您当前的位置:首页 > 发表论文>论文发表

关于小学数学几何的小论文

2023-02-15 15:12 来源:学术参考网 作者:未知

关于小学数学几何的小论文

何谓“几何”?弗赖登塔尔认为,所谓几何就是把握空间,而这个空间对儿童来说,就是他们生活和运动的空间。因此,“几何”又称为“空间几何”,从严格意义上讲,空间几何主要就是研究事物的空间形式或关系的一门学科。我们首先要弄清楚,作为小学数学课程的空间几何,与作为数学科学的空间几何是有区别的:

1、作为数学科学的空间几何
(1)是一个完整的知识体系
(2)是一种论证几何,或称之为证明几何
(3)是存在于严密的公理体系之中的
2、作为小学数学课程的空间几何
(1)是几何学中最基础的部分
(2)是一种直观几何,或称之为经验几何、实验几何
(3)是存在于不太严密的局部组织之中的
明确了小学数学几何与数学课程几何的不同点之后,就要来研究究竟如何更加有效地进行小学数学的几何学习呢?下面分三个部分:
一、 小学几何学习的基本分析
这部分内容又分三个知识点:
(一)、小学数学几何学习的基本内容:
也就是我们所说的“空间与图形”,具体内容有:简单几何形体的认识、变换(包括平移、旋转和对称等)、位置、图形测量、简单图形的周长、面积与体积的计算、方向的认识以及平面坐标的初步体验等。
(二)、小学数学几何学习的基本目标:(分两个方面表述)
1、从活动的特征表述
(1)能从实物的形状想像出几何图形,或由几何图形想像出实物的形状;
(2)能从较复杂的图形中分解出基本的图形,并能分析出其中的基本元素及其关系;
(3)能描述出实物或图形的运动和变化;
(4)能采用适当的方式描述物体间的位置关系,或能运用图形形象地描述问题,并利用直观来进行思考。
2、从内容的特征表述
(1)使学生获得有关线、角、简单平面图形和立体图形的知觉映象(空间表象)
(2)使学生能建立有关长度、面积或体积等的基本概念
(3)能够对不太远的物体间的方位、距离和大小有较正确的估计
(4)能从较复杂的图形中辨别有各种特征的图形
(三)、小学数学几何学习的基本特点:(两点)
1、经验是儿童几何学习的起点
儿童的几何学习与成人(或更高年级学生)不同,他们不是以几何的公理体系为起点的,而是以已有的经验为起点的。儿童在玩各种积木或玩具的过程中,在选择和使用各种生活用具的过程中,在接触到的各种自然现象中,甚至于他们在玩类似“过家家”的游戏中,逐渐感觉到了各种用具在几何方面的特点。
2、操作是儿童构建空间表象的主要形式
儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想像的。
二、儿童形成空间观念的基本特征
发展儿童的空间观念是小学数学几何学习的基本价值。
所谓空间观念,就是指物体的形状、大小、位置、距离、方向等形象在人头脑中的映象,是空间知觉经过加工后所形成的表象。下面就结合实例从“思维发展”和“空间观念形成”两大方面具体谈谈“空间观念”。
(一)儿童几何思维水平的发展:
1、水平0阶段(前认知阶段)
1)直线和曲线(线能区分)
(2)正方形和平行四边形(面不能区分)
2、水平1阶段(直观化阶段)
(1)四边形和三角形(能从边的数量上去区分)
(2)正方形和菱形(不能从角的特征上去区分)
(3)长方形和长方体(不能区分面和体)
