您当前的位置:首页 > 发表论文>论文发表

关于陶瓷基复合材料的论文

2023-02-18 02:24 来源:学术参考网 作者:未知

关于陶瓷基复合材料的论文

李霞.顾幸勇.刘琪 查看详情 [期刊论文] -中国陶瓷2004(03)
高朋召 三维碳纤维预制体/陶瓷基复合材料的制备及性能研究 2004
廖树帜.张邦维 查看详情 [期刊论文] -稀有金属材料与工程1998(05)
郑燕青.施尔畏.李汶军 查看详情 [期刊论文] -中国科学2001(04)
葛荣德.刘志宏 查看详情 1995
Voleeanov E 查看详情 2007(2-3)
Blumm J 查看详情 2005(09)
更多...

相似文献(10条)
期刊论文 Sol-gel法制备ZrO2/钙铝硅系微晶玻璃复合材料的研究 - 中国陶瓷2005,41(1)
期刊论文 Sol-Gel法制备Al2O3-SiO2-TiO2-ZrO2复合陶瓷膜的研究 - 中国陶瓷2003,39(6)
外文期刊 Synthesis of ZrO2-SiO2 mesocomposite with high ZrO2 content via a novel sol-gel method 2005,84(1/3)
外文期刊 Optical properties of sol-gel derived ZrO2-TiO2 composite films 2007,515(20/21)
期刊论文 溶胶-凝胶法制备定向排列的纳米结构二氧化锆薄膜 - 清华大学学报(自然科学版)2001,41(4_5)
外文期刊 Influence of La2O3 and ZrO2 as promoters on surface and catalytic properties of CuO/MgO system prepared by sol-gel method 2006,299(0)
外文期刊 Photocatalytic degradation of 2,4-dichlorophenoxiacetic acid and 2,4,6-trichlorophenol with ZrO2 and Mn/ZrO2 sol-gel materials 2006,37(3)
期刊论文 Sol-Gel法制备ZrO2粉的析晶机制 - 稀有金属材料与工程2005,34(z1)
外文会议 Preparation of ZrO2/nano-TiO2 composite powder by sol-gel method 2007
外文期刊 Phase evolution of sol-gel CaO-ZrO2 using sulfuric acid as hydrolysis catalyst 2006,37(3

