您当前的位置:首页 > 发表论文>论文发表

连铸连轧乳液污染毕业论文

2023-02-13 17:36 来源:学术参考网 作者:未知

连铸连轧乳液污染毕业论文

纺织材料生态化及其发展趋势
摘 要:从采用绿色原料、利用生物技术和开发可降解纤维3方面,综述了纺织材料生态化的发展现状,指出循环材
料开发和使用是纺织生态材料发展的趋势。
关键词:纺织材料;绿色;生态化;趋势
目前在全球可持续发展战略影响下,许多国家都在致力于
研究既不影响生态环境,又能利用生态资源的新型纤维。并提
出纺织用材料必须经过毒理学测试,具有相应标志,符合环保、
生态、人体健康要求。纺织材料生态化已成为全世界关注的发
展方向。采用绿色原料开发生态纤维,利用生物技术发展可降
解纤维,选择节约资源、可回收利用纤维原料已成为目前纺织生
态材料发展的趋势[1~2]。
1 采用绿色原料开发生态纤维
利用绿色原料开发生态纤维已成为获得生态型纺织材料的
主要途径和研究、开发热点。从食用的香蕉、小麦、大豆、玉米、
牛奶、虾、蟹等到木材、昆虫、蜘蛛都成为了生态纤维材料的来
源。现今的绿色原料包括原生态自然物质,以自然物质为基础
的提炼物及原有纤维的再加工产物3种[3]。
1·1 利用原生态自然物开发生态纤维
自然界中原生态的物质即常规的天然纤维,以其自然本色
和环保特性赢得人们喜爱。但天然纤维并非完全无毒,如天然
纤维在生长过程中所施用的化肥及杀虫剂等化学药品是有害物
质进入的主要途径。目前生态天然纤维主要致力于开发对杀虫
剂和除草剂较少依赖的天然纤维和新型绿色纤维,如有机棉、有
机麻等。同时许多新型原生态的纤维原料如木棉、菠萝叶纤维、
香蕉茎纤维、竹纤维等生态纤维也在积极的开发与应用中。发
现更多的天然纤维材料,进一步扩大天然纤维的可利用性,使天
然纤维材料的发展日益扩大是当前利用原生态的自然物质开发
生态纤维的主要研究方向[4~5]。
1·2 用自然物的提取物开发再生生态性纤维
直接取自天然高分子物质,以自然物质为基础的提取物可
形成绿色环保纤维,如Tencel、Modal、大豆蛋白纤维、牛奶、海藻
酸钠纤维、甲壳素纤维、竹浆纤维等。这些纤维多属于再生纤维
素或蛋白质纤维类,纤维本身主要由纤维素或蛋白质组成,易生
物降解,符合环保要求。有关再生生态纤维方面的研究较早也
较多,许多纤维的开发和应用也较成熟[6]。如甲壳素纤维,所用
甲壳质广泛存在于虾、蟹等水产品和昆虫、蜘蛛等节肢动物的外
壳中,也存在于菌类、藻类的细胞壁中。甲壳质纤维是一种可降
解的环保型动物纤维素纤维,废弃后可被微生物分解。这种纤
维具有生物活性,有良好的吸附性、粘结性、抗菌性和治伤性能。
它是自然界唯一带正电荷的动物纤维,对危害人体的大肠菌杆、
金色葡萄球菌等具有较强的抑制能力,适合制造特殊的医用功
能纤维产品。此外,近年开发的新型蛋白复合蚕蛹蛋白粘胶长
丝纤维,利用与粘胶纺丝原液共混,纤维素形成芯部,蛋白质集
中于表面,构成分子上的稳定结合,形成具有特定皮芯结构的蛹
蛋白粘胶皮芯复合长丝。纤维中蛋白质含量为10%~20%左
右,纤维与皮肤的亲合性好,保健功能显著[7~8]。
1·3 利用原有纤维的再加工开发生态性纺织材料
采用自然原料通过高分子化学合成的方法可加工、生产生
态纤维材料,如聚乳酸纤维(PLA)、聚羟基乙酸纤维(PGA),及
它们的聚合纤维(PLGA)。这些纤维原料资源可再生和重复利
用,使用过程安全。纤维开发途径包括微生物合成生态纤维和
化学合成高分子生态材料。
由微生物合成的聚羟基链烷酸酯、短梗霉多糖、功能蛋白高
分子等都可以纺制成纤维。另外,微生物还可直接用于生产可
生物降解的纤维。如短梗霉多糖(Pullulan)纤维就是以谷物或
马铃薯为原料,由出芽短梗霉产生的一种胞外水溶性多糖(由麦
芽三糖1,6键接形成的聚合物)合成,其强度和硬度等物理性质
与聚苯乙烯相当。Pullulan纤维具有平滑、透明、光泽好、强度高
(与尼纶相当)、无毒、无味、无色、能生物降解的特点,适合作手
术缝合线和医用敷料。还可利用多糖液中培养出的细菌(膜醋
菌)获得直径大于40 nm的生物纤维丝条,用微菌类霉菌体合成
支化营养菌丝或长度达几厘米的由孢子囊柄组成的丝条,分离
纯化后丝条能够织成无纺布,用于湿法无纺布的过滤材料[9]。
化学合成高分子材料是将天然物质通过化学加工方法合
成,如美国杜邦公司2000年10月投产的索罗那(Sorona)纤维
就是以玉米为原料的全新多聚体化合物。其纤维制品在舒适、
耐磨、弹性、抗皱、防护等性能方面,大大优于现有的化纤制品。
制成的人造皮革更柔软,更似真皮,且可回收再利用,为重要的
环保产品。还有以玉米、小麦等农作物为原料发酵成乳酸再聚
合而成的高分子化合物聚乳酸纤维(PLA)等[10]。
2 运用生物技术和基因工程开发生态纺织材料
将现代生物技术巧妙地用于纺织纤维的开发,不仅能有效
地改进现有纺织原料的不足,还可根据需要开发出适合纺织生
产的新型纺织纤维,为纺织原料研发开辟新的途径。
天然彩色棉纤维是美国科学家利用基因改性技术开发出的
一种新型棉花品种,通过将彩色基因移植到白棉DNA中而获
得。彩棉产品省去染色、印花等工序,减少了加工污水的排放和
能源消耗,实现了从纤维生长到纺织成衣全过程的“零污染”。
利用基因改性技术可生产抗虫棉,避免农药对环境及棉本
身造成危害。中国农科院等单位将苏芸金杆菌的毒蛋白基因转
入棉细胞内,培育出了十多个抗虫棉品种,能产生一种对抗鳞翅
目昆虫的毒素,抗棉铃虫能力达80%以上。此外,转基因抗蚜
虫棉、转基因抗虫抗病棉也相继培育成功,已在我国实验推
