具体如下:
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。
公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。
谈谈对勾股定理的认识
勾股定理是数学中极其重要的一个定理,它揭示了直角三角形中三条边之间的关系,而且应用十分广泛. 勾股定理是我国最早证明的几何定理之一,也是每年中考必考的重要知识点之一. 古今中外有不少数学家、物理学家,甚至有画家、政治家等都在寻求它的证明方法. 传说古希腊的毕达哥拉斯在找到一种证明方法后,欣喜若狂,便杀了100头牛来祭神,表示庆祝,所以勾股定理也被称为“百牛定理”.
勾股定理是几何证明方法最多的一个定理,现在已经找到400多种证明方法,其中我们聪明睿智的祖先找到的就有200多种. 因此,勾股定理被说成是中国几何学的根源. 中华数学的精髓,诸如开方术、方程术、天元术等技艺的诞生与发展,寻根探源都与勾股定理有密切的关系. 我国伟大的数学家华罗庚将勾股定理称为茫茫宇宙星际交流的“语言”,因为数学是一切有智慧生物的共同语言,所以我们有更多的理由要学好它.
学习《勾股定理》这一单元时,应抓住三大关键:一是勾股定理及其逆定理的证明方法;二是勾股定理及其逆定理的应用;三是怎样寻找勾股数. 对于第二个问题,又应抓住四个方面:一是勾股定理在几何计算中的应用;二是勾股定理在几何证明中的应用;三是勾股定理及其逆定理的综合应用;四是勾股定理在代数证题中的应用.
勾股定理是我国最早证明的几何定理之一,是中华数学的精髓. 几千年以来,有无数古今中外的学者对它进行了证明. 其中包括汉代的赵爽、魏晋时期的刘徽、美国总统伽菲尔德、著名画家达·芬奇……
在初中数学学习过程中,我们常常说到数形结合思想,说到代数与几何的综合应用. 几何的勾股定理中有两个数的平方和,在代数的整式乘法中也有两个数的平方和,这两个公式中有相同的部分,能不能把它们结合到一起来使用?勾股定理能否与其它乘法公式结合使用?学习以后不妨考虑一下勾股定理和乘法公式有哪些结合?
在初中数学中常常提到的数学思想方法有:数形结合思想、分类讨论思想、转化思想、方程思想、整体思想. 在勾股定理的应用中,渗透了上述四种数学思想!
中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a b=c,即α*α b*b=c*c
推广:把指数改为n时,等号变为小于号
据考证,人类对这条定理的认识,少说也超过 4000 年!
中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。
勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。