新材料技术的新材料技术领域研究动向

当前,美国、欧洲、日本等发达国家和地区十分重视新材料技术的发展,都把发展新材料作为科技发展战略的重要组成部分,在制定国家科技与产业发展计划时,将新材料技术列为21世纪优先发展的关键技术之一,予以重点发展,以保持其经济和科技的领先地位。中国的新材料科技及产业的发展,在政府的大力关心和支持下,也取得了重大的进展和成绩,为国民经济和社会发展提供了强有力的支撑。为研究我国新材料领域的发展现状和态势,本报告以中国期刊网数据库作为统计分析源,从文献计量学的角度进行分析研究,讨论了新材料包括超导材料、金属材料、非金属材料、高分子材料和复合材料的理论研究、制备工艺、产品应用、技术装备等方面的内容。 1、新材料各专业论文产出权重的年度变化从2000年至2005年,新材料各专业发表论文数量占整个新材料领域的比重虽然每年都在变化,但总的分布格局没有被打破。高分子材料除2001年和2002年所占比重低于50%以外,其它几年均在50%以上,一直占居主导地位;复合材料所占比重在20-30%之间,居第二位;非金属材料所占比重在一成多,居第三位;超导材料在整个材料领域所占比例最小,居5个专业的最后一位。从各专业的发展状况分析,超导材料的发展呈上下波动,总体下降的趋势;金属材料作为一种传统的优势领域,其发展呈现大幅下降的局面;非金属材料在整个材料领域基本保持稳定的态势,其所占比例变化不大;高分子材料是发展最快的学科,随着新技术的不断涌现,其在整个新材料领域中的权重呈波动增长的态势;复合材料除2002年有所增加外,其他各年逐年下降,但降幅不大,年均降低1%。2、新材料各专业论文产出数量的年度变化2000年至2005年,从新材料各专业发表论文的数量及增长率来看,超导材料论文发表呈现增长正负相间的发展格局,但总量呈下降趋势,降幅为10%左右;金属材料的论文发表数量出现负增长,从2000年的1614篇减少到2005年的254篇,总降幅达84%;非金属材料发表论文数量总的趋势是稳步增长,且到了2005年有加速增长的趋势,发表论文数量比2000年增长了1527篇,当年增长了29.3%,6年间总体增长了66.65%;高分子材料的论文数量也在不断增加,从2000年的8201篇增加到2005年的15895篇,总增幅达93.3%,几乎翻了一番;复合材料论文发表呈现波动的局面,2001年比2000年有较大幅度增加,但2003-2004年却出现负增长,到2005年又增加至7215篇,比2000年的3672篇增加了近一倍。 1、新材料领域总体发展速度较快,势头强劲材料是当前世界新技术革命的三大支柱(材料、信息、能源)之一,与信息技术、生物技术一起构成了21世纪世界最重要和最具发展潜力的三大领域之一。对材料的认识与利用能力,往往决定着社会的形态和人类生活的质量。人类的历史已经证明,材料是人类社会发展的物质基础和先导,而新材料则是人类社会进步的里程碑。新材料在发展高新技术、改造和提升传统产业、增强综合国力和国防实力方面起着重要的作用,而且在自然科学和工程技术领域中发展也越来越快,地位日趋重要。根据对同时段论文发表数量统计,6年间国内新材料领域论文发表数量的年平均增长率为9.15%,大于自然科学和工程技术领域8.34%的论文发表增长率;新材料领域发表论文占自然科学与工程技术领域发表论文的比重也保持上升的势头,6年间增长了0.13个百分点。新材料领域的发展变化,得益于技术创新和成果转化速度加快。前沿技术的突破使得新兴材料产业不断涌现,同时新材料与信息、能源、医疗卫生、交通、建筑等产业结合越来越紧密,材料科学工程与其他学科交叉领域和规模都在不断扩大,而且世界各国政府高度重视新材料产业的发展,制定了推动新材料产业和科技发展的相关计划,在资金上给予大力扶持,从而推动了本领域的技术创新能力的提高和发展,取得了一系列可喜的研究成果,保证了新材料领域发展的欣欣向荣局面。2、高分子材料、复合材料发展迅速2.1 高分子材料新的应用领域推动了自身的成长高分子功能材料是近年来发展最快的有机合成材料,尤其在生物医用材料、药物控制释放体系、骨科固定、组织工程和手术缝合线等方面不断扩展其新的应用领域,全世界仅高分子材料在医学上的应用就有90多个品种、1800余种制品,西方国家在医学上消耗的高分子材料每年以10-20%的速度增长。我国的高分子材料发展也十分迅速,2000年至2005年论文发表数量从1862篇增加到6640篇,6年间增长了256.61%。其中:高分子药物方面的论文从182篇增加到802篇,增长幅度达340%;医用高分子材料方面的论文从285篇增加到821篇,增长幅度达188%;仿生高分子材料的论文从416篇增加到1108篇,增长幅度达166%,高分子膜材料的论文从979篇增加到3909篇,增长幅度达299%。从上述数据中可以看出,高分子材料研发活跃,发展相当迅猛,已成为医学和生物技术中不可缺少的组成部分,也是新材料领域发展最快的专业。2.2 复合功能材料拓展了新的发展空间由于多种材料多学科的交叉、融合,使材料的复合化成为发展新材料的一种重要手段。利用多种基体与增强体的复合、多种层次的复合以及利用非线性复合效应可以创造出全新性能的材料。近年来先进复合材料及新工艺发展很快,目前复合材料的发展以树脂基复合材料为主,特别是热固性材料,它的技术最成熟,应用最广。金属基复合材料大部分处于研究开发阶段,它特别适用于建造空间结构体。陶瓷基复合材料是改进陶瓷的可靠性的重要途径,从而使陶瓷材料优异的高温性能得以应用。此外碳/碳复合材料在军事技术上有很大实用价值,并已有一定的应用,其发展趋势较快。从我国2000年至2005年复合功能材料论文发表情况来看,数量从3672篇增加到7215篇,6年总计增长96.49%。其中:金属基复合材料论文从573篇增加到611篇,增幅6.6%;陶瓷基复合材料论文从298篇增加到1050篇,增幅252%;水泥基复合材料论文从1533篇增加到2428篇,增幅58.3%;聚合物基复合材料的论文从1134篇增加到2383篇,增幅110%;碳基复合材料论文从134篇增加到743篇,增幅达454%。从研究分析中可以看出,陶瓷基复合材料、聚合物基复合材料发展较快,这与其新工艺、新物质及新配方的不断涌现密切相关,碳基复合材料也正从军用转向民用,使其发展呈快速增长的态势。2.3 金属材料发展趋于低谷,有待突破相对于高分子材料、复合材料和非金属材料的迅猛发展,历史悠久的金属材料的发展处于停滞甚至后退的局面,从2000年至2005年,我国金属材料论文发表数量从1614篇减少到254篇,下降了535%。这一现象说明我们在该领域的技术创新能力不足。当前,世界金属材料领域的发展出现了很多新的特点及增长点,高性能金属材料发展迅速。我国目前高性能金属材料的产品研制、加工成型技术、生产设备等多方面都存在问题,阻碍了金属材料的发展。因此,只要加大金属材料的技术创新力度,就一定能打破其发展停滞不前的局面,实现新的振兴和快速发展就指日可待。

