您当前的位置:首页 > 发表论文>论文发表

碳纤维材料论文3000字

2023-02-17 23:33 来源:学术参考网 作者:未知

碳纤维材料论文3000字

  纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!

  纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》
  [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。

  [关键词]高聚物纳米复合材料

  一、 纳米材料的特性

  当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:

  1、尺寸效应

  当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

  2、表面效应

  一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

  纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

  3、量子隧道效应

  微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。

  二、高聚物/纳米复合材料的技术进展

  对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类:

  1、高聚物/粘土纳米复合材料

  由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。

  2、高聚物/刚性纳米粒子复合材料

  用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。

  3、高聚物/碳纳米管复合材料

  碳纳米管于1991年由S.Iijima 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。

  碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。

  在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。

  三、前景与展望

  在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。

  参考 文献 :

  [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987.

  [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会.

  [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164.
  纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》
  【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。

  【关键词】纳米技术 包装材料

  1 纳米技术促进了汽车材料技术的发展

  纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。

  由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。

  2 现代汽车上的纳米材料

  (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。

  纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。

  (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。

  目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。

  抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。

  (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。

  另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。

  (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。

  (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。

  (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。

  (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。

  结语

  随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。

  参考文献

  [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,2004.12.

  [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002.

  [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21
  纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》
  摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。

  关键词:纳米材料;应用;前景展望

  1.纳米技术引起纳米材料的兴起

  1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

  2.纳米材料及其性质表现

  2.1纳米材料

  纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

  2.2纳米材料的特殊性质

  纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。

  3.纳米材料的应用示例

  目前纳米材料主要用于下列方面:

  3.1高硬度、耐磨WC-Co纳米复合材料

  纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

  3.2纳米结构软磁材料

  Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

  3.3电沉积纳米晶Ni

  电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

  3.4Al基纳米复合材料

  Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。

  4.纳米材料的前景趋向

  经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。

  近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

碳纤维乙烯基酯类上浆剂对碳纤维及其复合材料性能的影响 论文的文献综述 怎么写啊

从力学性能讲环氧的最好,而且日本的碳纤维上江剂也是基本满足环氧类的,但是在中国国内,上将剂的水平还是相对比较低的,一来国内碳纤维行业是个技术密集型产业,而且国产碳纤维也没有产业化,二来科研力度和资金的相对薄弱。说实话,乙烯基绝不是最佳的选择,界面的性能没有环氧的好,但是鉴于国内碳纤维的民用化以及低端化,对力学性能等不适要求很高,同时考虑到成型工艺常用手糊和导入,而很少用成本高的预浸料模压或者热压罐成型,比如汽车的引擎盖,尾翼之类,所以才使用乙烯基的树脂。
你需要进行浇注体,碳纤维复合材料力学性能测试,以及SEM电子显微镜查看界面。

碳纤维材料的现状和发展趋势

行业主要上市公司:吉林化纤(000420);中复神鹰(688295);光威复材(300699);精功科技(002006);中简科技(300777);吉林碳谷(83677)等。

本文核心数据:中国碳纤维产能;中国碳纤维产量;中国碳纤维需求量

行业概况

——定义

碳纤维(CF)是指含碳量大于90%的纤维材料,可以用粘胶、聚丙烯腈以及沥青等有机纤维在高温下碳化制取。高强、高模CF主要由聚丙烯腈长丝在1000℃以上高温碳化形成,它与树脂、金属、陶瓷、碳、玻璃等复合后具有模量高、强度高、重量轻、抗疲劳、耐腐蚀等特性,广泛应用于航天、航空、军工、航海、化工、电子、建筑以及体育休闲等领域,是军民两用的高技术纤维。

当前,各国大多按照习惯对碳纤维进行分类,分类方式大致有以下三种:

(1)按照原料分类:聚丙烯腈(PAN)基;沥青基(各向同性、中间相);胶黏基。

(2)按照制造条件和方法分类:碳纤维(800-1600℃);石墨纤维(2000-3000℃);氧化纤维(预氧丝200-300℃);活性碳纤维;气相生长碳纤维。

(3)按力学性能分类:通用级(GP);高性能(HP);期中包括中强型(MT)、高强型(HT)、超高强型(UHT)、中模型(IM)、高模型(HM)、超高模型(UHM)。碳纤维在应用时多是作为增强材料而利用其优良的力学性能,因此使用中更多地是按其力学性能分类,一般认为纤维的拉伸强度低于1400MPa,拉伸模量小于140GPa,则此种属于通用级碳纤维范畴。在高性能碳纤维范畴中,对中强、中模、高强、高模、超高强、超高模等并无严格的区分指标。

——产业链剖析:产业链涉及领域广泛

碳纤维的生产工艺复杂,从碳纤维纺丝、预氧化、碳化到复合材料成型再到终端的应用需要经历复合且很长的过程。碳纤维复合材料被广泛应用于航空航天、风电叶片、汽车、体育休闲、混配模成型、电缆芯、建筑建材、压力容器、船舶、碳碳复材、电子电器等多个领域。