广[11]。
利用现代生物、基因工程技术还可向棉纤维中引入其他成
分,形成天然多成分棉,改善棉纤维的性能。如利用在棉纤维中
腔内具有可生物降解的聚酯内芯来生产天然的涤棉混合纤维,
或引入动物纤维蛋白,从而形成含动物纤维的天然多成分棉,对
改善棉纤维自身的不足,提高棉纤维的性能有很大贡献[12]。
五彩丝、彩色羊毛的取得主要靠蚕的基因突变。利用染色
体技术把需要的基因组合输入家蚕体内,培育出能吐彩丝的新
蚕种。选择合适的彩色基因导入绵羊体内,也可培育出具有天
然色彩的彩色羊毛[13]。
运用现代生物技术还可扩大纤维的生产。例如,蜘蛛丝因
具有超高强力是开发高强织物的理想原料,但如何获得大量的
蜘蛛丝来满足纺织生产的需要就成了产品开发过程的难题。为
此,加拿大Nexia公司将从蜘蛛丝蛋白中分离出的有关基因转
入奶牛和山羊的乳腺细胞中,从其分泌的乳液中获得经过重组
的蜘蛛丝蛋白,并从中提取到与蜘蛛丝性能相似的丝蛋白纤维。
此外,还可利用微生物发酵技术从蜘蛛丝蛋白中分离出有关基
因,人工重组到可以用发酵法大量生产蛋白质的诸如大肠杆菌
或酵母菌等微生物体内,在其细胞中产生蜘蛛丝蛋白[14~15]。
3 可生物降解材料开发
可生物降解纤维是指在一定时间和适当的自然条件下能够
被微生物(如细菌、真菌、藻类等)或其分泌物在醇或化学分解作
用下发生降解的纤维。可生物降解纤维制成的纺织品,通常在
微生物作用下,可分解为二氧化碳和水等对环境无害的物质,是
理想的石油类纤维材料替代品。降解采用的方法有堆肥降解、
土地埋入降解、在活性污泥中降解、海水浸渍降解,以及在聚合
物中通过添加组分进行共聚来加速降解等。目前美、欧、日对可
生物降解纤维的研究处于领先地位,我国的研究起步较晚[16]。
常见的天然纤维及目前研究较多的纤维素纤维、蛋白纤维、
甲壳素纤维、淀粉纤维等都具有良好的生物降解。而合成纤维
可降解中较大的一类是水溶性聚合物,它是一种亲水性的高分
子材料,在水中能溶解或溶胀形成溶液或分散液,其分子链上一
般含有一定数量的强亲水基团(如羧基、羟基、氨基、醚基和酞胺
基等)。常见的生物降解性合成高分子有聚乙烯醇(PVA)、聚丙
二醇(PPG)和聚乙二醇(PEG)等。聚乙烯醇(PVA)是人们最熟
悉的水溶性高聚物,它在纤维和纤维改性及制作膜材料等方面
都有广泛的应用。Planet Packaging Technologies公司用PEG
共混制造生物降解高分子材料。美国Air Product & Chemical
公司也开发了一种商品名为Vinex的材料,它是由聚乙烯醇和
聚烯烃、丙烯酸酯接枝聚合而成,材料具有可降解性[17-18]。
另一类是利用自然界中存在的天然物质经化学加工形成的
合成纤维,如聚乳酸纤维(PLA),虽为合成纤维,但其原料来源
于地球上不断再生而取之不竭的农作物,其废弃物埋入土中后,
在土壤和水中微生物作用下大约经过1~2年时间,纤维可被完
全分解为CO2和H2O从而发生降解[19]。
虽然可降解纤维材料的开发已取得一定进展,但研究进行
得还很不够,也没有取得较大的突破。随着人们生活水平的不
断提高,对可生物降解功能纤维需求的增长,可以预见在新技术
的应用和新材料的涌现下,可生物降解纤维将会被更广泛地应
用[20~21]。
4 生态材料的发展趋势
循环材料最基本的特点就是在主产业链上向前、向后延伸,
实现闭合循环发展,使所用的原料和能源在不断的循环中得到
合理利用,节约生态资源。现代纺织要求材料可循环、再生,产
业发展可持续,因此,循环材料的开发和利用应是未来生态材料
发展的趋势。最近日本提出了“完全循环型”新概念,要求彻底
实现纤维从原料使用到最终制品回收全过程完全循环。吉玛公
司、杜邦公司对聚酯等装置也提出了“全循环”概念[22]。
天然纤维材料是地球上巨大的再生性生物高分子资源,作
为“从自然产生又回到自然”的资源循环型材料,具有不可替代
的发展优势。人造纤维材料作为传统的纺织材料,其原料多为
天然可再生的非石油资源(木、棉、亚麻、竹、麦杆等),符合可持
续发展的需求。合成纤维多为石油化合物,而石油属原生资源,
且常规合成纤维具有不可再生、不可降解性。目前合成纤维如
何进行回收再生是生态材料研究的重点,也是治理环境污染,节
约资源和能源,促进合成材料循环使用的一种最积极的废弃物
处理方法。已开发了有回收聚合物、纤维的原料再循环和回收
单体的化学再循环系统[23~25]。
回归自然、适应环境是纺织材料总的发展趋势。生态化纺
织材料的发展为保护生存环境,实现纺织工业可持续发展提供
了保障,符合21世纪绿色环保型时代的要求。随着社会的文明
和进步,可认为未来的纺织工业将是绿色生态工业。
参考文献:
[1] 吴湘济,沈 晶.纺织工业绿色纺织品的设计与开发[J].上海工程
技术大学学报,2002,(12):298-317.
[2] 黄 猛.我国绿色纺织品的现状及发展趋势[J].棉纺织技术,
2000,(2):31-33.
[3] 甘应近,白 越,等.绿色纺织品的现状与展望[J].纺织学报,
2003,(6):93-95.
[4] Peter F Greenwood,Consultant.How green are cotton and linen?
[J].textiles,1999,(3).
[5] 付群锋.浅谈新世纪纺织面料的发展趋势[J].印染,2000,(7):49
-50.
[6] A P Aneja,等.21世纪的纤维[J].国外纺织技术,2000,(1):1-3.
[7] 李晓燕.生态纺织纤维的性能与应用[J].棉纺织技术,2002,(11):

