半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。
导体是容易导电的物体,即是能够让电流通过材料;不容易导电的物体叫绝缘体。
(并不是能导电的物体叫导体,不能导电的物体叫绝缘体,这是一般人常犯的错误)
金属导体里面有自由运动的电子,导电的原因是自由电子.
半导体随温度其电阻率逐渐变小,导电性能大大提高,导电原因是半导体内的空穴和电子对。
在科学及工程上常用利用欧姆[1]来定义某一材料的导电程度。
导体依其导电性还能够细分为超导体、导体、半导体、及绝缘体。我们通常把导电性和导电导热性差或不好的材料,如金刚石、人工晶体、琥珀、陶瓷,橡胶等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。(导体还包括液体等)
半导体中的电子状态 电子状态指的是电子的运动状态又常简称为电子态,量子态等。半导体之所 以具有异于金属和绝缘体的物理性质是源于半导体内的电子运动规律。 半导体内 的电子运动规律又是由半导体中的电子状态决定的。 晶体是由周期性地排列起来的原子所组成的。 每个原子又包含有原子核和电 子。本章的目的就是研究这些粒子的运动状态。 1.1 周期性势场 晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。晶体内部 结构的周期性可以用晶格来形象地描绘。 晶格是由无数个相同单元周期性地重复排列组 成的。这种重复排列的单元称为晶胞。晶胞的选取是任意的,其中结构最简单,体积最 小的晶胞叫做原胞。三维晶格的原胞是平行六面体。二维晶格的原胞是平行四边形。一 维晶格的原胞是线段。原胞只含有一个格点,格点位于元胞的顶角上。 (例:二维晶格 和一维晶格的原胞) a r b Rm r′ a2 a1 c d 。。 二维晶格元胞 Rm=3a1+ a2 以任一格点为原点,沿原胞的三个互不平行的边,长度分别等于三个边长的一组矢 量称为原胞的基矢量,简称为基矢。记作 a1 , a2 , a3 。 晶格可以用基矢量来描述。矢量 1 Rm = m1a1 + m2 a2 + m3 a3 = ∑ mi ai i =1 3 ( m1,m2,m3 是任意整数 ) (1-1) 确定了任一格点的位置,称为晶格矢量。 r 和 r = r + Rm 为不同原胞的对应点。二者相 ' 差一个晶格矢量。可以说不同原胞的对应点相差一个晶格矢量。反过来也可以说相差一 个晶格矢量的两点是不同原胞的对应点。通过晶格矢量的平移可以定出所有原胞的位 置,所以 Rm 也叫做晶格平移矢量,晶体内部结构的周期性也叫做晶体的平移对称性。 晶体内部结构的周期性意味着晶体内部不同原胞的对应点处原子的排列情况相同, 晶体的微观物理性质相同。因此,不同原胞的对应点晶体的电子的势能函数相同,即 V (r ) = V (r ' ) = V (r + Rm ) (1-2) 式(1-2)是晶体的周期性势场的数学描述。图 1-1 给出一维周期性势场的示意图。 V1 , V2 , V3 …,分别代表原子 1,2,3,…,的势场,V 代表叠加后的晶体势场。周期性势场中的电子可以有两种运动方式,一是在一个原子的势场中运动,二是 在整个晶体中运动。比如具有能量 E1 或 E2 的电子在可以在原子 1 的势场中运动,根据 量子力学的隧道效应,它还可以通过隧道效应越过势垒 V 到势阱 2,势阱 3,…,中运 动。换言之,周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在 其它的原子附近运动, 即可以在整个晶体中运动。 通常把前者称为电子的局域化运动 (相 应的电子波函数称为原子轨道) ,而把后者称为共有化运动(相应的电子波函数称为晶 格轨道) 。局域化运动电子的电子态又称为局域态。