陶瓷基复合材料的加工与封接

连续纤维补强陶瓷基复合材料(Continuous FiberReinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用[1~3]。20世纪70年代初,J Aveston[2]在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。20多年来,世界各国特别是欧美以及日本等对纤维增强陶瓷基复合材料的制备工艺和增强理论进行了大量的研究,取得了许多重要的成果,有的已经达到实用化水平。如法国生产的“Cerasep”可作为“Rafale”战斗机的喷气发动机和“Hermes”航天飞机的部件和内燃机的部件[4];SiO2纤维增强SiO2复合材料已用作“哥伦比亚号”和“挑战者号”航天飞机的隔热瓦[5]。由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[6~7],因此,在代写论文重复使用的热防护领域有着重要的应用和广泛的市场。1 CFCC的选材原则[8]

1)陶瓷基体和纤维应该满足结构件的使用环境要求。使用环境包括:工作最低温度、最高温度、湿度、工作介质的腐蚀性等。

2)陶瓷基体和纤维间弹性模量的匹配。当复合材料承受负载时,其应力和弹性模量服从加和原则[4]。 σc=σfVf+σmVm(1)

Ec=EfVf+EmVm

Vf+Vm= 1

上述方程中,σ表示承受的应力,V为体积分数,E为弹性模量。下标c、f、m分别代表复合材料、纤维、基体。

在复合材料断裂前,基体和纤维其应变是一致的:

εc=εm=εf=σm/Em=σf/Ef(2)对于脆性基体复合材料,当基体的应变大于其临界断裂应变时基体发生断裂。由于基体的弹性变形非常小,所以在基体断裂瞬间,纤维并未充分发挥作用。假设基体断裂时,它所承担的应力分量全部转移给纤维。此时复合材料所承担的应力由式(1)和式(2)可得:

σc=σmu[1+Vf(EfEm-1)] (3)式中下标mu和f分别代表基体和纤维断裂。从式(3)可看出,对于脆性基体复合材料,如果基体的断裂应变小于纤维的断裂应变,要想提高复合材料的强度,必须Ef大于Em,选择高模量的纤维。这时Ef/Em越大,复合材料的强度越高。如果Ef小于Em,基体不仅得不到强化,反而会降低。

3)陶瓷基体和纤维的热膨胀系数的匹配。复合材料组元之间必须要满足物理化学相容性,其中最重要的就是热膨胀系数的匹配。设αm、αfa、αfr分别代表基体、纤维轴向和纤维径向热膨胀系数的平衡值。则基体所承受的应力:

轴向 σa= (αm-αfa)ΔTEm(4)

径向 σr= (αm-αfr)ΔTEm(5)