手接触到的乳液会污染吗

亲 你的意思表达不清晰
你的乳液是指的化妆品呢?还是指的一种工业废水呢?

如果是化妆品的话,只要你的手比较干净,是不会污染的。
乳液类化妆品又称蜜类化妆品,是水包油型的乳化剂,含水量在10%~80%左右,具有一定的流动性,形状颇似蜜,故而得名。乳液含水量较大,能为皮肤补充水分。乳液还含有少量的油分,又可以滋润皮肤。乳液具有三个方面的作用,去污、补充水分、补充营养。去污是指乳液可以代替洁面剂清除面部污垢。

希望能帮到你
满意请采纳 O(∩_∩)O~

急求一篇"城市中水的处理"的化学毕业论文!!!!!!!!!!!

粘胶纤维生产废水治理的改进工艺
摘要:粘胶纤维生产废水的污染物质主要有酸、碱、锌离子、硫化物、COD等。通常采用的方法是酸、碱废水混合曝气吹脱除硫化物,加石灰乳中和沉淀除锌的一级物化处理,但很难达到排放标准,主要是锌和COD超标。当增设二级生化处理后,可全面提高出水水质,使COD等各项指标达到国家一级排放标准。介绍了物化-生化两级处理粘胶纤维生产废水的工艺流程、主要构筑物(设备)及设计参数、工艺的优越性、存在问题和建议等。
在常规的物化+生化处理工艺的基础上引入浅层气浮和铁碳过滤的粘胶纤维生产废水治理的新工艺,并阐释了其工艺原理。中试结果表明:该工艺特别适合该项废水的治理,处理后的出水水质能稳定地达到国家一级排放标准。
关键词:粘胶纤维废水;浅层气浮;铁碳过滤;新工艺

Abstract:
Wastewaters of viscose fiber production containing acid, alkali, Zn ion, sulfides and COD are usually treated by primary treatment including mixing of acid and alkali discharges, aerated stripping to remove sulfides, liming neutralization and sedimentation for Zn removal. The effluent of primary treatment with higher Zn and COD residues will not be enough to meet the discharge standard. The situation will be improved by further secondary biological treatment, the COD and other indicators of the secondary effluent shall be quite fair to meet the requirement of class I of the national discharge standard. In this paper the full two-stage treatment scheme of physical and biological treatment processes including the main structures (facilities), design parameters, the advantages, problems and recommendations are presented. Engineering Design and Performance Analysis of High Concentration Wastewater.
A new treatment process of shallow air-floatation and Fe-C filtration based on the traditional process of physicochemical and biological treatment is introduced to treat the wastewater from viscose fiber production.The principle of the process is explained.A pilot-scale experiments were carried out,the results showed that the new process is very suitable for treatment of the wastewater from viscose fiber production,and the effluent quality can steadily meet the requirementof national integrated wastewater discharge standards grade1.

Keywords: viscose fiber wastewater;shallow air-floatation;Fe-C filtration;new process

引言:随着水污染的日益严重,资源短缺日益成为当今经济和社会发展的制约因素,通过污水资源化途径实现大部分水的循环再用,这是解决水资源短缺的必由之路。为了克服常规处理工艺的不足,满足不断提高的废水的排放标准,对常规处理工艺出水在进行深度净化将成为以后的选择之一。物化+生化两级处理粘胶纤维生产废水的工艺目前已作为废水深度净化的一个重要途径而被水工业界重视。
目前,全世界粘胶纤维产量占化纤总产量的1/3左右,我国粘胶纤维年产达几十万吨,是主要的化纤品种。粘胶纤维的生产过程中会产生大量的酸、碱废水,其直接排放将造成严重的水污染和大量纤维资源的流失浪费。由于粘胶纤维生产混合废水的酸性很强且富含锌盐和硫化物,治理难度较大,采用常规的物化+生化治理工艺存在运行效果不够稳定、占地面积大和投资高等问题,急需研究开发既可靠又经济的治理新工艺。
1.粘胶纤维生产废水概况
1.1 废水来源
粘胶纤维生产废水主要包括酸性和碱性废水两大类,其中酸性废水主要来源于纺丝车间和酸站,包括塑化浴溢流水、洗纺丝机水、酸站过滤器洗涤水、洗丝水和后处理酸洗水等;碱性废水主要来源于碱站排水、原液车间废水胶槽及设备洗涤水、滤布洗涤水、换喷丝头时的带出水和后处理的脱硫废水等。〔1〕
1.2 废水水量及特征污染物
粘胶纤维生产过程中废水排放总量大致为:短纤维300m3/t,长纤维1200m3/t。粘胶纤维生产混合废水中的特征污染物为硫酸、硫化物、锌盐和纤维素。其中硫酸、硫化物(主要是H2S、CS2等)和锌盐污染主要来自粘胶成形工段废水,且锌盐主要以硫酸锌和纤维素磺酸锌的形式存在;纤维素主要是由于碱性废水中的粘胶纤维素与酸性废水混合后酸析而产生。
2.粘胶纤维生产废水的常规治理工艺
2.1 一级物化处理
目前,国内粘胶纤维生产废水的一级物化处理工艺普遍采用如图1所示的流程。粘胶纤维生产过程中产生的酸性废水和碱性废水经混合中和、曝气吹脱硫化物、加石灰乳除锌和沉淀澄清后,出水很难达到国家排放标准,尤其是废水的S2-、Zn2+和COD等不易达标。

