这本学报最好联系杂志社直接投稿,有人冒充是杂志社编辑,书已经出刊了确一直没收到期刊 电话问编辑那边根本没我的文章 可笑的是冒充谁内编辑的这个人还发了份电子版清样给我,已经与杂志社核实 是骗人的,谨慎等不退款给我再曝光他的QQ号姓名 银行账号,并提交证据到公安机关
[ 专著 ] 杨挺青,罗文波,徐平等. 黏弹性理论与应用. 科学出版社, 2004年9月, ISBN:7-03-013938-0. . [ 简介 ][ 教材章节 ] 罗文波 编. 第12章 高分子材料力学性能. 见: 周益春, 郑学军编著, 材料的宏微观力学性能. 高等教育出版社, 2009年11月, ISBN:978-7-04-028036-4.王智超, 罗迎社, 罗文波, 邓旭华. 路基压实土流变变形的力学表征与参数识别. 岩石力学与工程学报, 2010(录用).尹素仙, 肖世武, 黄友剑, 卜继玲, 罗文波. 预压缩对橡胶球铰疲劳寿命的影响. 机械强度, 2010(录用).王智超, 罗迎社, 罗文波, 邓旭华, 马千里. 高填方路基压实土流变实验方法研究. 湘潭大学自然科学学报, 2010,32(3):48-54.周雄, 肖世武, 胡小玲, 罗文波. 填充硫化橡胶动态力学性能的分数阶微分流变模型. 第十届全国流变学学术会议, 杭州, 2010年11月.罗文波, 李其抚, 唐欣. 物理老化对PMMA准静态力学性能的影响. 高分子材料科学与工程, 2009,25(1):90-93.罗文波, 唐欣, 李其抚. 物理老化对玻璃态高聚物非线性蠕变行为的影响. 固体力学学报, 2008,29(1):104-108.罗文波, 谭江华. 橡胶弹性材料的一种混合本构模型. 固体力学学报, 2008,29(3):277-281.谭江华, 罗文波. 橡胶材料分子链网络本构模型的研究进展. 材料导报, 2008,22(7):31-34.肖华明, 吴国忠 , 罗文波. g射线辐照对PA6/PTFE合金吸水与力学性能的影响. 材料科学与工艺, 2008,16(6):759-762.王初红, 罗文波, 赵荣国, 唐欣. 非线性粘弹性高分子材料长期蠕变行为的加速测试技术. 高分子材料科学与工程, 2007,23(2):218-221,226.肖华明, 罗文波, 吴国忠, 赵荣国. PTFE/PA6和PTFE/PA66共混物吸水性及流变行为实验研究. 高分子材料科学与工程, 2007,23(2):179-182.罗文波,唐欣,谭江华,赵荣国.流变材料长期力学性能加速表征的若干进展. 材料导报,2007,21(7): 8-10,19.王初红, 罗文波, 赵荣国, 唐欣. 应力对聚丙烯蠕变行为的时间-温度等效性的影响. 湘潭大学自然科学学报, 2006,28(4):31-34.肖华明, 罗文波. PA6/PTFE和PA66/PTFE的力学性能和熔融行为的实验研究. 湖南工程学院学报, 2006,16(3):38-41.贺广零,罗文波,卢晋福,桂海林. 宽板弯曲成形过程中的板厚变化规律. 北京联合大学学报, 2006,20(1):27-30.江荧, 罗文波, 等. 关于理想塑性板材弯曲变薄理论解的矛盾及原因分析. 塑性工程学报, 2006,13(1):26-28.余敏, 罗迎社, 罗文波, 彭相华 等. PVC非线性粘弹性行为的研究. 湖南工程学院学报. 2006,16(2):32-34.罗文波,杨挺青,等. 高聚物自由体积与温度和应力水平的相关性. 高分子材料科学与工程, 2005,21(3):11-15.胡成武,罗文波,彭炎荣.锥形凹模缩口力的理论计算与试验验证.中国工程科学,2005,7(6):54-56.罗文波,刘文娴,杨挺青,王霞瑜. 一种高聚物银纹损伤演化的实验研究. 固体力学学报, 2004,25(2):171-175.罗文波,杨挺青. 扩展裂纹尖端的塑性热耗散与温度场. 应用力学学报2004,21(1): 129-133.罗文波. 宽板塑性弯曲成形过程中的板厚变化规律. 力学与实践, 2004,26(3):46-47.胡成武, 罗文波, 彭炎荣. 变薄拉深力的两种理论解及其比较. 塑性工程学报,2004, 11(1):36-38.江荧,罗文波,彭定,等. 关于宽板塑性弯曲变薄理论解的讨论. 金属成形工艺, 2004,22(3):30-32.彭炎荣,罗文波,李名望,江荧,彭定. V形件弯曲凹模最小深度的确定. 模具技术, 2004(4): 33-35,58.李名望,彭炎荣,罗文波. V形件弯曲变形过程分析及弯曲凹模深度的计算. 塑性工程学报,2004,11(3): 73-76.罗文波,杨挺青. 受载高聚物裂尖的损伤和银纹化. 力学学报2003,35(5):553-560.彭炎荣,江荧,段继承,李兆飞,罗文波. 理想塑性及线性硬化板材弯曲成形的变薄规律. 塑性工程学报, 2003,10(3): 22-25.罗文波. 一类弹塑性损伤材料的切线模量. 湘潭大学自然科学学报, 2003, 25(4):41-44.罗文波, 杨挺青. 固态高聚物的应力松弛行为. 高分子材料科学与工程, 2002,18(2): 97-99.罗文波, 杨挺青. 脆性高聚物的银纹化增韧设计. 材料科学与工程, 2002,20(3):422- 424.颜志军, 罗文波, 张平. 高聚物银纹断裂的研究现状. 高分子材料科学与工程, 2002, 18(5):41-44.罗文波, 杨挺青, 安群力. 非线性粘弹体的时间-温度-应力等效原理. 固体力学学报, 2001,22(3):219-224.罗文波,杨挺青,张平.