式中ΔT为应力驰豫温度与室温之差值,Em为基体的弹性模量。

如果αm>αfa,则σa为正值。复合材料冷却后纤维受压缩热残余应力,基体受拉伸热残余应力。这种热残余拉伸应力在材料使用时将叠加于外加拉伸载荷,对材料的强度不利。如果σa>σmu,材料在冷却过程中就可能垂直于纤维轴向形成微裂纹网络,使材料的性能大大降低。如果αm<αfa,则σa为负值,纤维受热残余拉伸应力,基体受压应力。这个应力可能抵消外加拉伸载荷,对材料性能的提高有益。但如果该应力过大,超过纤维的断裂应力时,对强化不利。

如果αm>αfr,则σr为正,那么纤维-基体界面则承受热压缩应力。过大的界面压应力使复合材料在断裂过程中难以形成纤维“脱粘”、“拔出”等吸能机制,对材料性能的提高不利。如果αm<αfr,则σr为负,那么界面受拉应力,适当的拉应力是有益的。

4)材料应满足结构的特殊要求,但组元之间不能发生明显的化学反应、溶解和严重的扩散。而且在满足性能要求的前提下,成本尽可能低。

2 CFCC的增韧机制

任何固体材料在载荷作用下,吸收能量的方式只有两种:材料变形和形成新的表面[9]。对于脆性的陶瓷材料而言,材料只能发生很小的变形,只能增加断裂表面,增加裂纹的扩展路径来消耗能量。对于CFCC其增韧机理主要包括因模量差异而引起的载荷转移、微裂纹增韧、裂纹偏转、纤维脱粘和纤维拔出等[10]。在轴向力作用下,CFCC断裂包括3个阶段(如图1(a)所示):OA段,此段应力水平较低,材料处于线弹性阶段。在A点开始出现线性偏离,A点为基体的极限强度,基体开始出现裂纹。AB段,随着应力的提高裂纹越来越多、越来越大[15]。在B点处复合材料内部纤维开始断裂,即B点为CFCC的极限强度。与单相的陶瓷材料相比(如图1(b)所示),虽然单相陶瓷的极限强度可能大于CFCC的极限强度,但是其应变值却远远小于CFCC的应变值,因此CFCC的断裂功远大于单相陶瓷的断裂功。BC段,随着应力的继续增加,纤维和基体脱粘,伴随着纤维的断裂和拔出(如图2所示)。在轴向力作用下,CFCC的断裂包括:基体开裂、纤维断裂、纤维脱粘、纤维拔出和纤维断裂等复杂过程。因此对于CFCC而言,纤维拔出和纤维桥接是主要的增韧

3 CFCC的制造方法

3.1 泥浆浸渗/热压法

这种方法是最早用于制备CFCC的方法,也是制备低熔点陶瓷基复合材料的传统方法[18]。工艺要点如下:将纤维束连续通过含有粘结剂的泥浆中,将浸有浆料的纤维缠绕于滚筒上,制成无纬布,经切片、叠加、热模压成形和热压烧结制备出CFCC。泥浆浸渗/热压法工艺过程如图3所示。

图3 泥浆浸渗/热压法工艺过程示意图

泥浆一般由液体介质、基体粉末和有机粘结剂组成,在热压过程中,随着粘结剂的挥发、逸出,将发生基体颗粒的重新分布、烧结和粘结流动等过程,从而获得致密的复合材料。

张建良等在碳纤维表面涂敷SiC和SiO2,用热压法制备了碳纤维补强氧化铝陶瓷基复合材料,使复合材料的弯曲强度增加47%,断裂韧性增加58%[19]。虽然此法在制造玻璃及玻璃陶瓷基复合材料方面取得了较好的效果,但是泥浆浸渗/热压法存在以下不足而使其应用范围受到限制[20]:只能制得一维或二维纤维强化复合材料,制造三维材料时,因热压使纤维骨架受到损伤;由于工艺的局限,难以制得形状复杂的大型构件。

3.2 原位化学反应法/化学气相渗透法[9]