存在的问题:
(1)废水经混合后酸性仍较强(pH=2~3),此时原废水中的粘胶纤维素大量地被酸析出来,而纤维素体积质量小,以常规的沉淀方式难以彻底去除,从而影响出水水质,造成COD超标和资源的流失浪费。
(2)该工艺主要通过曝气吹脱方式去除硫化物(如H2S、CS2等),但受到诸多因素的影响,吹脱效率不是很高,出水常会出现S2-超标的现象。
(3)在加石灰乳除锌的沉淀过程中,由于其沉淀反应的最佳pH值范围较窄(pH=8~9),反应条件难于控制,加上人工投药,出水常出现Zn2+超标的现象。
(4) 由于混合废水的pH值较低,要达到后续的沉淀反应条件需投加大量的石灰乳液,这一则增加了运行费用,二则产生的大量石灰渣增加了后续沉淀池的负荷,从而也增加了整个治理过程中的污泥处理量和处置难度。
2.2 二级生化处理
为全面提高粘胶纤维生产废水治理后的出水水质,达到国家一级排放标准,丹东化纤厂和山东高密化纤厂在国内率先采用了在一级物化处理的基础上再加活性污泥二级生化处理工艺(如图2所示)。

粘胶纤维生产废水经一级物化处理后,一些主要污染物(如COD、SO2-4、Zn2+和硫化物等)有相当一部分被去除,再经后续的活性污泥二级生化处理,使得废水中BOD5、COD等得以进一步去除,正常运行时出水可达国家一级排放标准。稳定运行90d后,由环境监测中心站进行验收监测,监测数据见表1。
表1废水处理站进出水监测结果(mg/L)
pH COD BOD5
进水 出水 进水 出水 进水 出水
9

3
日 6.11 6.89 969.6 20.2 291 6.1
6.18 6.99 925.6 29.5 278 6.9
6.10 6.96 981.7 19.0 295 5.7
6.03 7.02 973.6 25.4 292 7.6
9

4
日 6.04 7.06 825.7 18.4 248 5.5
6.06 7.14 871.6 22.9 261 6.9
6.08 7.10 793.6 20.6 238 6.2
6.04 7.17 834.9 22.0 250 6.6
总均值 — — 897.0 22.2 269 6.4
出口执行标准 — 6~9 — 100 — 20
处理效率(%) 97.5 97.6
评价
结果 达标 达标 达标
存在的问题:
(1)由于仅是在物化处理的基础上增加了一道活性污泥生化处理工艺,故原物化处理过程中的一些问题(如资源的流失浪费、运行费用高、泥量大)仍然存在。
(2)由于前面物化处理过程的自动化控制程度不高,运行效果不稳定,使得一级处理后的出水时常出现SO2-4、Zn2+超标的现象,而通常当SO2-4>1000mg/L或Zn2+>20mg/L时,微生物的生长会受到明显抑制,这大大影响了后续生化处理的效率。
(3) 由于前面物化处理过程对COD的去除效率不高,使得废水中酸析出的大量轻质纤维素进入后续的活性污泥生化处理时,污染负荷较大,活性污泥质量不高,需要较长的停留时间(5.7~9.5 h),这使整个基建投资和运行成本较高,占地面积也较大。
3.粘胶纤维生产废水处理后的改进 改进工艺及中试效果
根据目前国内粘胶纤维生产废水治理工艺存在的一些不足,结合该废水的实际水质水量情况,通过中试试验研究,提出了在常规的物化+生化处理工艺的基础上增添浅层气浮+铁屑过滤的改进新工艺(如图3所示)。