共有化运动的电子态又称为扩展态。 晶体中的电子的运动既有局域化的特征又有共有化特征。 如果电子能量较低, 例如图 1-1 中的 E2,在该能态电子受原子核束缚较强,势垒 V-E2 较大。电子从势阱 1 穿过势垒进 入势阱 2 的概率就比较小。对于处在这种能量状态的电子来说,它的共有化运动的程度 就比较小。但对于束缚能较弱的状态 E1,由于势垒 V-E1 的值较小,穿透隧道的概率就 比较大。因此处于状态 E1 的电子共有化的程度比较大。价电子是原子的最外层电子, 受原子的束缚比较弱,因此它们的共有化的特征就比较显著。在研究半导体中的电子状 态时我们最感兴趣的正是价电子的电子状态。 2 V1 V2 V1 V3 V2 V3 V E1 V V V E2 1 2 3 原子 图 1.1a 周期势场示意图 -2 -a 0 a 2 图 1.1b 周期为 a 的一维周期性势场 图 1.1 周期势场示意图 1.2 周期性势场中电子的波函数 布洛赫(Bloch)定理 布洛赫( ) 布洛赫定理给出了周期性势场中电子的运动状态, 提供了研究晶体中电子运动的理 论基础。 1.2.1 单电子近似(哈崔 福克 Hartree-Fock 近似) 单电子近似(哈崔-福克 近似) 晶 体 是 由 规 则 的 ,周 期 性 排 列 起 来 的 原 子 所 组 成 的 ,每 个 原 子 又 包 含 有 原子核和核外电子。原子核和电子之间、电子和电子之间存在着库仑作用。 因 此 ,它 们 的 运 动 不 是 彼 此 无 关 的 ,应 该 把 它 们 作 为 一 个 体 系 统 一 地 加 以 考 虑 。也 就 是 说 ,晶 体 中 电 子 运 动 的 问 题 是 一 个 复 杂 的 多 体 问 题 。为 使 问 题 简 化 ,可 以 近 似 地 把 每 个 电 子 的 运 动 单 独 地 加 以 考 虑 ,即 在 研 究 一 个 电 子 的 运 动 时 ,把 在 晶 体 中 各 处 的 其 它 电 子 和 原 子 核 对 这 个 电 子 的 库 仑 作 用 ,按 照 它 们 的 几 率 分 布 ,平 均 地 加 以 考 虑 。也 就 是 说 ,其 它 电 子 和 原 子 核 对 这 个 电 子 3 的 作 用 是 为 这 个 电 子 提 供 了 一 个 势 场 。这 种 近 似 称 为 单 电 子 近 似 。单 电 子 近 似 方 法 也 被 称 之 为 哈 崔 -福 克 方 法 。 这 样 , 一 个 电 子 所 受 的 库 仑 作 用 仅 随 它 自 己 的 位 置 的 变 化 而 变 化 。或 者 说 ,一 个 电 子 的 势 函 数 仅 仅 是 它 自 己 的 坐 标 的 函 数 。于 是 它 的 运 动 便 由 下 面 仅 包 含 这 个 电 子 的 坐 标 的 波 动 方 程 式 所 决 定 2 2 + V (r )ψ (r ) = E ψ (r ) 2m 式中 2 2 — 电子的动能算符 2m ( 1-3) V (r ) — 电子的势能算符,它具有晶格的周期性 — 电子的能量 — 电子的波函数 E ψ (r ) = h , 2π h 为普朗克常数, 称为约化普朗克常数 1.2.2 布 洛 定 理 布 洛 定 理 指 出 : 如 果 势 函 数 V (r ) 有 晶 格 的 周 期 性 , 即 V (r ) = V (r + Rm ) 〔 公 式 ( 1-2) 〕则 方 程 式 ( 1-3) 的 解 ψ (r ) 具 有 如 下 形 式 ψ k (r ) = eik r uk (r ) 式 中 函 数 u k (r ) 具 有 晶 格 的 周 期 性 , 即 ( 1-4) uk (r + Rm ) = uk (r ) 以上陈述即为布洛定理。 ( 1-5) 布 洛 定 理 中 出 现 的 矢 量 Rm 为 式 ( 1-1) 所 定 义 的 晶 格 平 移 矢 量 。 