3、水平2阶段(描述/分析阶段)
(1)长方形、四边形、三角形(不同分类方法代表不同水平)
(2)长方形是特殊的平行四边形(对图形内在性质和特征不能区分)
4、水平3阶段(抽象/关联阶段)
(1)平行四边形剪拼成长方形
(2)三角形拼成平行四边形
(能通过动手操作将新知转化为旧知进行学习)
(3)长方形与长方体(能区分面和体)
(二)儿童空间观念形成与发展的基本特征(三点)
1、儿童空间想像力的发展
所谓的空间想像能力,就是指对客观事物的空间形式进行观察、分析、归纳和抽象的能力。
低年段儿童在学习空间图形时基本上是从认识“二维图形”开始的,但儿童积累的却是大量的“三维”的几何经验,他们在对“二维”图形的空间思考的过程中,往往就会依附相应的直观物体,比如让学生举例说说生活中有哪些物体的形状是长方形的?学生往往会举到诸如课桌之类的,很难抽象出桌面的形状才是长方形。甚至到了较高年级学习“圆的认识”时,还会受到直观物体“球”的干扰。
2、儿童形成空间观念的主要心理特点
(1)对直观的依赖较大
“闭合的区域”往往比“开放的区域”更为直观。如对三角形的性质理解可能会比对角的性质认识更容易;对周长的理解可能会比面积更容易。正如我们听到许多教师上《面积与面积单位》时,总是让学生通过自己的手的触摸来体验“面”的大小,并与周长作出对比,逐步获得对“面积”的理解。
(2)用经验来思考和描述性质或概念
无法运用精确语言来描述“圆”,对“圆上”、“圆内”或“圆外”等概念还只能建立在“圆圈上”、“圆的里面”和“圆的外面”等上面。
(3)空间观念的形成依靠渐进的过程
学龄前儿童已经认识三角形,但这只是对形状的初步感知,到了低年段,能用“三条边围起来”这样的直观特征来辨识图形。到稍高年段,才开始逐渐获得“三角形”性质方面的认识。
(4)容易感知图形的外显性较强的因素
对“角”的本质属性的认识,往往会集中在组成角的两条边的长短上,而忽视两条边的“张开”程度,也是因为边的长短的视觉刺激明显要大于两条边的“张开”程度,甚至我前几天在问学生如果拿一个放大镜看角时,角的大小怎样时,学生居然说角会变大。
(5)对图形性质间的关系有一个逐渐理解的过程
一年级时,学生只能辨认长方形、正方形、三角形、圆形的形状;二、三年级时,学生不仅能辨认长方形、正方形、梯形、平行四边形等平面图形,还能从这些图形的基本性质上分析,并对圆柱和球也有了初步的认识;到了四、五年级,能深入地分析图形的性质及关系;而到了六年级,学生则能较好地掌握立体图形的特征。可见学生对图形的掌握及空间观念的发展都是一个渐变的过程。
(6)对图形的识别倚赖标准形式
一位老师在上《三角形的认识》时,为了让学生更好地理解“高”的概念,她先从一个正放的三角形入手,让学生画高;接着她把这个三角形旋转一下,变成倒放的三角形了,问学生这还是不是三角形的高,学生就觉得它不是高了。可见学生对图形的识别还仅仅依赖于标准形式,一旦变成了“变式图形”,学生识别起来就比较困难了。
(7)依据平面再造立体图形的空间想像能力是逐步形成的
有的教师在学生初次学习“长方体”时,用三根“拉杆天线”,将它们的三个点按“长”、“宽”、“高”这三个维度焊接在一起。然后不断地通过拉动天线的三个方向的长度,让学生在头脑中再造相应的形体大小的形象,以此来发展儿童的空间想像能力。
3、儿童形成空间观念的主要知觉障碍