高聚物细观损伤演化的研究进展.力学进展,2001,31(2):264-275.罗文波,杨挺青,张平. 高聚物银纹化的研究进展. 材料导报. 2001(3):46-48.罗文波. 关于“平面纯剪切大变形等效应变分析”一文的讨论. 塑性工程学报,2001,8(1): 8,12.郭艳伶,罗文波,李应明,彭炎荣. 拉延-翻孔复合变形规律及其控制. 锻压技术,2001,26(3):22-25.赵荣国,罗文波,张淳源. 聚合物应力松弛行为的过应力模型. 湘潭大学自然科学学报, 2001,23(1):37-40.罗文波,胡云贵,胡自化等. 圆柱体平板间镦粗的热力耦合分析.塑性工程学报,2000,7(1): 64-69.罗文波,喻青松.含孔洞聚合物材料破坏过程中的热量生成. 高分子材料科学与工程,15(6),1999:138-141.罗文波,罗中华,彭炎荣. Mises圆形屈服轨迹图及其在板料成形中的应用. 锻压技术, 1999(6): 23-27.罗中华,罗文波,彭炎荣. 一种高精度有心扇形滑移线场的近似解析解. 锻压技术24(1),1999:43-45.胡自化,罗文波,等. 塑性有限元网格重分系统基于AutoCAD的二次开发. 金属成形工艺,17(5),1999:44-46.胡自化,罗文波,彭炎荣. 基于Visual Basic数控蓝图编程系统的研制. 机械与电子,1999(2):45-48.胡自化,罗文波,等. 基于AutoCAD数控图形自动编程系统. 组合机床与自动化加工技术1999(2):35-37,45.郭燕伶,罗文波,罗中华等. 圆孔变薄翻边力的计算. 锻压技术, 1998,23(3): 23-25.郭燕伶,罗文波. 变薄翻边力的主应力解法. 湘潭大学自然科学学报, 1998,20(1):115-117.郭燕伶,罗文波,彭炎荣. 正挤凹模理想轮廓设计. 模具工业, 1998(3):29-32.罗文波. 含缺陷物体形变过程中的能量耗散及其分形分析. 湘潭大学自然科学学报, 1997,19(4):26-30.彭炎荣,罗文波,林启权. 塑性成形中的切向加载及其功率计算. 锻压技术,1996,21(3): 28-31.
Sensorless torque control scheme of
induction motor for hybrid electric vehicle
Yan LIU 1,2, Cheng SHAO1
(1.Research Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China;
2.School of Information Engineering of Dalian University, Dalian Liaoning 116622, China)
Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle
(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrial
drive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-based
extension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed in
order to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme is
robust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor is
chosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy losses
shown by simulations.
Keywords: Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode
1 Introduction
Being confronted by the lack of energy and the increasingly
serious pollution, the automobile industry is seeking
cleaner and more energy-efficient vehicles.A Hybrid Electric
Vehicle (HEV) is one of the solutions. A HEV comprises
both a Combustion Engine (CE) and an Electric Motor
(EM). The coupling of these two components can be in
parallel or in series. The most common type of HEV is the
parallel type, in which both CE and EM contribute to the
traction force that moves the vehicle. Fig1 presents a diagram
of the propulsion system of a parallel HEV [1].
Fig. 1 Parallel HEV automobile propulsion system.