矢 量 k 4 称 为 波 矢 量 ,是 任 意 实 数 矢 量 。 k = 2π λ 称为波数, λ 为电子波长。 k 是标志 电 子 运 动 状 态 的 量 。 由 式 ( 1-4) 所 确 定 的 波 函 数 称 为 布 洛 赫 函 数 或 布 洛 赫 波。 由于 ψ k (r + Rm ) = eik (r +R )uk (r + Rm ) m = = 即 eik Rm eik r uk (r ) eik Rmψ k (r ) ψ k (r + Rm ) = eik R ψ k (r ) m ( 1-6) 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 表 述 。 式 ( 1-6) 说 明 , 晶 体 中 不 同 原 胞 对 应点处的电子波函数只差一个模量为 1 的因子 e ik Rm 也就是说,在晶体中各 个 原 胞 对 应 点 处 电 子 出 现 的 概 率 相 同 ,即 电 子 可 以 在 整 个 晶 体 中 运 动 — 共 有 化运动。 我 们 现 在 考 察 波 矢 量 k 和 波 矢 量 k = k + Kn 标 志 的 两 个 状 态 。 ' 式中 K n = n1b1 + n2b2 + n3b3 = ∑ ni bi i =1 3 (1-7) 叫 做 倒 格 矢 ( reciprocal lattice vector) b1 , b2 , b3 叫 做 与 基 矢 a1 , a 2 , 。 a3 相 应 的 倒 基 矢 。 n1 , n2 , n3 为 任 意 整 数 。由 b1 , b2 , b3 所 构 成 的 空 间 称 为倒 空 间 (reciprocal space)或 倒 格 子 ( reciprocal lattice) b1 , b2 , b3 与 。 a1 , a 2 , a3 之 间 具 有 如 下 的 正 交 关 系 2π , i = j bi a j = 2πδ ij = 0, i ≠ j 且 ( i, j = 1, 2, 3) b1 = 2π (a 2 × a3 ) 5 b2 = b3 = 式中 2π (a3 × a1 ) 2π (a1 × a 2 ) = a1 ( a 2 × a 3 ) 为晶格原胞的体积。 (举例:晶格常数为 a 的一维晶格和它的倒格子: b = 2π / a 。 a ≈ 0.5nm, b ≈ 108 cm 1 )晶 格 平 移 矢 量 Rm 和 倒 格 矢 K n 之 间 满 足 如 下 关 系 eiKn Rm = 1 利用上式,有 i k + K n Rm e ( ) = eiKn Rm eik Rm = eik Rm 由 于 波 矢 量 k 是 标 志 电 子 状 态 的 量 ,可 见 ,相 差 倒 格 矢 K n 的 两 个 k 代 表 的 是 同 一 个 状 态 。 举 例 :倒 空 间 一 维 波 矢 量 ) ( 。因 此 ,为 了 表 示 晶 体 中 不 同 的 电 子态只需要把 k 限制在以下范围 0 ≤ k1 < 0 ≤ k2 < 0 ≤ k3 < 2π a1 2π a2 2π a3 即可。为对称起见,把 k 值限制在 6 或写作 π a1 ≤ k1 < ≤ k2 < ≤ k3 < π a1 π a2 π a2 π a3 π a3 π ≤ k i ai < π ( 1-8) 公 式 ( 1-8) 所 定 义 的 区 域 称 为 k 空 间 的 第 一 布 里 渊 ( 1st Brillouin Zone) 区。 布里渊区是把倒空间划分成的一些区域。布里渊区是这样划分的:在 倒 空 间 ,作 原 点 与 所 有 倒 格 点 之 间 连 线 的 中 垂 面 ,这 些 平 面 便 把 倒 空 间 划 分 成 一 些 区 域 ,其 中 ,距 原 点 最 近 的 一 个 区 域 为 第 一 布 里 渊 区( 1stBZ),距 原 点 次 近 的 若 干 个 区 域 组 成 第 二 布 里 渊 区 ,以 此 类 推 。