3.1 主要工艺原理
(1) 浅层气浮工艺
原水从气浮池中心的旋转进水管进水,通过旋转布水管布水,布水管的移动速度和进水流速相同,这样就产生了“零速度”,在这种状态下进水不会对池水产生扰动,使得颗粒的悬浮和沉降都在一相对静止的状态下进行,且这类气浮装置的池深一般不超过650 mm。正是依据“零速理论”和“浅池理论”,使得该装置的进水停留时间短(仅3~5min),表面负荷高达9.5~12m3/(m2•h),悬浮物的去除效率可达85%以上。
(2)铁屑过滤工艺
铁屑过滤系统是用废铁屑经预处理和活化后作填料,利用其产生的电化学反应的氧化还原、电附集、催化、混凝、吸附过滤等综合效应达到处理效果〔2〕,其中主要作用是氧化还原和电附集。
废铁屑的主要成分是铁和碳,当将其浸入电解质溶液中时,由于铁和碳之间存在1.2V的电极电位差,因而会形成无数的微电池系统,在其作用空间构成一个电场〔3〕,其电极反应如下:
阳极 Fe¬¬¬—2e-→Fe2+
阴极 2H++2 e-→2〔H〕→H2↑
O2+4H++4 e-→2H2O
O2+2H2O+4 e-→4OH-
阳极反应生成大量的Fe2+进入废水,形成具有较高吸附絮凝活性的絮凝剂;阴极反应产生大量新生态的H•,在偏酸性的条件下,新生态的H•能与废水中的许多组分发生氧化还原反应,使有机大分子发生断链降解,提高废水的可生化性,且阴极反应消耗了大量的H+生成了大量的OH-,这使得废水的pH值也有所提高。
3.2 工艺说明
(1)粘胶纤维生产中产生的酸性和碱性废水按配比混合至pH=2~3后进入吹脱反应池,酸析出大量呈悬浮状的粘胶纤维素,大部分H2S、CS2等成分也得以吹脱去除。
(2)吹脱反应池出水进入浅层气浮,大量纤维素得以较为彻底的去除并回收,这既降低了后续处理的污染负荷,也实现了粘胶纤维素的资源回收。[4]
(3)气浮池出水经铁屑过滤产生了氧化还原和电附集作用,废水中的主要污染物(纤维素磺酸锌)发生了断链脱锌反应,利于后续处理对Zn2+的彻底沉淀去除,废水的pH值和可生化性均得到了提高(pH=5~6),大大减少了后续中和沉淀的投碱量和污泥产量,也有利于生化处理过程。与此同时,该过程产生的大量Fe2+既可兼作絮凝剂,使后续沉淀过程中不必外加絮凝剂,又可使废水中残留的S2-以FeS沉淀的方式得以彻底去除。
(4) 铁屑过滤塔出水进入曲颈槽与电石乳液(代替石灰乳,节省药剂费用)充分混合反应,然后进入初沉池沉淀。通过pH值自动控制投药系统的控制,反应pH值控制在8~8.5,此时废水中的Zn2+被彻底沉淀去除,废水中的绝大部分Fe2+也得到沉淀去除。经铁屑塔处理后的废水,沉淀性能好(仅需0.5~1.0h即可完全沉淀下来),大大减少了沉淀池的池容;另外,出水中含有的极少量Fe2+,它是生物氧化酶的重要组成部分,同时在Fe2+→←Fe3+的过程中,电子传递对生化反应有刺激作用,从而使生化反应速度有所提高。
(5) 初沉后的出水进入好氧池进行生物处理,由于废水的可生化性得到了提高,使废水中残余的COD、BOD5能在很短时间内得到进一步的降解去除,出水再经二沉池沉淀后达标排放。
(6)初沉池和二沉池中的污泥,先经污泥泵泵入污泥浓缩池浓缩,再经脱水机脱水(因纤维素含量少,其脱水性能好),产生的泥饼外运,浓缩池的上清液回流至好氧池进行生化处理。
3.3 治理效果
在南平天元化纤厂现场进行了粘胶纤维废水的中试,原水水质情况见表2。
表2粘胶纤维废水水质

碱性和酸性废水按1∶2.5混合,经处理后出水水质能达到国家一级排放标准。试验结果见表3。
表3粘胶纤维废水处理中试结果

① 经浅层气浮后的出水,其COD含量能降至250mg/L,COD的去除率能达到85.9%以上的水平,这充分说明了浅层气浮在本工艺中运用的合理性和优越性。[5]
② 废水在铁屑过滤塔中反应,停留30min左右后,出水Zn2+的含量<0.05mg/L,硫化物的含量<0.5mg/L,这充分说明了铁屑过滤完全满足本工艺对Zn2+和硫化物的治理要求。
4 .结论
通过改进工艺的中试研究,可得出以下结论:
(1) 采用改进工艺处理粘胶纤维生产废水切实经济可行,出水水质能稳定地达到国家一级排放标准,且能回收纤维素资源,值得在实践中推广应用。[6]
(2)实践证明:浅层气浮和铁屑过滤在粘胶纤维生产废水治理过程中的运用是合理、先进的,彻底解决了常规处理中时常会出现的COD、Zn2+和S2-等超标的问题。
(3) 结合粘胶纤维生产废水的实际水质情况,充分发挥浅层气浮和铁屑过滤的特点和优势,整个工程投资和占地面积较常规方法均能节省1/3左右,也无需另外投加絮凝剂,用电石乳废液代替石灰乳使投加量大为减少,故投药费用也能节省近2/3。
(4)采用改进工艺能使处理过程中产生的污泥量大为减少,大大降低了污泥的处置费用和难度。
(5)改进工艺设施操作简单方便、运行可靠、自动化程度较高。
(6)对粘胶纤维厂现有的物化+生化治理设施,利用本改进工艺能很容易地实现技术改造。

参考文献:
〔1〕罗院生.物化—生化法两级处理粘胶纤维厂酸碱废水工艺设计〔J〕.给水排水,1999,(9):34-37
〔2〕曹曼.铁屑固定床及其在废水中处理的运用〔J〕.上海环境科学,1994,(2):43-44.
〔3〕祁梦兰.铁屑微电解法处理经编厂染色废水〔J〕.环境保护,1993,(7):14-16.
〔4〕 刘章富,熊杨,侯铁.同步生物除磷脱氮的几种实用新工艺.中国给水排水,2002,18(9):65~68.
〔5〕 陈新宇,陈翼孙,李长兴.水解酸化-生物接触氧化处理合成橡胶废水实验研究.化工环保,1997,17(4):221~225.
〔6〕 张自杰.环境工程手册(水污染防治卷).北京:高等教育出版社,1996.

谁有现代水性涂料论文,高分求论文,联系方式787002362,在线等

无污染水性涂料
 论文关键词:丙烯稀丁酯 苯乙烯 乳液聚合 预乳液 乳化剂 引发剂

  论文摘要 :本文叙述了,苯乙烯和丙烯酸丁酯在乳化剂:十二烷基硫酸钠,引发剂:过硫酸铵,存在的情况下利用连续滴加预乳液的聚合工艺,合成苯丙乳液的过程。并通过几组平行实验确定反应温度、搅拌速度、预乳液的滴速及不同时期反应时间对乳液合成及其性能的影响。通过观察反应现象及利用测定实验产物的数据,不断对实验进行改进,尽量减小不良因素对产物性能的影响。试验表明:

  温度在82-84℃,预乳液在两小时左右滴完,预乳液发生聚合的现象明显。温度50℃,强力搅拌一小时制得的预乳液的质量较好。引发剂的量应小于0.3%,用量过大乳液会发生破乳。