1、空间识别障碍空间识别能力表现出的是空间的方位感,它无论是在日常的生活中,还是在空间几何的学习中,都是一个非常重要的能力。比如估计出要去的某个地方的大致方位,就如平时非常重要的方向感;估计出两个物体之间的大致距离等等,都涉及到空间识别能力。而这些能力在我们今后的生活中作用是非常大的。
2、视觉知觉障碍
比如让学生解决“教室粉刷墙壁和天花板,要粉刷多少面积”或是解决“游泳池铺瓷砖”等,其实都是关于长方体的表面积问题,由于学生看到教室是一个完整的长方体,他们就往往会忽略了有一个面不算在内的问题。
三、小学几何教学的主要策略
前面我在“几何学习的基本特点”中也已强调两点:经验是儿童几何学习的起点;操作是儿童构建空间表象的主要形式。针对这两大特点,在几何教学中应注意运用以下三点策略:
(一)注重儿童的生活经验
(1)利用操作体验来获得对象形状特征的认识
比如《三角形的分类》可以给定学生一些不同形状的三角形,让学生按自己的理解去分类,而不同的分类就显示着他们对对象形体特征的表征。
(2)利用已经建立的有关图形形体经验帮助概括图形的性质
比如学习平行四边形和梯形时,是在学生学习了长方形、正方形之后的,学生自然会按分析长方形、正方形的方法,从边、角的方面去分析它们的特征。
(二)观察对象的形体特征是基础
(1)观察形体特征是获得对象性质的基础
比如长方体中有一种特殊的是有两个面是正方形的,让学生凭空去想象其余四个面有什么关系是十分困难的,必须通过实物的观察,让学生明白它的宽和高相等,因此其余四个面是大小完全相等的,从而获得性质,得出结论。
(2)注意运用变式
如前面提到的认识三角形的高时,应多采用变式,以加深学生对“高”的概念的理解。又如,认识圆的半径、直径时,不必过于强调概念,而是要多一些变式的练习,以反例来加强学生对半径、直径的认识。
(三)强化动手操作
(1)搭建活动
我在上《立体图形的整理和复习》时,让学生通过“搭一搭”帮助学生思考在立方体每个面都打一个直穿洞口的长方体,使学生较好地理解被挖掉的有7个小立方体。
(2)剪拼与折叠活动
比如《三角形的内角和》一课,可以让学生通过剪拼、折叠的方法得出三角形的内角和是180度。
(3)实物操作活动
在学习圆锥的体积公式时,必须让学生通过实物操作,发现等底等高的圆柱和圆锥之间的关系,从而得出圆锥体积计算公式。
(4)测量活动
《三角形的内角和》一课,学生最初提出的验证三角形内角和是否为180度的方法都是量一量的方法,这个测量活动也是很有必要的,只有引发认知冲突,才会更深入地解决“误差”的问题,更好地引出剪拼、折叠的方法。
(5)作图活动
四、丰富的想像和有效的交流
发展儿童的空间想像能力是小学几何学习的重要任务,而丰富的想像是发展学生空间想像力的有效方式,空间想像力不仅包括对方位、立体图形的想像,还应该包括对平面表示的三维图形的透视能力,以及对图形的再造、组合或分解能力。(这让我想到一种三维图)有效交流也是促进学生几何语言发展的有效手段。
我的思考:鉴于以上收获,引发了我的思考。
给孩子留一片想像的时空
直观演示,该出手时才出手!
孔子曰:“不愤不启,不悱不发。”只有在学生先独立思考、展开想像的基础上,在学生空间想像能力无法达到某个高度时,才去演示和启发,才能更好地培养学生的空间观念,这不正是我们小学数学几何教学所应追求的目标吗?但愿我今天的粗浅看法能给大家带来一些思考!