这 些 中 垂 面 就 是 布 里 渊 区的分界面。 在 布 里 渊 区 边 界 上 的 k 的 代 表 点 , 都 位 于 到 格 矢 Kn 的 中 垂 面 上 , 它 们 满足下面的平面方程: k (Kn / Kn ) = 即 1 Kn 2 k Kn = 1 2 Kn 2 ( 1-9) k 取遍 k 空间除原点以外的所有所有 k 的代表点。可以证明,这样划分的布里渊区,具有以下特性: 1.每 个 布 里 渊 区 的 体 积 都 相 等 , 而 且 就 等 于 一 个 倒 原 胞 的 体 积 。 7 2. 每 个 布 里 渊 区 的 各 个 部 分 经 过 平 移 适 当 的 倒 格 矢 K n 之 后 ,可 使 一 个 布 里 渊区与另一个布里渊区相重合。 3. 每 个 布 里 渊 区 都 是 以 原 点 为 中 心 而 对 称 地 分 布 着 而 且 具 有 正 格 子 和 倒 格 子的点群对称性。布里渊区可以组成倒空间的周期性的重复单元。 根 据 以 上 分 析 ,对 于 周 期 为 a 的 一 维 晶 格 ,第 一 布 里 渊 区 为 [ 第二布里渊区为[ π π 2π π π 2π , )和[ , ) 余此类推。 。 a a a a , ) 。 a a 值得注意的是布里渊区边界上的两点相差一个倒格矢,因此代表同一个 状态。 常见金刚石结构和闪锌矿结构具有面心立方晶格,其第一布里渊区如图 1-2 所 示 。布 里 渊 区 中 心 用 Γ 表 示 。六 个 对 称 的 <100>轴 用 表 示 。八 个 对 称 的 <111>轴 用 ∧ 表 示 。 十 二 个 对 称 的 <110>轴 用 ∑ 表 示 。 符 号 X、 L、 K 分 别 表 示 <100>、 <111>、 <110>轴 与 布 里 渊 区 边 界 的 交 点 。 其 坐 标 分 别 为 X: 2π 2π 1 1 1 (1, 0, 0) , L: ( , , ) a a 2 2 2 K: 2π 3 3 ( , , 0) a 4 4 在六个对称的 X 点中,每一个点都与另一个相对于原点同它对称的点相 距 一 个 倒 格 矢 ,它 们 是 彼 此 等 价 的 。不 等 价 的 X 点 只 有 三 个 。同 理 ,在 八 个 对称的 L 点中不等价的只有四个。 L Γ Χ ky K kx 8 图 1-2 面 心 立 方 格 子 的 第 一 布 里 渊 区 图 下面我们来证明布洛赫定理。 引入电子的哈蜜顿算符 H=- 2 2 + V (r) 2m 则 波 动 方 程 ( 1-3) 可 以 简 写 成 Hψ (r) = Eψ (r) ( 1-10) 引 入 平 移 算 符 T ( Rm , 其 定 义 为 , 当 它 作 用 在 任 意 函 数 f( r ) 上 后 , 将 函 Rm) 数 中 的 变 量 r 换 成 ( r +Rm ,得 到 r 的 另 一 函 数 f( r +Rm ,即 Rm) Rm) Rm Rm Rm)f(r )=f( r +Rm Rm) T (Rm Rm r Rm (1-11) 平 移 算 符 彼 此 之 间 可 以 交 换 。 对 于 任 意 两 个 平 移 算 符 T (Rm Rm)和 T (Rn Rn), Rm Rn 有 =T(Rm+Rn) T(Rm)T(Rn) =T(Rn)T(Rm) =T(Rm Rn) 证明如下: T(Rm)T(Rn)f(r)=T(Rm)f(r T(Rm)T(Rn)f(r)=T(Rm) (r+ Rn) (r =f(r +Rn Rm r Rn Rm) Rn+Rm =T (r +Rn Rm T r Rn Rm)f( r ) Rn+Rm (1-12) 9 =T (r +Rm Rn T r Rm Rn)f( r ) Rm+Rn =T (Rn T Rn Rn)f(r + Rm r Rm) = T ( Rn T ( Rm f(r ) Rn) Rm) r 这 说 明 两 个 平 移 操 作 接 连 进 行 的 结 果 ,不 依 赖 于 它 们 的 先 后 次 序 ,即 平 移 算 符彼此之间是可以交换的。 