraete, et al. Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer- modified concrete[J]. Cement and Concrete Research, 2001,31: 1359-1365.

关于1631和1231

从化学物质构成角度看,二者应该是同系物,化学性质相似,理论上完全可以替代使用。
但是需要注意,1631有微量的毒性,使用时要小心,另外有同系物性质,1631活性比1231差些,会抑制反应的速度,所以如果不是实在找不到,建议不要使用1631,以免因活性不足导致实验失败
祝你成功!

英语毕业论文第二段第二部分求助翻译 急

2.3 。表征
粉末X -射线衍射( XRD )数据收集
X射线和飞利浦diffractometers利用衍射仪?辐射。
谱之前和之后焙烧(图1 )可
索引的六角晶格如预期的MCM - 41的[ 20 ]
并显示出一些收缩的结构经焙烧,
所指出的减少,晶胞参数,
的A0 (表1 ) 。氮吸附和解吸等温线
测量的煅烧样品77K下使用BELSORP
28SA和麦克ASAP的2000系统。那个
样品被加热到约200 ◦ c根据在真空
至少2小时删除任何水吸附等温前
被记录在案。的形状等温线,图所示。 2 ,
也如预期的MCM - 41的一个步骤一个相对
压力约0.3 [ 20 ] 。表面积( SBET )的计算模型的比表面积[ 21,22 ]和大于
800平方米/克的所有样品。孔径和孔体积
估计使用多利莫尔和治疗(卫生署)方法
[ 23,24 ] 。
元素分析的MCM - 41的是用
一个电感耦合等离子体原子发射光谱仪
(精工仪器,千叶,日本) 。数额
硅被确定为37.3 % (宽/ w )和钠这是
1.6 % (瓦特/瓦特) 。数额的碳被确定为
0.3 % (瓦特/ W型)使用总碳分析仪(瑞格,美国) ,这表明
该煅烧过程中有效地消除了
表面活性剂。
2.4 。氨基酸吸附
该程度的赖氨酸吸附到MCM - 41的下
一系列的解决方案浓度, pH值,离子强度
和接触时间确定一批利用吸附
测试在25 ± 1 ◦ C和解决枯竭的分析。多芯片组件,
41个样品( 〜 40毫克)和解决方案的消旋盐酸赖氨酸
在水( 10毫升)混合装在密封的塑料
小瓶使用旋转混合器( Heto Rotamix公园)操作系统
在40转。 pH值的解决办法进行了调整之前
0.1M混合使用氢氧化钠或0.1M盐酸。经过选择
接触时间的溶液pH值是衡量和禁赛
被离心分离之前分析
上清使用总有机碳( TOC )分析仪
(岛津总有机碳- 5000A ) 。标准曲线产生
赖氨酸超过适当的浓度范围为每一套
样本和标准的解决方案是用来检查
分析仪的性能定期在分析。
确定的浓度,纠正的(小)
影响残炭的MCM - 41上的目录分析,
确定一个控制一批试运行在同一
实验条件,但没有办法赖氨酸存在于溶液中。
(仅供参考)

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页