小学数学应用小论文

培养学生应用能力,提高数学课堂教学的效果,是当前数学教学改革的一个重要课题,只要不断尝试,联系实际,大胆探索,就会收到预期效果。接下来我为你整理了小学数学应用小论文,一起来看看吧。

摘 要 数学应用意识是我们对于客观物质世界中存在的数学知识应用的反映。数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。因此对学生进行数学应用意识的培养,有利于激发学生学习数学的兴趣,有利于增强学生的应用意识,有利于扩展学生的视野。但更重要的是使学生认识到:数学与我有关,与生活相关,数学是有用的,我要用数学,我能用数学。这种意识将成为学生终生受用的财富。

关键词 数学;应用意识;培养

对学生进行数学应用意识的培养,使他们逐渐形成数学应用的意识是学生将来适应现代信息社会的需要。小学数学教学中学生的应用意识主要体现在以下三个方面:第一,面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略。主要表现在两方面:一是在实际情境中发现问题和提出问题的意识;二是主动应用数学知识解决问题的意识。第二,面对新的数学知识时,能主动寻找其实际背景,并探索其应用价值。第三,认识到现实生活中蕴涵着的大量的数学信息,数学在现实世界中有着广泛的应用。那究竟应怎样培养学生的应用意识呢?

1 提高教师自身的数学应用意识和应用能力

要培养小学生的数学应用意识,作为教师就必须要有较强的数学应用意识和应用能力,这样,才能使数学教学过程少一些纯数学问题,多一些实际应用问题,潜移默化地感染学生,使学生逐步形成数学应用意识。教师要提高自身的数学应用意识和应用能力,首先要认真研读新《课标》,领会课标的精神实质,以《课标》的教育教学理念为准绳,用以指导自己实施新课程的航灯。其次,积极参加提高学历层次的学习,提高自身的专业水平和数学素养;再次,在平时的业务培训及自学中,有意识地学习有关数学应用意识和应用能力的内容,用以增强自身的数学应用意识和应用能力。

2 精心设计课前活动,注重数学知识的来龙去脉

就小学生而言,他们已有的生活常识、经验往往是他们学习数学的基础。小学阶段的许多数学知识,如概念的产生、计算法则的由来、几何形体的特征及有关公式等,无不渗透着数学在现代生产、生活和科技中的应用。而今使用的教材版本多,内容丰富、呈现方式也极具生活化,充分体例现了 “数学源于生活服务于生活的理念”,因此,在教学中充分利用这一特点,在进行有关数学知识的教学之前,精心设计课前活动,让学生在课前活动中寻找生活中的数学,了解数学知识的来龙去脉,体验数学来源于生活。这样学生不仅真正体会到“数学有用、要用数学”,且激发学生的学习兴趣,使学生爱数学,同时,也为学生知识的构建积累必要的经验。这样的学习,不仅极大地调动了学生的学习热情,更使学生真切地感受到数学就在自己的身边,认清数学知识的现实性和实用性,从而对数学产生了浓厚的兴趣。

3 开阔学生的视野,了解数学的应用价值

在小学数学教学中培养学生的应用意识,需要以知识、实践、能力的培养为基础。由于小学生的生活经验不足,对数学的应用价值不可能会有很全面的了解。在教学过程中,教师不仅应该关注学生对于数学基础知识、基本技能以及数学思想方法的掌握,而且还应该帮助学生形成一个开阔的视野,了解数学对于人类发展的价值,特别是它的应用价值。

方案③的表面积:20×15×4+15×5×2+20×5×4=1750(平方厘米)

通过计算比较,学生发现:第一种包装方法最节约包装纸。紧接着让学生尝试(四人小组合作):将三盒这样的糖果包装成一包,怎样才能节约包装纸?(接口处不计)学生在动手包装时我提出了要求:请你一边包装一边想一想,不用计算,你能知道哪种包装方法最节约包装纸吗?

如此的数学教学,不仅开阔了学生的数学视野,更真切体会到了数学在当今经济社会中举足轻重的应用价值,使学生在综合应用表面积等知识来解决问题的同时,体现了数学的优化思想,同时提高了学生解决问题的能力,感受数学的应用价值与实际生活的密切联系。

4 为学生运用所学知识解决实际问题搭建平台

培养学生应用意识的最有效办法应该是让学生有机会亲身实践。教学中,我努力挖掘学生所学的数学知识在社会生活、生产以及相关学科中的应用,精心设计问题情境,创造条件让学生运用所学的数学知识解决实际问题,让学生体验数学的应用价值,从而形成良好的应用意识。例如在教学“粉刷墙壁”时,(北师大版小学数学第十册)我以小组合作的形式,让学生以下面的步骤进行:

(一)、测量计算

小组合作(一):

1、教室前后黑板共有多少块?分别测量每块黑板的长和宽; 2、分别测量教室的长、宽、高; 3、教室左右两面墙共有多少个窗户,多少个门?分别测量每个窗户的长和宽,每个门的长和宽。

小组合作(二):

1、如果想粉刷除地面以外的五面墙,“粉刷墙壁”测量数据记录表(200 年 月 日)

那么要粉刷的墙面积是多少? 2、计算后完成下面的表格。(如左图)

(二)、购买涂料

如下图,某种涂料分大桶、小桶两种规格包装,根据经验,第一遍粉刷时,每平方米约用涂料0.5千克,此时粉刷教室共需要涂料多少千克?