  Abstract :This text has been narrated, styrene and acrylic acid cube ester are in the emulsifier : 12 alkyl sulphuric acid sodium, initiator: Pass sulphuric acid ammonium , is it is it add craft of getting together of the cream in advance to drip in succession to utilize under the situation that exist, formate the course of third cream of benzene. And parallel experiment confirm temperature of reacting , mix speed, cream drip speed and react time impact on the cream is formated and performance with period in advance through several group. Through observing the phenomenon of reacting and utilizing determining the data which test the result , are improving the experiment constantly, try one's best to reduce the impact on performance of the result of the bad factor. The test shows :
  Temperature, in 82-84 degrees Centigrade, the cream is dripped in about two hours in advance, the phenomenon that the cream gets together is obvious in advance. 50 of temperature, brute force mix make one hour the quality of the cream is better in advance. The quantity of the initiator should be smaller than 0.3%, the broken milk happens in the too big cream of consumption .

  Keywords: Propylene rare cube ester Styrene The cream getting together The cream in advance Emulsifier Initiator

  第一章 绪论
建筑涂料的发展方向是无毒安全、节约资源、有利于环境保护的水性涂料和无公害低污染涂料。不断提高水性涂料的质量,开发新的品种,是巩固和发展水性建筑涂料的重要环节之一。

  国外对建筑物的外墙面装饰非常重视,,经常有计划地涂装建筑物外墙,有的国家高达90%。在我国,相当一部分建筑仍然采用面砖或幕墙进行装饰,而用涂料进行装饰的还不足10%。目前使用的外墙涂料品种主要为乳胶涂料和溶剂型涂料,前者大多为苯丙、纯丙薄质乳胶涂料及厚质复层涂料;后者使用较少,但随着最近推出的低毒溶剂型丙烯酸涂料的出现,使用量有所增加。因此,大力发展超耐候性及高性能外墙涂料来满足市场的需求是当务之急。
苯丙乳液是胶体分散体系,具有明显的胶体化学性质,当苯丙乳液与水泥或其他颜料混合均匀后,苯丙乳粒子向浆体内分散,被吸附在其他颜料、水泥凝胶及未水化的水泥粒子的表面上。聚合物粒子封闭了水泥凝胶及未水化水泥粒子的微孔和毛细管孔,水泥进一步水化由于聚合物粒子被吸附在水泥凝胶表面上,使水泥浆体内存在足够的水分,防止了水泥的结块现象,因此苯丙乳液水泥漆具有一定的贮存稳定性。苯丙乳液实际上是由苯乙烯和丙烯酸酯类单体共聚而成,本文从最终产品的性能比考虑,选定由苯乙烯和丙烯酸酯共聚体系,并加入少量丙烯酸作为交联剂。反应过程按自由基加成方式聚合。

  在施工后形成涂膜时,由于基材吸收了一定的水分和水分的蒸发,涂膜发生了物理机理干燥,分散于水相中的苯丙乳液水泥等复合物粒子就慢慢接近,以至相互接触。水的毛细管压力能够把分散的复合物粒子挤在一起,排列愈紧、压力就愈大,水分挥发愈快,复合物中的苯丙乳液树脂包围的水泥和填料同时呈在干硬的膜之中,构成一个三维空间,牢固结合密实的整体。

  1.1 苯丙乳液聚合机理
  乳液聚合的机理HarKins首先做了定性的描述了。他认为,当乳化剂溶于水时,若其浓度超过临界胶束浓度时,则乳化剂分子聚焦在一起形成乳化剂胶束。在乳化剂溶液中加入难溶于水的单体并进行搅拌时,单体大部分分散成液滴,部分单体则增溶于乳化剂胶束中。当水溶性的引发剂加入后,引发剂在水中生成自由基并扩散到胶束中去,并在那里引发聚合反应。 HarKins将理想乳液聚合机理分为三个阶段:

  第一阶段: 乳胶粒生成期

  从诱导期结束到胶束耗尽这一期间为聚合第一阶段。在此阶段中,由于水相中引发剂分解出的自由基不断的扩散到胶束中,并在那里引发聚合反应,生成单体、聚合物粒子,既乳胶粒,随着反应的不断进行,新乳胶粒不断产生,使聚合反应进行一个加速期。另一方面,随着放映的进行,乳胶粒的体积渐渐的增大,其表面积也随之增加,这样越来越多的乳化剂分子从水相被吸附到乳剂粒表面上,因而破坏了乳化剂与胶束间的平衡。胶束中的乳化剂分子不断补充入水相,直到转化率达到一定程度后,水相中的乳化剂浓度下降到临界胶束浓度以下,胶束即告消失。此时,不再有新的乳胶粒生成,聚合体系中的乳胶粒不再变化,至此反应转入第二阶段。

  第二阶段:反应恒速期

  从胶束消失到单体液滴消失这一期间为第二阶段。此阶段由于胶束的消失,体系中不再有新的乳胶粒生成,总的乳胶粒数目保持不变。且随着聚合反应的进行,单体液滴中的单体不断扩散入乳胶粒中,使粒子中的单体浓度不变,所以此阶段聚合速率保持不变,直至单体液滴消失,聚合速率下降,反应转入第三阶段。

  第三阶段:降速期

  从单体液滴消失至聚合反应结束为第三阶段。此阶段由于单体液滴的消失,不再有单体经水相扩散进入乳胶粒,故乳胶粒中进行的聚合反应只能靠消耗粒子中贮存的单体来维持,使聚合速率不断下降,直至乳胶粒中的单体耗尽,聚合反应也就停止。
  1.2 乳液聚合工艺
  生产聚合物乳液和乳液聚合物有多种工艺可供选择。如间歇工艺、半连续工艺、连续工艺补加乳化剂工艺及种子乳液聚合工艺等。对同种单体来说,若所采用的生产工艺不同,则所制造的产品质量、生产效率及成本各不相同,因此具体应用中可根据对产品的性能要求和不同生产工艺的不同特点,来合理选择可行的生产工艺。