In order to have lower energy consumption and lower pollutant
emissions, in a parallel HEV the CE is commonly
employed at the state (n > 40 km/h or an emergency speed
up), while the electric motor is operated at various operating
conditions and transient to supply the difference in torque
between the torque command and the torque supplied by
the CE. Therefore fast and precise torque tracking of an EM
over a wide range of speed is crucial for the overall performance
of a HEV.
The induction motor is well suited for the HEV application
because of its robustness, low maintenance and low
price. However, the development of a drive system based
on the induction motor is not straightforward because of the
complexity of the control problem involved in the IM. Furthermore,
motor parameter variations in HEV applications
are larger than in industrial drive system during operation
[2]. The conventional control technique ranging from the
inexpensive constant voltage/frequency ratio strategy to the
sophisticated sensorless control schemes are mostly ineffective
where accurate torque tracking is required due to their
drawbacks, which are sensitive to change of the parameters
of the motors.
In general, a HEV operation can be continuing smoothly
for the case of sensor failure, it is of significant to develop
sensorless control algorithms. In this paper, the development
of a sensorless robust torque control system for HEV
applications is proposed. The field oriented control of the induction
motor is commonly employed in HEV applications
due to its relative good dynamic response. However the classical
(PI-based) field oriented control (CFOC) is sensitive to
parameter variations and needs tuning of at least six control
parameters (a minimum of 3 PI controller gains). An improved
robust PI-based controller is designed in this paper,
Received 5 January 2005; revised 20 September 2006.
This work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).
Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43
which has less controller parameters to be tuned, and is robust
to parameter variation.The variable parameters model
of the motor is considered and its parameters are continuously
updated while the motor is operating. Speed and
flux observers are needed for the schemes. In this paper,
the speed-flux observer is based on the sliding mode technique
due to its superior robustness properties. The sliding
mode observer structure allows for the simultaneous observation
of rotor fluxes and rotor speed. Minimization of the
consumed energy is also considered by optimizing operating
flux of the IM.
2 The control problem in a HEV case
The performance of electric drive system is one of the
key problems in a HEV application. Although the requirements
of various HEV drive system are different, all these
drive systems are kinds of torque control systems. For an
ideal HEV, the torque requested by the supervisor controller
must be accurate and efficient. Another requirement is to
make the rotor flux track a certain reference λref . The reference
is commonly set to a value that generates maximum
torque and avoids magnetic saturation, and is weakened to
limit stator currents and voltages as rotor speed increases.
In HEV applications, however, the flux reference is selected
to minimize the consumption of electrical energy as it is one
of the primary objectives in HEV applications. The control
problem can therefore be stated as the following torque and
flux tracking problems:
min
ids,iqs,we Te(t) − Teref (t), (1)
min
ids,iqs,we λdr(t) − λref (t), (2)
min
ids,iqs,we λqr(t), (3)
where λref is selected to minimize the consumption of electrical
energy. Teref is the torque command issued by the
supervisory controller while Te is the actual motor torque.
Equation (3) reflects the constraint of field orientation commonly
encountered in the literature. In addition, for a HEV
application the operating conditions will vary continuously.
The changes of parameters of the IM model need to be accounted
for in control due to they will considerably change
as the motor changes operating conditions.
3 A variable parameters model of induction
motor for HEV applications
To reduce the elements of storage (inductances), the induction
motor model used in this research in stationary reference
frame is the Γ-model. Fig. 2 shows its q-axis (d-axis
are similar). As noted in [3], the model is identical (without
any loss of information) to the more common T-model in
which the leakage inductance is separated in stator and rotor
leakage [3]. With respect to the classical model, the new
parameters are:
Lm = L2
m
Lr
= γLm, Ll = Lls + γLlr,
Rr = γ2Rr.
Fig. 2 Induction motor model in stationary reference frame (q-axis).
The following basic w−λr−is equations in synchronously
rotating reference frame (d - q) can be derived from the
above model.
⎧⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
dλdr
dt
= −ηλdr + (we − wr)λqr + ηLmids,
dλqr
dt
= −(we − wr)λdr − ηλqr + ηLmiqs,
dids
dt
= ηβλdr+βwrλqr−γids+weiqs+
1
σLs
Vds,
diqs
dt
=−βwrλdr+ηβλqr−weids−γiqs+
1
σLs
Vqs,
dwr
dt
= μ(λdriqs − λqrids) −
TL
J
,
dθ
dt
= wr + ηLm
iqs
λdr
= we,
Te = μ(λdriqs − λqrids)
(4)
with constants defined as follows:
μ = np
J
, η = Rr
Lm
, σ = 1−
Lm
Ls
, β =
1
Ll
,
γ = Rs + Rr
Ll
, Ls = Ll + Lm,
where np is the number of poles pairs, J is the inertia of the
rotor. The motor parameters Lm, Ll, Rs, Rr were estimated
offline [4]. Equation (5) shows the mappings between the
parameters of the motor and the operating conditions (ids,
iqs).