在 周 期 性 势 场 中 运 动 的 电 子 的 势 函 数 V(r ) 具 有 晶 格 的 周 期 性 [ 公 式 r ( 1-2) ]因 而 有 2 2 T(R m )Hψ (r) = (∑ ) + V (r + R m ) ψ (r + R m ) 2 2m j ( x j + m j a j ) 2 2 = + V (r) ψ (r + R m ) 2m = HT(R m )ψ (r) 上 式 表 明 , 任 意 一 个 晶 格 平 移 算 符 T (Rm Rm)和 电 子 的 哈 密 顿 算 符 H 彼 此 间 两 两 Rm 可交换,即 Rm)H HT Rm) HT(Rm T (Rm H =HT Rm Rm (1-13) 根据量子力学的一个普遍定理,这些线性算符可以有共同的本征函数。 或者说,存在这样的表象,在此表象中,这些算符的矩阵元素同时对角化。 容易说明,为了选择 H 的本征函数,使得它们同时也是所有平移算符的 本 征 函 数 , 只 需 要 它 们 是 三 个 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 a T a 函 数 就 够 了 。 也 就 是 说 , 如 果 ψ ( r ) 是 基 本 平 移 算 符 T ( a j ) ,T ( a 2 ), T (a 3 ) T a 的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm)的 本 征 函 数 。 证 明 如 下 : 选 择 ( 1-3) Rm 10 的 解 ψ (r ) 是 基 本 平 移 算 符 的 本 证 函 数 , 即 T(a1 )ψ (r) = ψ (r + a1 ) = C (a1 )ψ (r) T (a2 )ψ (r ) = ψ (r + a2 ) = C (a2 )ψ (r ) T (a3 )ψ (r ) = ψ (r + a3 ) = C (a3 )ψ (r ) 或 T (a j )ψ (r ) = ψ (r + a j ) = C (a j )ψ (r ), ( j = 1, 2,3) 其 中 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 T ( Rm )ψ (r ) = m1a1 + m2 a2 + m3 a3 )ψ (r ) T( = ψ ( r + Rm ) = T ( a1 ) 1 T ( a2 ) 2 T ( a3 ) 3 ψ (r ) m m m = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3ψ ( r ) m m m =λ ψ ( r ) ( 1-14) 可 见 , 若 C ( a1 ), C ( a2 ), C ( a3 ) 分 别 是 三 个 基 本 平 移 算 符 的 本 征 值 。 则 λ = C ( a1 ) 1 C ( a2 ) 2 C ( a3 ) 3 就 是 平 移 算 符 T (Rm Rm)的 本 征 值 。 因 此 , 若 ψ ( r ) 是 三 个 Rm m m m 基 本 平 移 算 符 T (a 1 ) ,T ( a 2 ), T (a 3 )的 本 征 函 数 , 则 它 也 是 平 移 算 符 T (Rm Rm) a T a Rm 的 本 征 函 数 。 