  1.2.1 预乳化工艺
  在进行连续或半连续乳液聚合中,常常采用单体的预乳化工艺。将去离子水投入预乳化罐中,加入乳化剂,搅拌、溶解,再将单体缓缓加入,在规定的时间内充分搅拌,得到稳定的单体乳状液。该工艺可使单体、乳化剂分散均匀,使以后的聚合过程中体系的稳定性提高,乳胶粒尺寸分布较均匀,共聚物组成均一。

  1.2.2 种子乳液聚合
  种子乳液聚合即先制取种子乳液,然后在种子的基础上进一步进行聚合,最终得到所需的乳液。种子乳液是在种子釜中制成的,其过程为:先向种子釜中加入水、乳化剂、水溶性引发剂和单体,再于一定温度下进行成核与聚合,生成数目足够大、粒度足够小的乳胶粒。然后,取一定量的种子乳液投入聚合釜中,还要加入去离子水、乳化剂、水溶性或油溶性引发剂及单体,以种子乳液的乳胶粒为核心,进行聚合反应,使乳胶粒不断增大。在聚合时,要严格控制乳化剂的补加速度,以免生成新的乳胶粒。

  采用种子乳液聚合工艺,可以克服连续乳液聚合过程中的不稳定瞬态现象,减小了聚合过程的波动。同时,用种子乳液聚合方法可以有效的控制乳胶粒直径及其分布。在单体量不变的情况下,增加种子乳液的用量,可使粒径减小;而减少种子乳液的用量,则可使粒径增大。由于种子乳液中的乳胶粒直经很小,年龄分布和粒径分布都很窄,这有利于改善乳液的流变性能。另外,采用种子乳液聚合方法可以生产出具有异形结构的乳胶粒的聚合物乳液,这将赋予聚合物乳液特殊的功能和优异的性能。

  1.3 课题的意义
  以上的文献综合了关于乳液聚合的机理、聚合工艺,从中我们可看出,尽管乳液聚合技术的开发始于本世纪早期,在许多聚合物的生产中己经成为主要的方法之一,每年世界上通过这种方法生产的聚合物以千万吨计,有着如此大的经济意义,如此悠久的生产发展历史工艺上也已经比较成熟,但是由于乳液聚合体系众多的影响因素,且各因素间复杂的互动效果,致使其定量的详尽的内部规律还没有完全被人们所掌握,乳液聚合的机理和动力学理论还远远落后于实践。在某种情况下提出来的数学模型,常常不能用于另一种条件和其他单体,不然就会出现很大误差。因此,对于不同的聚合体系、不同的生产操作条件都必须详细的考察各种影响因素和相互关系以求对该体系的特点进行准确的把握,以达到对生产过程和产品质量的有效控制。

  目前对于各种乳液共聚体系的实验性研究已多有报道,在国内也有多家生产企业,虽然各种乳液的聚合有许多相似之处,但想用类似的工艺制备出性能良好的不同乳液是不可能的。若想制备一种性能良好的乳液,就必须对它的合成工艺做具体详细的研究。

  苯丙乳液具有色彩丰富、美观大方、施工简便、工期短、工效高;特别具有保色性;耐污染性的优点。适用外墙涂料、彩色涂料、复层花纹涂料、内墙涂料、防水涂料等建筑装饰领域。本文对苯丙乳液的聚合机理、合成工艺、影响因素及产物的性能检测作了详细的介绍。这对于制备出高质量的苯丙乳胶涂料具有很大的科学和经济意义。

 第二章 苯丙乳液的合成
   2.1 原料

表1 各种原料

名称
级别
生产厂家




苯乙烯
分析纯
沈阳试剂一厂

丙烯酸丁酯
分析纯
北京市兴京化工厂

丙烯酸
分析纯
天津市华东试剂厂

乳化剂
聚乙二醇辛基苯基醚(OP-10)
化学纯
沈阳合富化学试剂厂

十二烷基硫酸钠(SDS)
分析纯
沈阳市化玻站试剂厂

引发剂
过硫酸铵
分析纯
沈阳试剂一厂

缓冲剂
碳酸氢钠
分析纯
沈阳试剂厂

pH调节剂
氨水
分析纯
沈阳市试剂三厂

  2.2 合成工艺

  2.2.1 预乳化阶段

  将0.45g十二烷基硫酸钠、1.2g乳化剂OP-10、24g苯乙烯、24g丙烯酸丁酯在一定量水中快速搅拌混合,使之预乳,得到预乳化液。

  2.2.2 主反应阶段
  把0.15g聚乙烯醇(PVA)、0.09g过硫酸钾、0.15g十二烷基硫酸钠、0.3g乳化剂OP-10与一定量的水混合溶解,装到有搅拌器、回流冷凝管、温度计和两个滴液漏斗的多口烧瓶中,搅拌升温至75℃。加入1/3的预乳化液,控制温度在73~76℃,保温至液体呈蓝光。剩余的2/3的预乳化液和0.21g过硫酸钾、0.3g碳酸氢钠水溶液分别从两个滴液漏斗中缓慢滴入,在慢速搅拌下于1h内滴完,并在此温度下反应1h。

  2.2.3 后处理阶段
  升温至86~88℃,保温至无单体回流。降温至30~40℃,调pH值为8~9,过滤出料,即得苯丙共聚乳液。

  2.3 实验产物性质测定

  2.3.1 乳液固含量的测定

  在己恒重的称量瓶中,取试样1.0-1.5g(准确至0.0001g),放在105-110℃恒温干燥箱连续干燥3h时,取出称量瓶,盖上盖子,放入干燥器中冷却至室温,称重。平行测定三个样品求其平均值。计算公式如下:

含固量=

G1一称量瓶重(g)

G2一称量瓶加试样重(g)

G3一称量瓶加恒温干燥后试样重(g)