Lm = a1i2
ds + a2ids + a3, Ll = b1Is + b2,
Rr = c1iqs + c2.
(5)
4 Sensorless torque control system design
A simplified block diagram of the control diagram is
shown in Fig. 3.
44 Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46
Fig. 3 Control structure.
4.1 PI controller based FOC design
The PI controller is based on the Field Oriented Controller
(FOC) scheme. When Te = Teref, λdr = λref , and
λqr = 0 in synchronously rotating reference frame (d − q),
the following FOC equations can be derived from the equations
(4).
⎧⎪
⎪⎪⎪⎪⎪⎨⎪
⎪⎪⎪⎪⎪⎩
ids = λref
Lm
+ λref
Rr
,
iqs = Teref
npλref
,
we = wr + ηLm
iqs
λref
.
(6)
From the Equation (6), the FOC controller has lower performance
in the presence of parameter uncertainties, especially
in a HEV application due to its inherent open loop
design. Since the rotor flux dynamics in synchronous reference
frame (λq = 0) are linear and only dependent on the
d-current input, the controller can be improved by adding
two PI regulators on error signals λref − λdr and λqr − 0 as
follow
ids = λref
Lm
+ λref
Rr
+ KPd(λref − λdr)
+KId (λref − λdr)dt, (7)
iqs = Teref
npλref
, (8)
we = wr + ηLm
iqs
λref
+ KPqλqr + KIq λqrdt. (9)
The Equation (7) and (9) show that current (ids) can control
the rotor flux magnitude and the speed of the d − q rotating
reference frame (we) can control its orientation correctly
with less sensitivity to motor parameter variations because
of the two PI regulators.
4.2 Stator voltage decoupling design
Based on scalar decoupling theory [5], the stator voltages
commands are given in the form:
⎧⎪
⎪⎪⎨⎪⎪⎪⎩
Uds = Rsids − weσLsiqs = Rsids − weLliqs,
Uqs = Rsiqs + weσLsids + Lm
Lr
weλref
= Rsiqs + weσLsids + weλref .
(10)
Because of fast and good flux tracking, poor dynamics decoupling
performance exerts less effect on the control system.
4.3 Speed-flux observer design
Based on the theory of negative feedback, the design of
speed-flux observer must be robust to motor parameter variations.
The speed-flux observer here is based on the sliding
mode technique described in [6∼8]. The observer equations
are based on the induction motor current and flux equations
in stationary reference frame.
⎧⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
d˜ids
dt
= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +
1
Ll
Vds,
d˜iqs
dt
= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +
1
Ll
Vqs,
d˜λdr
dt
= −η˜λdr − ˜ wr˜λqr + ηLm
˜i
ds,
d˜λqr
dt
= ˜wr˜λ dr − η˜λqr + ηLm
˜i
qs.
(11)
Define a sliding surface as:
s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)
Let a Lyapunov function be
V = 0.5s2. (13)
After some algebraic derivation, it can be found that when
˜ wr = w0sgn(s) with w0 chosen large enough at all time,
then ˙V = ˙s · s 0. This shows that s will converge to
zero in a finite time, implying the stator current estimates
and rotor flux estimates will converge to their real values
in a finite time [8]. To find the equivalent value of estimate
wr (the smoothed estimate of speed, since estimate wr is a
switching function), the equation must be solved [8]. This
yields:
˜ weq = wr
˜λ
qrλqr + λdr˜λdr
˜λ
2q
r +˜λ2
dr −
η
np
˜λ
qrλdr − λqr˜λdr
˜λ
2q
r +˜λ2
dr
. (14)
The equation implies that if the flux estimates converge to
their real values, the equivalent speed will be equal to the
real speed. But the Equation (14) for equivalent speed cannot
be used as given in the observer since it contains unknown
terms. A low pass filter is used instead,
˜ weq =
1
1 + s · τ
˜ wr. (15)
Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45
The same low pass filter is also introduced to the system
input,which guarantees that the input matches the feedback
in time.
The selection of the speed gain w0 has two major constraints:
1) The gain has to be large enough to insure that sliding
mode can be enforced.
2) A very large gain can yield to instability of the observer.
Through simulations, an adaptive gain of the sliding
mode observer to the equivalent speed is proposed.
w0 = k1 ˜ weq + k2. (16)
From Equation (11), the sliding mode observer structure
allows for the simultaneous observation of rotor fluxes.