化学气相渗透法(Chemical Vapor Infiltration,CVI)是20世纪60年代中期在化学气相沉积法(CVD)基础上发展起来的,二者的区别在于CVD主要从外表面开始沉积,而CVI则是通过空隙渗入预制体内部沉积[21]。CVI是制造CFCC最适合的方法之一,用CVI法可以在低温条件下制得高温陶瓷基体,制得的复合材料具有良好的机械性能;它具有能在同一个反应炉中同时沉积多个或不同形状的预制件,可方便地制备具有三维网络结构的CFCC以及可以通过控制沉积条件改变基体的显微结构等优点[22]。但主要缺陷是只能沉积简单的薄壁件,对于粗厚型件内部往往会出现孔洞,存在致密性差,材料沉积不均匀的问题,同时其工艺周期特别长,制备成本高。为了获得性能优良的CFCC,发展了各种CVI工艺,分为以下5类:均热CVI法、热梯度CVI法、激光CVI法、强制流CVI、微波CVI法等[23~26]。德国已经用CVI法制备出性能优异的二维SiC纤维增强陶瓷基复合材料,其弯曲强度达到500~560MPa、断裂韧性为25MPa·m1/2。

3.3 溶胶-凝胶法及聚合物先驱体裂解法[5]溶胶-凝胶法及聚合物先驱体裂解法又称先驱体转化法或聚合物浸渍裂解法,是近期发展出的制造CFCC的新方法[27]。其主要工艺:将具有一定形状的纤维坯体浸入多聚物液体中,使多聚物填满纤维间的空隙,然后将多聚物在一定条件下固化后,在一定气氛下使其发生高温分解,便制得CFCC[28]。溶胶-凝胶法主要用于氧化物陶瓷基体,而先驱体转化法主要用于非氧化物陶瓷基体。采用合适的聚合物裂解和多次浸渍的方法可以提高复合材料的致密度和提高复合材料的力学性能。国防科学技术大学采用先驱体液相浸渍工艺制备三维编织连续纤维增强碳化硅陶瓷基复合材料[29~31],复合材料的弯曲强度达570MPa,断裂韧性为18.25MPa·m1/2,材料的密度为1.7~1.9 g/c。此法的优点是裂解温度低,材料制备过程中对纤维造成的热损伤和机械损伤较小;可制备形状复杂的异型构件。但这一工艺的缺点是烧结过程中基体出现较大的收缩;由于高温裂解过程中有小分子逸出,材料空隙率较高致密度低;为了达到较高的致密度,必须经过多次浸渗和高温处理,制备周期长。

3.4 熔融金属直接氧化法[18](Lanxide法)熔融金属直接氧化法是美国Lanxide公司首先提出并进行研究的,所以又称为Lanxide法。目前此法主要用于以氧化铝陶瓷为基体的CFCC,具体步骤如下:将编织成一定形状的纤维预制体的底部与熔融的铝合金接触,在空气中熔融的金属铝发生氧化反应生成Al2O3基体。Al2O3通过纤维坯体中的空隙由毛细管作用向上生长,最终坯体中的所有空隙被Al2O3填满,制成致密的CFCC。熔融金属直接氧化法制造CFCC示意图如图4所示。

图4 熔融金属直接氧化法制造CFCC示意图Lanxide法制备CFCC可以在900~1 000℃较低温度下进行,对纤维热损伤和机械损伤小,制备的复合材料具有高强度和高韧性;此法制备过程中不存在烧成收缩,也适合制备大型构件。但是由于复合材料中或多或少的会残留有一定量的金属,导致材料的高温抗蠕变性能降低,所制备的材料致密度较低[32]。

4 CFCC的界面改性

纤维与基体间界面的主要作用为传递作用和阻断作用,而这种作用与纤维和基体间的界面特性密切相关。要想制得性能优异的复合材料,则复合材料必须满足以下基本条件[5]:

1)纤维与基体间的界面结合适中;

2)纤维与基体间的物理和化学相容性好。

高温处理是纤维和基体产生结合强度的必要过程,因此在复合材料中,纤维与基体的反应和互扩散作用以及两者之间热膨胀系数的差异等使界面的形状、尺寸、成分和结构变得十分复杂。为了获得高强度高韧性的CFCC,必须严格控制纤维和基体间的界面结构与性能,使复合材料满足上述基本条件,从而获得较好的实现纤维的补强增韧作用。目前,较理想的方法是界面改性,主要是通过在纤维与基体间设计界面相来改善纤维与基体的界面特性,从而达到改善复合材料性能的要求。界面相应该具有以下功能:①传递载荷作用。纤维是主要的载荷承担者,因此界面相应有足够的强度使纤维承受大部分载荷。②缓解作用。界面相应具备缓解纤维与基体间界面残余热应力的作用,而且能降低纤维与基体间的互扩散。③松粘作用。界面相能使裂纹发生偏转,从而阻止裂纹进一步向纤维内部扩展[33~36]。