行业发展历程:行业处在快速发展阶段

我国的碳纤维行业起步于20世纪60年代,几乎和日美等国家同时起步,但由于相关知识储备不足、知识产权归属等问题,发展缓慢。同时,日本、美国等国家对碳纤维核心技术形成垄断,我国碳纤维生产技术和装备水平整体落后于国外,在较长的一段时间内发展止步不前,无法满足国家重大装备等高端领域的需求。

2000年以来,国家加大对于碳纤维领域自主创新的支持力度,将碳纤维列为重点研发项目。伴随着国家政策的大力扶持,国内碳纤维行业在技术上取得重大突破,产业化程度快速提升,应用领域不断扩大,地区上目前已形成以江苏、山东和吉林等地为主的碳纤维聚集地。

行业政策背景:政策加持,支持碳纤维产业的发展

国家政策作为产业发展的催化剂,近年来,国家持续发布相关政策推动碳纤维健康有序发展。从国家的政策可以看出,国家把碳纤维作为新材料进行推广和应用,持续引导国内碳纤维发展,计划形成若干家家具有国际竞争力的碳纤维大型企业集团及若干创新能力强、特色鲜明、产业链完善的碳纤维及其复合材料产业集聚区。未来随政策的支持,我国碳纤维行业相关技术将接近国际水平。

行业发展现状

——供给:中国成为全球最大产能国

我国碳纤维工业的起步可以追溯到1962年,到目前为止已发展57年,仅比世界碳纤维起步晚3年;但无论是研发成果还是制造工艺,我国同发达国家相比还存在一定差距。

2021年,中国大陆地区首次超过美国,成为全球最大产能国,产能达到6.34万吨,占全球总产能比重超过30%。

在产量方面,2021年由于国内碳纤维产能加速扩张,同时开工率保持稳定,新装置相继投产,带动产量增长。2021年我国碳纤维产量达到2.43万吨,同比增长30.03%。

——需求:风电叶片为最大需求领域

总体来看,早年间在全球碳纤维供应不足的情况下,美国、日本等国家对中国实行出口限制,导致中国碳纤维需求长期被抑制。近几年由于国内技术突破,刺激了对碳纤维的使用。近年来我国碳纤维需求量呈不断增长趋势,2017-2021年,我国碳纤维需求量呈不断上升趋势,2021年中国碳纤维需求量6.24万吨,同比增长27.7%。

2021年,国内碳纤维需求量占比前三的领域依次是风电叶片、体育休闲和碳-碳复材,分别占比36%、28%、11%,其他领域的需求占比均不足10%。在海上风电叶片大尺寸的发展趋势下,预计风电叶片领域碳纤维的需求将持续增加。

行业竞争格局

——区域竞争格局:江苏省和广东省是主要碳纤维消费省份

从碳纤维市场消费金额来看,江苏省和广东省是消费大省,消费占比分别为35.4%和21.4%;其次为山东,消费占比为18%;其他省份消费占比均不超过6%。

——企业竞争格局:吉林化纤、中复神鹰为行业龙头企业

目前,我国碳纤维第一梯队企业有吉林化纤、中复神鹰,该类企业碳纤维原丝产能在2.5万吨以上,碳纤维产能在1万吨以上;第二梯队企业有江苏恒神、光威复材,该类企业碳纤维原丝产能在1万吨以上,碳纤维产能在0.5万吨以上;第三梯队企业有太铜铜料、兰州蓝星,该类企业碳纤维原丝以及碳纤维产能在0.5万吨左右;第四梯队企业为行业内的其他中小制造企业。

行业发展前景及趋势预测

——市场走向良性健康发展道路

现今,碳纤维行业总体技术尚不成熟稳定,产品质量及性价比相对较低。不过,随着我国高端碳纤维技术的不断突破以及生产向规模化和稳定化发展,企业布局逐渐向高附加值的下游应用领域延伸,我国碳纤维行业将逐步实现进口替代,企业盈利能力有望逐步恢复,市场走向良性健康发展道路。

尤其是在国务院正式发布的《中国制造2025》中,对我国制造业转型升级和跨越发展作了整体部署,明确了建设制造强国的战略任务和重点,选择10大优势和战略产业作为突破点,力争到2025年达到国际领先地位或国际先进水平。

——碳纤维新产品向高稳定、高端化方向发展

前瞻产业研究院预计,碳纤维行业将出现如下发展趋势:

以上数据参考前瞻产业研究院《中国碳纤维行业市场前瞻与投资战略规划分析报告》。

碳纤维性能的优缺点及其对策

碳纤维性能的优缺点通过其他加固材料对比 :
(1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。
(2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。

(3) 疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。
(4)重量:约为钢材的五分之一。
(5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页