4.4 Flux reference optimal design
The flux reference can either be left constant or modified
to accomplish certain requirements (minimum current,
maximum efficiency, field weakening) [9,10]. In this paper,
the flux reference is chosen to maximum efficiency at steady
state and is weaken for speeds above rated. The optimal efficiency
flux can be calculated as a function of the torque
reference [9].
λdr−opt = |Teref| · 4Rs · L2r
/L2
m + Rr. (17)
Equation (17) states that if the torque request Teref is
zero, Equation (8) presents a singularity. Moreover, the
analysis of Equation (17) does not consider the flux saturation.
In fact, for speeds above rated, it is necessary to
weaken the flux so that the supply voltage limits are not exceeded.
The improved optimum flux reference is then calculated
as:
⎧⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
λref = λdr-opt,
if λmin λdr-opt λdr-rated ·
wrated
wr-actual
,
λref = λmin, if λdr-opt λmin,
λref = λdr-rated ·
wrated
wr-actual
,
if λdr-opt λdr-rated ·
wrated
wr-actual
.
(18)
where λmin is a minimum value to avoid the division by
zero.
4.5 Simulations
The rated parameters of the motor used in the simulations
are given by
Rs = 0.014 Ω, Rr = 0.009 Ω, Lls = 75 H,
Llr = 105 H, Lm = 2.2 mH, Ls = Lls + Lm,
Lr = Llr + Lm, P = 4, Jmot = 0.045 kgm2,
J = Jmot +MR2
tire/Rf, ρair = 1.29, Cd = 0.446,
Af = 3.169 m2, Rf = 8.32, Cr = 0.015,
Rtire = 0.3683 m, M = 3000 kg, wbase = 5400 rpm,
λdr−rated = 0.47 Wb.
Fig.4 shows the torque reference curve that represents
typical operating behaviors in a hybrid electric vehicle.
Fig. 4 The torque reference curve.
Load torque is modeled by considering the aerodynamic,
rolling resistance and road grade forces. Its expression is
given by
TL = Rtire
Rf
(
1
2ρairCdAfv2 +MCr cos αg +M sin αg).
Figures in [5∼8] show the simulation results of the
system of Fig.3 (considering variable motor parameters).
Though a small estimation error can be noticed on the observed
fluxes and speed, the torque tracking is still achieved
at an acceptable level as shown in Figs. [5, 6, 8]. The torque
control over a wide range of speed presents less sensitivity
to motor parameters uncertainty.
Fig.5 presents the d and q components of the rotor flux.
Rotor flux λr is precisely orientated to d-axis because of the
improved PI controllers.
Fig.8 shows clearly the real and observed speed in the
different phases of acceleration, constant and deceleration
speed with the motor control torque of Fig.4. The variable
model parameters exert less influence on speed estimation.
Fig.7 shows the power loss when the rotor flux keeps constant
or optimal state. A significant improvement in power
losses is noticed due to reducing the flux reference during
the periods of low torque requests.
Fig. 5 Motor rotor flux λr.
46 Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46
Fig. 6 Motor torque.
Fig. 7 Power Losses.
Fig. 8 Motor speed.
5 Conclusions
This paper has described a sensorless torque control system
for a high-performance induction motor drive for a
HEV case. The system allows for fast and good torque
tracking over a wide range of speed even in the presence of
motor parameters uncertainty. In this paper, the improved
PI-based FOC controllers show a good performance in the
rotor flux λdr magnitude and its orientation tracking. The
speed-flux observer described here is based on the sliding
mode technique, making it independent of the motor parameters.
Gain adaptation of the speed -flux observer is used to
stabilize the observer when integration errors are present.