界面改性最主要的方法是引入第三相来阻止纤维与基体间的界面反应,具体方法有[37~40]:①纤维表面涂层(单一涂层或复合涂层);②采用复合纤维;③添加组分在界面处形成偏聚来改善界面特性。由于纤维表面涂层工艺简单、效果好,因此在制备CFCC中得到广泛应用。

5 结语

由于连续纤维增强陶瓷基复合材料有着优异的力学性能和优良的高温性能,特别是在燃气涡轮、发动机的叶片、高速轴承、活塞、航天飞机的防热体等都有重要的应用。近年来世界各国如美国、日本、德国、中国等都对CFCC的研究投入较多,纤维增强陶瓷基复合材料必然将成为今后材料研究的热点。但是,目前CFCC的制备工艺还不完善,而且目前研究最多的是非氧化物纤维,这就给CFCC在高温高氧化条件下的应用带来了局限。因此,氧化物纤维增强陶瓷基复合材料的应用必然是未来研究的一个重要方向。纤维表面涂层技术是提高纤维增韧效果的一种有效途径,研究更加简单方便的涂层工艺是我们当前研究工作的重点。

张立同的主要贡献

张立同从事航空航天高温陶瓷及其复合材料研究,在氮化硅结合碳化硅、自增韧碳化硅、定向自生共晶硼化物复合材料、硅炭氮纳米吸波材料以及连续纤维增韧钡长石复相玻璃陶瓷复合材料等方面均取得新突破。特别在连续纤维增韧碳化硅陶瓷基复合材料及其制造技术方面,打破国际封锁,建立了具有中国自主知识产权的制造技术与设备体系。 1980年,在张立同的科研理论指导下,中国首次采用铜川上店土型壳材料铸造成功了第一批高精度、低粗糙度的斯贝低压一级无余量空心导向叶片。新铸叶片的尺寸精度及内部质量与国际著名的罗罗发动机公司的斯贝发动机叶片相当,表面粗糙度还略低于英国叶片。斯贝发动机的引进,使张立同的研究进入到向国际先进行列看齐的新阶段。 张立同主持研究的“无余量熔模铸造技术”,不仅将中国的熔模铸造水平推向了国际先进行列,而且还为发展中国新型发动机复杂内腔叶片及薄壁复杂整体构件奠定了理论和工艺基础。铜川上店土型壳材料,也被正式命名为“中华高岭土型壳材料”。 2000年和2008年先后创建超高温结构复合材料国防重点实验室和陶瓷基复合材料工程中心,为中国陶瓷基复合材料研究与工程转化搭建平台,工程化成果广泛用于航空航天领域,并向民用领域拓展。 张立同合著专著二部,授权国家发明专利50余项,发表SCI和EI收录论文400余篇。 专著 序号  名称出版源年份备注1自愈合陶瓷基复合材料制备与应用基础化学工业出版社2015张立同编著2纤维增韧碳化硅陶瓷复合材料 模拟、表征与设计化学工业出版社2009  张立同主编3复合材料手册化学工业出版社2009益小苏 ,张立同主编4近净形熔模精密铸造理论与实践国防工业出版社2007张立同参编5中国材料工程大典 第10卷 复合材料工程化学工业出版社2005益小苏 ,张立同主编期刊论文 序号  名称出版源年份作者1化学气相渗透制备SiC_w/SiC层状结构陶瓷科学通报2015成来飞,张立同等2SiC_w/SiC层状结构陶瓷的制备及其应用中国材料进展2015解玉鹏,成来飞,张立同等3碳/碳化硅复合材料摩擦磨损性能分析航空材料学报2005张亚妮,徐永东,张立同等4碳陶刹车材料的研究进展航空制造技术2014徐兴亚,张立同,范尚武等5吸波型SiC陶瓷材料的研究进展航空制造技术2014张亚君,殷小玮,张立同6化学气相沉积层状BCx/SiC涂层自愈合机制复合材料学报2013张伟华,成来飞,张立同等7Si-B-C陶瓷涂敷2D