我 们 就 这 样 来 选 择 波 动 方 程 ( 1-3) 的 解 , 使 它 们 同 时 也 是 所 有 平 移 算 符 的 本 征 函 数 。或 者 说 通 过 寻 找 平 移 算 符 的 本 征 函 数 去 找 到 波 动 方 程 ( 1-3) 的 解 。 11 由 于 平 移 算 符 T (Rm Rm)和 H 可 以 交 换 ,所 以 若 ψ ( r ) 是 H 的 本 征 函 数 ,则 经 Rm 过 平 移 后 的 函 数 ψ ( r + Rm ) 一 定 也 都 是 H 的 本 征 函 数 。 求 这 些 函 数 都 要 满 足 要 归 一 化 条 件 , 因 而 它 们 之 间 的 比 例 系 数 的 绝 对 值 必 须 等 于 1, 即 C (a1 ) m1 C (a2 ) m2 C (a3 ) m3 该式成立的充分必要条件是 =1 ( m1 , m2 , m3 是任意整数) C (a1 ) = 1, C (a2 ) = 1, C (a3 ) = 1 。 即要求这三个常数只可能是模量为 1 的复数。它们一般可以写成 C (a1 ) = ei 2πβ1 , C (a2 ) = ei 2πβ2 , C (a3 ) = ei 2πβ3 或者 C (a j ) = e 这里 i 2πβ j ( j=1, 2, 3) ( 1-15) β1 , β 2 , β3 为 三 个 任 意 实 数 。 以 这 三 个 实 数 为 系 数 , 把 三 个 倒 基 矢 线 性 组 合 起 来 , 得 到 一 个 实 数 矢 量 K: k = β1b1 + β 2b2 + β 3b3 根据正基矢与倒基矢之间的正交关系 3 (1-16) k a j = ∑ βi bi a j = 2πβ j i =1 可 以 把 式 ( 1-15) 改 写 成 C (a1 ) = eik a1 , C (a2 ) = eik a2 , C (a3 ) = eik a3 或者 12 C (a j ) = e 代替 ik a j ( 1-17) β1 , β 2 , β3 , 引 入 了 矢 量 K 。 在 量 子 力 学 中 ,如 果 算 符 代 表 一 定 的 物 理 量 ,其 本 征 值 是 实 数 ,相 应 的 算 符 为 厄 米 算 符 。平 移 算 符 只 是 一 种 对 称 操 作 ,不 代 表 物 理 量 ,不 具 有 厄 米 算 符的性质,因此其本征值可以是复数。 将 ( 1-17) 代 入 ( 1-14) 得 到 , ψ (r + Rm ) = eik R ψ (r ) m ( 1-18) 式 ( 1-18) 即 为 式 ( 1-6) 是 布 洛 赫 定 理 的 另 一 种 形 式 。 , 利 用 波 函 数 ψ ( r ) , 可 以 定 义 一 个 新 的 函 数 u (r ) , u (r ) = e ik rψ (r ) ( 1-19) 根 据 波 函 数 的 性 质 式 ( 1-18) 容 易 看 出 , 函 数 u (r ) 具 有 晶 格 的 周 期 性 : , u (r + Rm ) = e ik ( r + Rm )ψ (r + Rm ) = e ik rψ ( r ) = u (r ) ( 1-20) 于 是 , 由 式 ( 1-19) 可 以 将 周 期 性 势 场 中 电 子 的 波 函 数 表 示 为 , ψ (r ) = eik r u (r ) 其 中 u (r ) 具 有 晶 格 的 周 期 性 。 根 据 以 上 分 析 ,周 期 性 势 场 中 电 子 的 波 函 数 可 以 表 示 成 一 个 平 面 波 和 一 13 个 周 期 性 因 子 的 乘 积 。 平 面 波 的 波 矢 量 为 实 数 矢 量 k, 它 可 以 用 来 标 志 电 子 的 运 动 状 态 。