嘉洁环卫科技有限责任公司创业计划
摘 要:嘉洁环卫科技有限责任公司为一个虚拟企业。论文首先介绍了该公司项目背景,然后在市场
机会分析的基础上阐述了公司的发展战略和市场营销策略。
关键词:创业计划;市场机会;营销策略
一 项目背景介绍
(一)产业背景
近几年来,我国塑料制造业迅速发展,每年以平
均10%的速度递增。1999年,我国成为世界上第三
大塑料制品生产国。2001年我国塑料制品总产量
达到2000万吨,比上期增长13•1%,完成销售率
96•6%。2001年全年累计完成工业总产值为
2043•86亿元,比上年增长14•9%,因此塑料制品具
有较大拓展空间。
目前,全国工业固体废弃物堆放量已超过60亿
吨,城市垃圾近年已达1. 5亿吨,到2010年将达9
亿吨。随着我国国民环保意识增强,政府机构对环
保产业的重视,目前我国的环保产业总产值达到
1080亿元,因而环保制品市场前景广阔。
我国目前市场上出售的垃圾桶(篓)主要有室
内和户外两大种,制作材料主要为塑料、铁皮、铝合
金等,塑料制造材料主要特点为成本低,制作简便,
使用方便;而铁皮、铝合金等材料的垃圾桶生产成本
较高,且易丢失、损坏。
作为一种新型的垃圾桶,自动套袋垃圾桶除了
具有垃圾桶本身的特性外,还采用了专利设计,使产
品具有自动供应垃圾套袋的功能,给使用者带来方
便和卫生。
自动套袋垃圾桶(篓)的生产和销售,将有利于
我国垃圾的处理,促进我国环保产业的发展,具有巨
大的经济效益和社会效益。
(二)公司背景
嘉洁环卫科技有限责任公司是一个提议中的公
司,公司性质是有限责任公司。公司设在湖南省湘
潭市高新技术开发区,基础设施完善,并享受税收优
惠政策,同时靠近湘潭三大高校,研发力量雄厚。它
拥有自动套袋垃圾桶(篓)的专利技术,提倡“以人
为本,以科技为依托”的健康生活新理念,为社会提
供尽善尽美、健康文明的环保产品。
我国环保制品每年约有1000多亿元的市场需
求,其中垃圾桶(篓)约有10亿元的市场需求。公
司成立初期生产各种自动套袋垃圾桶(篓),以满足
市场需求的迅速增长;并通过各种方式,从社会中筹
集资金,启用投资建厂解决方案;同时,针对行业的
特殊情况,充分解决环保制品品种多且杂、产品实用
性及安全健康等问题。
公司注重短期市场目标与长远可持续发展战略
相结合, 1-3年内成长为垃圾桶(篓)市场的大中型
企业,做实市场和做强企业; 4-8年进入塑料等原
材料上游行业,以保障原材料的供应,降低企业生产
成本,提高潜在的市场竞争能力;长期发展目标定位
在垃圾无害化处理产业,通过上市等资本运营手段
建设成为以塑料环保产业为核心业务的大型企业集
团。
公司成立初期共需资金500万,其中引入风险
投资200万。股本规模及结构暂定为:公司注册资
本500万。风险投资200万(40% );湖南工程学院专利技术入股100万(20% ),公司发起人现金入股
200万(40% )。
公司初期的组织结构采取直线职能式。公司实
行所有权与经营权分离的总经理负责制,下设营销
副总、技术与生产副总、财务副总。
(三)市场描述
垃圾桶(篓)是家庭日常用品,对消费者来说是
低值易耗品。我国市场大量销售的为通用型塑料垃
圾桶(篓),产品档次较低,品牌忠诚度不高,但市场
需求面广量大,主要购买者为家庭、机关企事业单
位。
目前,我国的垃圾桶(篓)主要有两种:室内和
户外。室内产品主要为家庭和企事业单位办公室内
用的小型垃圾废纸篓,其产品类型主要有脚踏式、印
花式、格子式等不同档次的产品;户外产品主要为居
民小区、工厂等单位使用的容量较大的垃圾桶。室
内和户外垃圾桶本身存在着不足: 1、低档次的产品
制作粗糙、质量差、不美观,产品式样较少; 2、产品设
计没有针对性,不能适应不同消费对象的需求; 3、使
用不方便; 4、不同档次的产品价格偏高; 5、很多产品
没有质量保证,没有相关的质量管理认证。本公司
生产的自动套袋垃圾桶(篓)将把以上问题作为突
破点,从而逐步扩大市场占有的份额,迅速研究开发
并推出其他系列卫生环保产品。
(四)产品描述
自动套袋垃圾桶(篓)属于文明社会生活领域
的一种与人们生活贴近的、有着爱卫意义和环保价
值的实用新型发明创造。它是研发人员通过对日常
生活用品的细致观察,分析当前同类产品在应用中
的缺陷后进行的创新,它结构简单,造价低廉,使用
方便。它与现有垃圾桶(篓)相比,其突出的创新点
表现为:
首先,垃圾套袋与垃圾桶(篓)是一体化结构,
每次换袋不用从外面拿放垃圾套袋。
其次,每次换袋都有已装满垃圾的套袋自身从
垃圾桶(篓)内牵出一个新的套袋,减少了换袋的麻
烦,节省了时间。
本产品除具备自供套袋功能外,还具备了在没
有套袋的情况下,取出隔底板作为传统垃圾桶(篓)
使用的功能。