C/SiC复合材料的抗氧化性能复合材料学报2013左新章,张立同等8液硅渗透法制备Ti3SiC2改性C/C-SiC复合材料复合材料学报2012范晓孟,殷小玮,张立同等9新型碳化硅陶瓷基复合材料的研究进展航空制造技术2003张立同,成来飞,徐永东10高温透波材料研究进展航空材料学报2003韩桂芳,陈照峰,张立同等11连续纤维增韧陶瓷基复合材料可持续发展战略探讨复合材料学报2007张立同,成来飞12陶瓷基复合材料在火箭发动机上的应用固体火箭技术2000邹武,张康助,张立同13连续纤维增韧碳化硅陶瓷基复合材料研究硅酸盐学报2002徐永东,成来飞,张立同14CVI法制备连续纤维增韧陶瓷基复合材料硅酸盐学报1995徐永东,张立同,成来飞15高温陶瓷基复合材料制备工艺的研究材料工程2000肖鹏,徐永东,张立同16CVI法制备三维碳纤维增韧碳化硅复合材料硅酸盐学报1996徐永东,张立同等17层状Ti3SiC2陶瓷的组织结构及力学性能复合材料学报2002李世波,王东,张立同等18高温结构陶瓷材料的设计准则硅酸盐通报1997徐永东,张立同,韩金探 张立同培养博、硕研究生近百名,获国家教学成果二等奖1项。 据中国科学技术信息研究所、国家工程技术数字研究馆信息:1995年至2004年期间,张立同共培养8名学生获得博士学位,基本情况如下 :【曾庆丰】 学位类别:博士;授予学位日期 2004年04月01日; 授予学位单位:西北工业大学;学位论文:C/SiC复合材料优化设计【邹武】 学位类别:博士;授予学位日期 2001年11月01日; 授予学位单位:西北工业大学;学位论文:三维编织C/SiC复合材料的制备及其性能研究【殷小玮】 学位类别:博士;授予学位日期 2001年03月01日; 授予学位单位:西北工业大学;学位论文:3DC/SiC复合材料的环境氧化行为【肖鹏】 学位类别:博士;授予学位日期 2001年10月01日; 授予学位单位:西北工业大学;学位论文:CSCVI法制备C/SiC的过程特征及其模拟【王汝敏】 学位类别:博士;授予学位日期 1991年12月01日; 授予学位单位:西北工业大学;学位论文:改性双马来酰亚胺树脂基体研究【刘晓辉】 学位类别:博士;授予学位日期 1997年12月01日; 授予学位单位:西北工业大学;学位论文:高抗冲复合材料的研究【成来飞】 学位类别:博士;授予学位日期 1997年12月01日; 授予学位单位:西北工业大学;学位论文:1650℃长寿命碳/碳复合材料防氧化涂层研究【杨觉明】 学位类别:博士;授予学位日期 1995年09月01日; 授予学位单位:西北工业大学;学位论文:用溶胶凝胶法制备热强BAS玻璃陶瓷的工艺理论基础及其材料性能研究

什么是陶瓷基复合材料城文是一篇什么说明文其说明顺序是什么?

您好,陶瓷基复合材料是一种新型的复合材料,它由陶瓷基材料和复合材料组成。陶瓷基材料可以提供良好的热稳定性、耐腐蚀性和抗磨损性,而复合材料则可以提供良好的力学性能和耐热性。陶瓷基复合材料的说明文的顺序如下:

一、陶瓷基复合材料的组成:陶瓷基材料和复合材料。

二、陶瓷基复合材料的特点:良好的热稳定性、耐腐蚀性和抗磨损性,以及良好的力学性能和耐热性。

三、陶瓷基复合材料的应用:陶瓷基复合材料可以用于航空航天、船舶、汽车、电子、医疗等行业。

四、陶瓷基复合材料的制备方法:陶瓷基复合材料可以采用热压成型、压力成型、挤出成型、喷涂成型等方法制备。

五、陶瓷基复合材料的优缺点:陶瓷基复合材料具有良好的力学性能和耐热性,但其成本较高,而且制备工艺复杂。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页