不 同 的 k 代 表 不 同 的 电 子 态 ,因 此 k 也 同 时 起 着 一 个 量 子 数 的 作 用 。 为 明 确 起 见 , 在 波 函 数 上 附 加 一 个 指 标 k ,写 作 ψ k (r ) = eik r uk (r ) 至此,布洛赫定理得证。 相 应 的 本 征 值 — 能 量 谱 值 为 E=E( k ) 。 根 据 公 式 ( 1-21) 可 以 看 出 : ( 1-21) 1. 波 矢 量 k 只 能 取 实 数 值 ,若 k 取 为 复 数 ,则 在 波 函 数 中 将 出 现 衰 减 因 子 , 这样的解不能代表电子在完整晶体中的稳定状态。 2.平 面 波 因 子 e ik r 与自由电子的波函数相同, 描述电子在各原胞之间的 它 运动—共有化运动。 3.因 子 uk ( r ) 则 描 述 电 子 在 原 胞 中 的 运 动 — 局 域 化 运 动 。它 在 各 原 胞 之 间 周期性地重复着。 4.根 据 式 (1-18), ψ k (r + Rm ) 2 = ψ k (r ) 2 (1-22) 这说明电子在各原胞的对应点上出现的概率相等. 需 要 指 出 的 是 , 由 于 晶 体 中 电 子 的 波 函 数 不 是 单 纯 的 平 面 波 ,而 是 还 乘 以一个周期性函数。 以它们的动量算符 所 与哈密顿算符 H 是不可交换的。 i 因 此 , 晶 体 中 电 子 的 动 量 不 取 确 定 值 。由 于 波 矢 量 k 与 约 化 普 朗 克 常 数 的 乘 积 是 一 个 具 有 动 量 量 纲 的 量 , 对 于 在 周 期 性 势 场 中 运 动 的 电 子 ,通 常 把 14 p = k (1-23) 称 为 晶 体 动 量 crystal momentum) 或 电 子 的 准 动 量 (quasimomentum)” “ ( ” “ . 1.3 周 期 性 边 界 条 件 ( 玻 恩 - 卡 曼 边 界 条 件 ) 在 讨 论 电 子 的 运 动 情 况 时 ,我 们 没 有 考 虑 晶 体 边 界 处 的 情 况 ,就 是 说 我 们 把 晶 体 看 作 是 无 限 大 的 。对 于 实 际 晶 体 ,除 了 需 要 求 解 波 动 方 程 之 外 ,还 必 须 考 虑 边 界 条 件 。根 据 布 洛 赫 定 理 ,周 期 场 中 的 电 子 的 波 函 数 可 以 写 成 一 个 平 面 波 与 一 个 周 期 性 因 子 相 乘 积 。平 面 波 的 波 矢 量 k 为 任 意 实 数 矢 量 。当 考虑到边界条件后,k 要受到限制,只能取分立值。本节我们将根据晶体的 周期性边界条件,对 k 作一些更深入的讨论。 实 际 的 晶 体 其 大 小 总 是 有 限 的 。电 子 在 晶 体 表 面 附 近 的 原 胞 中 所 处 的 情 况 与 内 部 原 胞 中 的 相 应 位 置 上 所 处 的 情 况 不 同 ,因 而 ,周 期 性 被 破 坏 ,给 理 论 分 析 带 来 一 定 的 不 便 。 为 了 克 服 这 一 困 难 , 通 常 都 采 用 玻 恩 -卡 曼 的 周 期 性边界条件。 玻 恩 -卡 曼 的 周 期 性 边 界 条 件 的 基 本 思 想 是 ,设 想 一 个 有 限 大 小 的 晶 体 , 它 处 于 无 限 大 的 晶 体 中 ,而 无 限 晶 体 又 是 这 一 有 限 晶 体 周 期 性 重 复 堆 积 起 来 的 。由 于 有 限 晶 体 是 处 于 无 限 晶 体 之 中 ,因 而 ,电 子 在 其 界 面 附 近 所 处 的 情 况 与 内 部 相 同 ,电 子 势 场 的 周 期 性 不 致 被 破 坏 。