  2.3.2凝聚率和乳液聚合稳定性
  乳液的聚合稳定性用凝聚率MC来表示,凝聚率山称重法获得,反应结束后,称量体系产生的凝聚物,放入烘箱烘至恒重,MC越小说明聚合过程的稳定性越好。乳液聚合结束后,用100目丝网过滤乳液,滤渣用水仔细洗涤后烘干至恒重,称其质量为W,聚合用单体及乳化剂总量为W0,计算凝聚物生成量百分比。则MC由下式计算:

MC= (W/W0) × 100%

  2.3.3乳液粘度的测定
  采用涂-4杯,测试温度:25℃

  第三章 结果与讨论

  3.1 纯丙乳液聚合共进行三种聚合工艺

  3.1.1 单体全滴加法

  将所有的水、乳化剂、引发剂、助剂等全部投人三颈瓶中,搅拌、升温,将称好的单体混合后倒人滴加漏斗中,当温度升高到聚合温度时,滴加漏斗中的单体,在3h内滴定,然后恒温至转化率>98%,降温调节pH值出料。

  3.1.2 种子聚合法

  将水、乳化剂、助剂,5%单体投人三颈瓶中,搅拌,升温至聚合温度,反应0.5一lh后,再分别滴加剩余单体、引发剂3h滴完,恒温至转化率>98%,降温调节pH值出料。

  3.1.3 预乳化法

  取4/5的水、乳化剂、引发剂、助剂全部单体投人三颈瓶中,在室温下快速搅拌乳化30min,然后将1/3的预乳化液和1/5的水投人另一个三颈瓶中搅拌,升温至聚合温度,反应0.5一lh后滴加余下的预乳化液,在3h内滴完,恒温至转化率>98%,降温调节pH值出料。

  通过比较,我们认为:方法(1)在反应后期转化率上升缓慢,方法(2)滴加时,引发剂与单体较难控制同步,方法(3)操作方便,后期反应较快,转化率都达到98%以上。
  3.2 反应温度的影响
  表2 反应温度的影响

温度/℃
凝胶量
乳液外观
转化率/%
离心稳定性

65-75

乳白蓝光
<80
稳定

75-85

乳白蓝光
80-90
稳定

85-95
大凝
乳白色
>95
破乳

  由表2可看出,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢,形成的活性自由基少,反应速率慢,转化率低;反应温度过高时,反应速率过快,体系不稳定易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。综合考虑,本实验分两阶段,采用不同温度聚合。前期滴加单体阶段,保持温度75-850C,使反应体系稳定;滴加完单体后再升温到85-900C进行保温,加快反应速率,缩短聚合完全的时间。

  当反应温度升高时,乳胶粒布朗运动加剧,使乳胶粒之间进行撞击而发生聚结的速率增大,故导致乳液稳定性降低;同时,温度升高会导致乳液稳定性下降,因为非离子型乳化剂遇水时将同水分子发生缔合形成水化乳化剂分子,可使其很好的溶解在水中形成透明溶液,并在乳胶粒周围形成很厚的水化层,但在反应温度升高时,水分子热运动加剧,水和乳化剂分子间缔合力减弱,会使乳胶粒表面上的水化层减薄,当达到某一温度时,水化层大幅度减薄,使乳化剂分子在水中的溶解度减小,以至于使之从水中沉析出来,溶液浊度突然升高,这一温度就是非离子乳化剂的浊点,此时乳化剂就失去了稳定作用,导致破乳。

  3.3 搅拌强度的影响
表4 搅拌速度对乳液质量的影响

搅拌速度
前期
中期(升温反应期)
保温期

慢速
乳白
乳白
蓝光充足

中速
微蓝
微蓝
蓝光充足

较快速
微蓝
蓝光充足
乳白

快速
蓝光充足
微蓝
乳白

  在乳液聚合过程中,搅拌的一个重要的作用是把单体分散成单体珠滴,并有利于传质和传热。但搅拌强度又不宜过大,否则会使乳胶粒数目减少,乳胶粒直径增大及聚合反应速率降低,同时会使乳液产生凝胶,甚至招致破乳。因此对乳液聚合来说,应采用适度的搅拌。

  第四章 结论
  根据多组平行实验得出预乳液制备的好坏将直接影响乳液质量和性能。制备预乳液时,应在反应器中先加入引发剂、乳化剂再加入单体。这样反应器中就先具备了乳液发生聚合的条件,防止单体间自聚,并在50OC 强力搅拌(大约350转/分)40分,制得的预乳液比较理想。温度对乳液的聚合影响也很大,如果控制不好将出现破乳或凝聚。由实验得出乳液聚合的最佳温度为82 OC-84 OC,当温度高于900C和低于700C时,聚合反应效果均不理想。引发剂在较低温度下分解慢, 形成的活性自由基少,反应速率慢,转化率低 ;反应温度过高时,反应速率过快,体系不稳定 ,易产生凝胶和粘釜现象。这主要是因为高温下乳化剂的特性发生了变化,乳化效果变差。预乳液的滴加速度对聚合也有影响,如果滴加过慢乳液可能会破乳,过快预乳液反应不完全,可能发生自聚。在不同时期玻璃棒的搅拌速度一定要控制恰当, 预乳化阶段和主反应阶段较快(大约350转/分) ,后处理阶段较慢(大约150转/分).本实验中乳化剂的用量控制在0.2%左右 ,引发剂控制在0.2%-0.3%,但每次制得乳液的质量都不太理想,可见乳化剂和引发剂的用量乳液聚合影响存在.乳液中的,酸性或碱性过强,或反应温度过高会破坏乳液体系的稳定性,产生凝胶,因此应严格控制乳液的 pH值和温度。本实验中一是加人适量的NaHCO3控制乳液的 pH值。

  苯丙乳液在制备过程中,内部反应及其复杂,如果反应过程中控制不当或选用的工艺、配方不合适等因素均可导致凝聚现象发生,凝聚的形态有多种,如产生一些粗粒子,或者可能在整个反应器内凝成一团。可见影响乳液质量的因素是多种多样的。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页