5 搜集数学应用的事例,加深对数学应用的理解和体会

信息技术的社会化,数学与现代科技的发展使得数学的应用领域不断扩展,其不可忽视的作用被越来越多的人所认同。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。在数学教学中要让学生了解数学的广泛应用,不但可以帮助学生了解数学的发展,体会数学的应用价值,激发学生学好数学的勇气和信心,更可以帮助学生领悟数学知识的应用过程。

总之,数学教学生活化是国际数学教育发展趋势, “现实数学”的思想充分说明了:数学来源于生活,也必须扎根于现实,并且应用于现实,数学教育如果脱离了那些丰富多彩的现实,就将成为“无源之水,无本之木”。学生学习数学就应通过熟悉的数学生活,自己逐步发现和得出数学结论,并逐步具有把数学知识应用于现实生活、服务于现实生活的意识。

体验学习就是在课程实施中根据教材内容的需要,在教师的指导下,把知识对象化,以获得客观准确的知识的过程。它是学生联系自己的生活,凭借自己的直观的感受、体会、领悟,去再认识、再发现、再创造的过程,从中获得丰富的感性认识,加深对理性知识理解的一种教与学的互相过程。在小学数学教学中体验学习不仅能够激发学生的数学学习兴趣,而且有利于探究性学习的培养,因此,教师要善于体验学习的应用。

1 联系生活――体验学习的基础

教育家苏霍姆林斯基说过:“把知识加以运用,使学生感到知识是一种使人变得崇高起来的力量,这是兴趣的重要来源。”《数学课程标准》也指出:“数学教学要体现生活性。人人学有价值的数学。”数学来源于生活,还要应用于生活。数学课堂联系生活,教室善于引导学生已有的生活经验来理解数学知识的真正含义,这样,既可加深对课堂知识的理解,激发学生兴趣,又能使学生体验到数学就在生活实践之中,体验到数学的价值。因此,在数学教学中,要尽可能组织学生实践,让学生亲身体会生活中的数学知识。例如,在教“简单的统计”是,我结合家庭用水、电、煤气生活 实际,要求学生收集自己家庭每月所用的数据,加以分类整理,填写在统计表里,反映实际情况。再如“圆锥的体积”教学中,我结合学生常见的用卷笔刀削圆柱形的铅笔的现象,让学生仔细观察铅笔变化,然后提出圆柱和圆锥变化的问题:被削的这段铅笔前后分别是什么形状?前后体积发生了什么变化?变小了以后的圆锥体与原本这段圆柱体的底面积、高、体积分别有什么关系?这样的教学,让学生认识到生活中处处有数学,使学生积极主动投入到学习数学之中,真切感受到数学存在于生活之中,数学与生活同在,感受到数学的真谛与价值。

2 亲历实践――体验学习的手段

让学生实践操作,体验“做数学”。教和学都要以“做”为中心。“做”就是让学生动手操作,在操作中体验数学。动手操作时小学生认识事物的重要手段,让学生在动手中获得快乐。因此,教室在教学过程中应该充分让学生动手、动口、动脑,在活动中学习新知。通过实践活动,使学生获得大量的感性知识有助于提高学生的学习兴趣,激发求知欲。例如,二年级要进行《表内乘法》的整理和复习,我组织了一次《数学在我们的游玩中》的实践活动。教师可以出示游乐园的价格表后问学生,你想玩哪些项目?根据你的玩法,算一算,一共要多少钱?由于方案不同,计算的结果不是唯一的。有位学生说想玩转马两次,碰碰车两次,自控飞机两次,一共要3×2 + 4×2 + 6×2 = 26(元)。另一位学生马上站起来回答,我也可以这样玩,但我只要付16元就够了,因为我可以和另一个同学一起坐碰碰车和自控飞机。紧接着,我要求学生每人用一张30元得游园券设计出游玩方案。学生通过小组讨论,提出了10种方案,从而打开了学生狭隘的思维空间,让他们了解到同一个问题可以有多种解决方法,体验到解决问题策略的多样性。这种实践性教学,大大地提高了学生的发散思维能力和创造思维能力。