假 想 的 无 限 晶 体 只 是 有 限 晶 体 的 周 期 性 重 复 ,只 需 要 考 虑 这 个 有 限 晶 体 就 够 了 ,并 要 求 在 各 有 限 晶 体 的 相 应 位 置 上 电 子 运 动 情 况 相 同 。或 者 说 ,要 求 电 子 的 运 动 情 况 ,以 有 限 晶 体 为 周 期 而 在 空 间 周 期 性 地 重 复 着 。于 是 ,问 题 便 得 到 了 解 决 。这 就 是 所 谓 周 期性边界条件。 设 想 所 考 虑 的 有 限 晶 体 是 一 个 平 行 六 面 体 , 沿 a1 方 向 有 N1 个 原 胞 , 沿 a2 方 向 有 N2 个 原 胞 , 沿 a3 方 向 有 N3 个 原 胞 , 总 原 胞 数 N 为 N=N 1 N 2 N 3 . ( 1.24) 15 周 期 性 边 界 条 件 要 求 沿 aj 方 向 上 , 由 于 以 N ja j 为 周 期 性 , 所 以 ψ k (r + N j a j ) = ψ k (r ). ( j=1, 2, 3) ( 1.25) 将 晶 体 中 的 电 子 波 函 数 公 式 ( 1.21) 代 入 这 一 条 件 后 , 则 要 求 e ik ( r + N j a j ) uk (r + N ja j ) = eik r uk (r ). 考 虑 到 函 数 uk ( r ) 是一个具有晶体周期性的函数,因而,要上式成立,只需 ik N j a j e =1 即要求 k N j a j 为 2π的整数倍。 将波矢量 k 的表示式 k = β1b1 + β 2b2 + β 3b3 代入上式, 并利用正交关系 biaj=2πδij ,上面的条件可改写为 k N j a j = β j N j 2π = l j 2π , (l j 为任意整数)或者 β j = l j / N j , ( j = 1, 2, 3) 即 β1 = l1 / N1 , β 2 = l2 / N 2 , β3 = l3 / N 3 ,( l1 l2 l3 为任意整数) (1.26) 由于 l j 为整数,所以 β j 只能取分立值。将式(1.26)代入式(1.16) ,则发现在周期性 边界条件限制下,波矢量 k 只能取分立值, 3 l l l1 l j b1 + 2 b2 + 3 b3 = ∑ b j N1 N2 N3 j =1 N j k= (1.27) 16 ( l1 l2 l3 为任意整数) 。 而与这些波矢量 k 相应的能量 E (k)也只能取分立值,这给理论分析上带来很大 的方便。 在倒空间中每个倒原
超导体与半导体的相似之处如下:
当某些条件满足时,可以充当导体。
超导体与半导体的区别如下:
一丶物理性质
1.半导体的电阻比超导体的电阻大。
2.超导体是在一定条件下电阻为0的材料。半导体是一种导体和绝缘体在室温下导电的材料。
二、关于使用
3.半导体需要在室温下使用,超导体一般需要在超低温下使用。
4.不同的功能在实际应用中。
半导体已经使用了很长时间,但是超导体仍然处于发展阶段。
超导体和半导体的作用是:
半导体:电子元件,芯片,晶体管
超导体:远距离传输高压、全超导托卡马克聚变发电机
扩展资料:
超导体的三个基本特性:
1.完全导电性:完全导电性又称零电阻效应,是指温度下降到一定温度以下,电阻突然消失。
2.完全反磁性:完全反磁性也被称为梅斯纳效应。“抗磁性”是指当磁场强度低于临界值时,磁力线不能通过超导体的现象。
完全反磁性的原因是超导体的表面产生一种无损的抗磁超导电流,这种电流产生的磁场抵消了超导体内部的磁场。
3.通量化:量化通量,也称为约瑟夫逊效应,指的是现象,当两层超导体之间的绝缘层薄原子大小,电子对产生隧道电流通过隔热层,也就是说,超导电流可以superconductor-insulator-superconductor结构生成。
参考资料来源:百度百科-半导体
参考资料来源:百度百科-超导体