公司将建立国际先进的ISO9001质量管理体
系,力争获得通过国际ISO9001质量管理认证。因
此本产品推广的空间和产品市场的前景十分理想
的,社会效益和经济效益十分可观。
二 市场机会分析与战略决策
(一)需求分析
垃圾桶的实际消费对象主要为家庭、机关企事
业单位等,垃圾桶(篓)产品属于日常用品,家庭购
买方式为单件或多件购买,主要为室内使用;机关、
企事业单位购买方式为大宗团购,主要为城市街道
卫生、单位办公、处理生产废弃物等使用。
随着社会发展和人们生活水平的提高,我国国
民的环保意识不断增强,政府亦相当重视。自动套
袋垃圾桶(篓)需求普及化程度将提高,家庭、机关
企事业单位等都要用到垃圾桶(篓),所以消费需求
大。
有关市场调查数据显示:我国每年城镇新婚家
庭有500万左右,假如每个新婚家庭购买三个垃圾
桶,则全国每年需求垃圾桶1500万个。同时我国还
有5. 1亿的城镇人口也存在巨大的市场需求,以每
个家庭3. 5口人计算,则约有1. 5亿个家庭,假如每
个家庭3年更换一次,平均一次购买3个的话,全国
城镇家庭需求为1. 5/3×3=1. 5亿个。
(二)竞争分析
1.竞争产品和竞争对手。据调查,目前市场上
生产垃圾桶的厂家有很多,但没有一个厂家在市场
上占有很大优势,生产厂家主要集中于华北、浙皖地
区以及珠江三角洲地区,其中各个厂家的产品、价格
差不多,没有突出优势。
2.公司竞争力量模型分析(见图1)。国家法律
法规及政策方针对环境影响力量结构有较大影响。
图1 竞争力量模型
A.销售商:主要指批发商;垃圾桶(篓)销售渠
道主要为:厂家———批发商———零售商,因此取得代
理商的合作是在竞争中取胜的关键因素。
B.材料供应商:制造垃圾桶(篓)的原材料来源
广泛,市场供应充足。
C.替代风险:公司拥有自动套袋垃圾桶(篓)的
专利技术,形成保护壁垒,在较长时期内不会出现同
23第2期 刘 艺等:嘉洁环卫科技有限责任公司创业计划类产品。
D.新加入者的威胁:防止仿制或专利侵权;加
大市场力度,深化渠道管理设置;
E.行业内的竞争:面对现有市场产品的竞争,
我们应积极加强自主专利权的保护与运用,同时采
用差异化的价格策略,逐步建立自己的品牌。
3.竞争优势。自动套袋垃圾桶(篓)本身具有
优越性能,设计科学、价格设计合理,使用简捷;在技
术方面,自动套袋垃圾桶(篓)拥有自主的专利技
术;在管理方面,我们使用现代企业管理制度,竞争
优势明显。
(三)公司特长
嘉洁环卫公司以生产塑料环保系列制品为主,
拥有国际先进的制备技术和高素质的管理队伍,提
倡“以人为本,以科技为依托”的绿色健康生活新理
念,为社会提供健康的环卫产品。
公司拥有先进的专利技术和优秀的科研人员,
有能力不断改进产品,深入研究开发塑料材料的环
保产品,形成以生产塑料环保产品为核心的多元化
经营集团公司。
公司拥有高素质的营销队伍与相关技术的研发
人员。公司营销管理人员均受过管理专业的系统教
育,具有丰富的管理经验和良好的市场意识:销售人
员具备营销专业知识和相关的技术知识。
公司属于国家政策鼓励的生产环保产品的中小
型企业,准备投资于湖南省湘潭市高新技术开发区。
(四)公司战略规划
公司将在5-7年内成为塑料环保产品的市场
领导者。
1.公司发展初期(1-3年)主要达成以下目标:
产品导入市场,树立企业形象及企业品牌;
逐步建立销售网络;
通过积极的营销战略打开并逐步扩大垃圾桶
(篓)市场;
使年生产量达75万个,销售额达到1500万元,
利润约达到301万元;
市场占有率达到5%左右;
2.发展中期(3-5年)主要完成以下任务:
进一步完善和健全销售网络;
重点研制新型环保产品,进一步拓展产品线,实
行多元化经营战略;开始进入塑料回收、加工等原材
料上游行业,降低企业运营成本,提高潜在的市场竞
争能力;
市场占有率达到12% -16% ,居于国内行业主
导地位,积极拓展国际市场,努力提升并完善品牌形
象。
3.公司的长期目标是:
利用公司塑料制品研制方面的技术优势,开发
研制塑料环保相关产品,实现产品多元化,拓展市场
空间,扩大市场占有率,成为环保领域的一面大旗。
进入垃圾无害化处理产业,通过上市等资本运
营手段建设成为以塑料环保产业为核心业务的大型
企业集团。
三 市场营销策略
(一)市场细分
1.总起来说,垃圾桶(篓)主要分为两大类:室
内和户外。
A.室内品:这类产品主要放在室内使用,购买
者主要是家庭日用、机关企事业单位办公用品。
B.户外品:购买者主要是机关、企事业单位等
公共场所。
2.按产品价格分类,国内垃圾桶(篓)主要分
为:通用品和中高档产品。
A通用品:这类产品的购买者主要为中低收入
家庭及对价格敏感者。
B中高档品:这类产品购买者主要为中高收入