3 经历“错误”――体验学习的需求

在课堂教学中,对于教师提出的问题,学生的回答难免出现不同的错误,这些错误在体验学习中也是宝贵的,通过这些不同的错误,教师可以首先让学生解释形成答案的来龙去脉,让学生充分发表自己的见解,倾听别人的想法,要允许学生“争辩”,然后,教师对这些错误逐个分析、归纳,认真总结“错误”之间究竟有什么联系,其产生的主要原因是什么。这样,教师既摸清了学生对问题认识不清的根源所在,学生也从老师的点拨中得到启发,加深了知识的理解。也就是说,学生经历“错误”体验,达到教师和学生的互动交流,学生更能体验到“错误”的感慨和成功的愉悦。例如在教学第十册《求平均数》时,课本有一道习题:“先锋号机帆船出海捕鱼,上半月出海13天,共捕鱼805吨;下半月出海14天,每天捕鱼64吨,这条船平均每天捕鱼多少吨?”有的学生对这道题列式为805÷13 + 64,而有的同学列式为(805 + 14×64)÷(13 + 14)。显然,第一列式是错误的。那么为什么会出现这样的错误呢?我就让人为第一列式的同学阐述自己的原因,其实,他们错误地认为上半月的平均每天捕鱼数和下半月的平均每天捕鱼数相加,就是这条船这个月每天的捕鱼数。然后,我根据这些“错误”进行纠正,并让学生讨论。在学生获得“错误”的体验后,通过小组讨论得到的结果,往往比老师灌输给他们的“答案”更有说服力,学生对此类题目印象更深。

总之,体验数学需要教师引导学生积极主动参与学习过程,正如《数学课程标准》指出:“义务教育阶段的数学课程,要强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,”由此可见,在数学教学中,教师应该让学生亲身经历数学感念、结论的形成过程,使数学学习成为一个体验过程。在这一过程中,使学生体验学数学的乐趣,培养学生数学素养,应该是我们的目标。

小学数学小论文300字

数学小论文一
关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”

这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

那么,究竟什么是数学呢?

伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

各门科学的“数学化”,是现代科学发展的一大趋势。

我也不知道你是几年级的,就给你弄了好多,你自己看看,删减删减,不过小学写论文?!我们初中还没写呢……o()^))o 唉,现在的教育水平开始抓学生了。。。

小学数学小论文最佳范文

随着国家素质教育目标的提出和新课程改革的推行,探究式教学开始在小学数学教学中逐渐被推广,数学的教学在小学生的教育中占据着至关重要的地位。下面是我为大家整理的小学数学小论文,供大家参考。

课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

一、小学数学课堂教学设计中认知能力培养的现状与问题分析

(一)小学数学课堂教学设计认知能力培养的现状

创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地控制课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

(二)小学数学课堂教学设计认知能力培养存在的问题

在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多媒体教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水平进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

二、小学数学课堂教学设计中认知能力培养方法的创新方向

(一)教学思维方式的创新

思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度上将影响学生的思维水平。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下组织自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

(二)在课堂教学设计中科学运用认知能力培养方式

小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水平和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

(三)认知能力培养要多与生活实际相联系

小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1.学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2.班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少平方米的地板?如果一平方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生活体验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

(四)注意观察学生的反馈

无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水平的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

新课程改革强调学生在获取知识技能、构建知识体系、达成知识目标过程中的情感体验,这种体验就是数学情感。它是学生数学学习过程中的态度,是获得成功时的内心体验和心理感受,更是明确学习动机、激发学习兴趣以及克服困难和探索新知的意志品质,它贯穿于学习活动的始终。数学学习逻辑性、系统性强,要求学生思维严谨、缜密,为了避免学生因枯燥而产生厌烦和畏惧的心理,有些教师常用数学家的事迹、数学趣味故事等灵活多样的方法激发学生的兴趣,把数学情感、数学文化渗透于课堂,以培养学生良好的意志品质、积极的情感态度和严谨的思维习惯,从而使数学课堂更高效,使小学数学教学不仅成为引导学生获得数学知识和技能的过程,也成为学生感受、体验和领悟的过程,更成为对学生情感、态度和价值观进行感染、渗透的过程。