家庭和企事业单位及追求生活品质者。
(二)目标市场
全国城乡家庭,机关企事业单位。
(三)产品
1.产品。保证产品质量,开发多种规格的产品,
在核心产品的基础上延伸产品的功能。同时不断开
发相关新产品,拓宽产品线的广度和深度。
我们提供的不仅是有形的产品,更重要的是产
品所代表的尽善尽美的服务和关注环保的健康理
念。
2.品牌。公司发展初期采用单一品牌策略,初
定“嘉洁”,有利于在客户中树立明确的品牌形象;
随着公司的不断壮大,逐步建立起多品牌的产品组
合,提升公司的企业及品牌形象,实现无形资产的增
值。
建立商标防护网,注册品牌和商标,包括相关或
相近的品牌、商标名,利用有关国际条约保护自己的
权益;提前在网络上注册公司的域名,为发展电子商
务打下基础;宣传产品品牌,提高品牌知晓度。
公司将建立国际先进的ISO9001质量管理体
24 湖南工程学院学报 2007年系,力争获得通过国际ISO9001质量管理认证。
(四)价格
自动套袋垃圾桶(篓)采用全国统一批发定价
与零售指导价相结合的价格体系。
针对国内市场情况,我们拟采取需求导向定价
法,根据消费者能够接受的最终销售价格计算自动
套袋垃圾桶(篓)的经营成本和利润后,逆向推算出
产品的批发价和零售价。
自动套袋垃圾桶(篓)采取全国统一批发定价
与零售指导价相结合的价格体系。公司将在全国设
立六大分区,每个区域设分销中心,通过区域中间商
建立健全完善的销售网络。
根据调查,目前市场的传统家庭日用垃圾桶价
格一般3-50元。我们是后进入者,传统家庭日用
垃圾桶定价策略对于我们影响较大;从增强产品竞
争力和公司发展的角度考虑,产品价格较现有市场
价略高20%左右。
(五)分销渠道
经调查,市场上垃圾桶(篓)的主要销售渠道模
式如图2所示:
图2 主要分销渠道模式
拟采用的销售渠道有两种:自建销售网络;利用传统
家庭用垃圾桶代理商。
1.自建销售网络。将全国划分为东北、华北、华
南、华东、西北、西南七大区域,每一区域设一个分销
中心,由区域分销中心和代理商共同开发市场,并且
负责监管这一区域代理商的工作和二级网络的建
设,销售网络的建立原则是为客户提供最高效率的
服务。
2.利用现有垃圾桶代理商。公司处于起步阶
段,销售网络正在逐步建设,利用垃圾桶分销商的销
售网络扩大市场范围,并吸引有良好业务网络、有发
展潜力的代理商,完善公司的销售网络。
(六)推广策略
以“推式”为主策略,在促销等方面调动中间商
的积极性。如:大量赠送产品附属品,自动套袋垃圾
桶(篓)销售时赠送一卷(50个/100个)垃圾袋。
自动套袋垃圾桶是创新发明,广告以户外广告
为主,广告的诉求点应侧重于介绍自动套袋垃圾桶
的创新性,在家庭的用途,环保效益,社会效益等。
产品品牌宣传,表述为:“为环保加油,对健康
负责”。
品牌广告可以通过多种渠道进行。利用不同媒
介的特色,建立全方位、立体的信息传播网。在社会
公益活动中树立公司的良好形象。如在城市主干道
摆放自供套袋垃圾桶,达到社会效益的同时宣传产
品,提高产品知名度。
(七)市场开发与进入
根据调查,目前市场销售的传统家庭用垃圾桶
的品牌忠诚度较低,家庭主妇对价格敏感度较高,比
较易于试用不同品牌的产品,市场开发与进入相对
容易。
EntrepreneurialPlan for Jiajie EnvironmentalProtection
Technology CO.,Ltd
LIU Y,i ZHOU Peng-jin, ZHANG Bai-hao
( Grade 2004,Department ofEconomics andMangement,Hunan Institute ofEngineering, Xiangtan 411104,China)
Abstract:The essay is themodified edition of theworkwhichwon the silvermedal in the 2ndHunan“Challenge
Cup”of theEntrepreneurialPlanCompetition forCollege Students. It firstly introduces the background of the project
and thenmakes the developing strategy andmarketing strategy of the company on the basis ofmarketopportunity a-
nalysis.
Key words:entrepreneurial plan;marketopportunity;marketing strategy
目录可以自己加上的.