一、利用认知过程进行数学情感渗透

小学数学教学目标的达成有两条主线构成。一条是获得知识和技能(结果)的明线,另一条是大胆质疑、积极探索、取得成功的情感体验(过程),即暗线。这两条线交织在一起,相依共存,互为补充。在教学过程中,认知因素与情感因素密切相关、相互作用,积极的学习情感能够促进知识技能的形成,而知识技能形成的过程中又可升华这种情感体验。如解决“鸡兔同笼”“平行四边形、三角形、梯形的面积计算”等具有严密逻辑性的数学问题,对于年龄小、注意力持续时间短、自控能力差的小学生来说是一个艰难的过程,此时应巧妙穿插学习情感和态度教育,鼓励学生理清学习思路,不怕困难认真思考,采取问题推导的形式,引导学生寻找数量、图形之间的关系,以及相互关系转化,推导出结论,促使学生在“山重水复疑无路”的困难面前,感受到“柳暗花明又一村”的新境界。在此过程中,学生通过独立思考、合作交流等形式,举一反三,不断总结发现解决问题的思路及方法,完成知识的迁移,体验到了成功的喜悦。由此可见,在数学认知过程中,认知与情感相互依存、相互促进、相互发展。在课堂中进行情感渗透,有助于培养浓厚的数学兴趣和良好的思维习惯,为逐步提升学习能力,形成高效课堂打下坚实的基础。

二、通过背景知识进行数学情感渗透

“初步认识数学与人类生活的密切联系并感受数学对人类历史发展的作用,对学生进行数学价值与数学历史发展的渗透。”这是新课标提出的要求,也是高效课堂的需要。通过对数学发展历史的了解,学生可以接触到广泛的数学知识,可以体会到数学在人类发展历史中的作用和价值,可以感受到学好数学知识的重要性。在学习“万以内数的认识”一课时,可以先引导学生了解数字的由来,即原始人用小石子、绳子打结或在树木上刻出划痕表示简单的数概念,当有了10块小石子后,用大一点的物体表示一个十即“逢十进一”。接着引导学生了解文字出现后,记录方法虽然有效但不统一,对于很大的数字记录十分不便,于是发明了罗马数字表示。最后了解公元八世纪印度人发明了只含有1,2,3,4,5,6,7,8,9九个符号的记数法,并且约定数字位置决定数值大小,例如,数字89中8表示8个十,9表示9个一,这一发明被商人带入阿拉伯后称为阿拉伯数字,使用至今成为世界数学的通用语言,恩格斯称它为“最美妙的发明”。又如,在认识“方向”时,结合认识东、南、西、北方位,向学生介绍“指南针”这一背景知识,让学生了解指南针是我国古代四大发明之一,它的出现为人类文明与进步做出了巨大贡献。渗透这些数学背景知识引导学生了解历史,感受古人的聪慧以及对科学知识的追求和向往,增强学生的民族自豪感和求知责任感,激发学生学好数学的自信心,促进学生进一步体会到数学的神奇与价值,使课堂更加高效。

三、挖掘生活素材进行数学情感渗透

数学是为了适应高速发展的现代社会而生成的应用性学科,主要解决现实生活中的各种问题,是一切学科的基础。数学新课标要求,“数学内容要更加生活化”。那些从人们的日常生活中提炼而成数字、图形、符号、公式方便了人们生活,形成了独特的魅力。通过“认识图形”的教学,使学生感受到图形的变化组合丰富了我们的生活,美化了我们的环境。通过“统筹方法”“认识时间”的学习,帮学生初步树立合理安排时间的意识,使学生明白珍惜时间的重要性;通过回收废品的情景教学解决比多比少的问题,通过捐书、买书情景教学解决进位加法问题;通过种树活动情景教学解决除法问题等,这些情景的设计蕴涵着一种思想,把品德教育渗透在具体的数学情景中,通过创设情景,在解决问题的过程中即时对学生进行环保、爱心、安全等思想情感的渗透,促使学生形成健康发展的情感态度。经常在数学活动中进行正面教育引导,能够培养学生树立正确的人生观和价值观,提高学习有效性并以此指导自己的行为,使积极的态度情感成为学生学习的动力源泉。

四、借助典型事例进行数学情感渗透

小学数学小论文范文

数学小论文一
关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”

这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

那么,究竟什么是数学呢?

伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

各门科学的“数学化”,是现代科学发展的一大趋势。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页