您当前的位置:首页 > 发表论文>论文发表

多元统计分析论文因子分析

2023-02-13 12:03 来源:学术参考网 作者:未知

多元统计分析论文因子分析

因子分析法是指从研究指标相关矩阵内部的依赖关系出发,把一些信息重叠、具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法。

是一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法

基本思想

根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同组的变量不相关或相关性较低,每组变量代表一个基本结构一即公共因子。

为什么做因子分析

举例说明:在实际门店问题中,往往我们会选择潜力最大的门店作为领航店,以此为样板,实现业绩和利润的突破及未来新店的标杆。选择领航店过程中我们要注重很多因素,比如:

↘所在小区的房价

↘总面积

↘户主年龄分布

↘小区户数

↘门店面积

↘2公里范围内竞争门店数量等

收集到所有的这些数据虽然能够全面、精准的确定领航店的入选标准,但实际建模时这些变量未必能够发挥出预期的作用。主要体现两方面:计算量的问题;变量间的相关性问题。

这时,最简单直接的方案就是削减变量个数,确定主要变量,因子分析以最少的信息丢失为前提,将众多的原有变量综合成少数的综合指标。

因子分析特点

因子个数远小于变量个数;

能够反应原变量的绝大数信息;

因子之间的线性关系不显著;

因子具有命名解释性

因子分析步骤

1.原有变量是否能够进行因子分析;

2.提取因子;

3.因子的命名解释;

4.计算因子得分;五、综合评价

因子与主成分分析的区别

相同:都能够起到处理多个原始变量内在结构关系的作用

不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法

因子分析可以看做是优化后的主成分分析,两种方法有很多共通的地方,但应用方面各有侧重。

因子分析应用场景

因子分析方法主要用于三种场景,分别是:

l 信息浓缩 :将多个分析项浓缩成几个关键概括性指标。比如将多个问卷题浓缩成几个指标。如果偏重信息浓缩且关注指标与分析项对应关系,使用因子分析更为适合。

l 权重计算 :利用方差解释率值计算各概括性指标的权重。在信息浓缩的基础上,可进一步计算每个主成分/因子的权重,构建指标权重体系。

l 综合竞争力 :利用成分得分和方差解释率这两项指标,计算得到综合得分,用于综合竞争力对比(综合得分值越高意味着竞争力越强)。此类应用常见于经济、管理类研究,比如上市公司的竞争实力对比。

因子分析案例

现在有 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价,请确定出这 12 个地区的综合评价指标。( 综合竞争力应用场景 )

同一指标在不同地区是不同的,用单一某一个指标难以对12个地区进行准确的评价,单一指标只能反映地区的某一方面。所以,有必要确定综合评价指标,便于对比。因子分析方法就可以应用在这个案例中。

5 个指标即为我们分析的对象,我们希望从这5个可观测指标中寻找出潜在的因素,用这些具有综合信息的因素对各地区进行评价。

下图spss因子分析的操作界面主要包括5方面的选项,变量区只能选择数值型变量,分类型变量不能进入该模型。

spss软件为了消除不同变量间量纲和数量级对结果的影响,在该过程中默认自动进行标准化处理,因此不需要对这些变量提前进行标准化处理。

描述统计选项卡

希望看到各变量的描述统计信息,要对比因子提取前后的方差变化,选定“单变量描述性”和“原始分析结果”;

现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数和显著性水平“,

另外,比较重要的还有 KMO 和球形检验,通过KMO值,我们可以初步判断该数据集是否适合采用因子分析方法,kmo结果有时并不会出现,这主要与变量个数和样本量大小有关。

抽取选项卡:在该选项卡中设置如何提取因子

提取因子的方法有很多,最常用的就是主成分法。

因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。

经常用到碎石图对于判断因子的个数很有帮助,一般都会选择该项。关于特征值,一般spss默认只提取特征值大于1的因子。收敛次数比较重要,可以从首次结果反馈的信息进行调整。

因子旋转选项卡

因子分析要求对因子给予命名和解释,是否对因子旋转取决于因子的解释。

旋转就是坐标变换,使得因子系数向1 和 0 靠近,对公因子的命名和解释更加容易。旋转方法一般采用”最大方差法“即可,输出旋转后的因子矩阵和载荷图,对于结果的解释非常有帮助。

如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。

保存因子得分

要计算因子得分就要先写出因子的表达式。因子是不能直接观察到的,是潜在的。但是可以通过可观测到的变量获得。

因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。从而得到因子得分。因子得分作为变量保存,对于以后深入分析很有用处。

结果解读:验证数据是否适合做因子分析

参考kmo结果,一般认为大于0.5,即可接受。同时还可以参考相关系数,一般认为分析变量的相关系数多数大于 0.3,则适合做因子分析;

KMO=0.575 检验来看,不是特别适合因子分析,基本可以通过。

结果解读:因子方差表

提取因子后因子方差的值均很高,表明提取的因子能很好的描述这 5 个指标。

方差分解表表明,默认提取的前两个因子能够解释 5 个指标的 93.4%。碎石图表明,从第三个因子开始,特征值差异很小。综上,提取前两个因子。

结果解读:因子矩阵

旋转因子矩阵可以看出,经旋转后,因子便于命名和解释。

因子 1主要解释的是中等房价、专业服务项目、中等校平均校龄,可以命名为社会福利因子;

因子 2 主要解释的是其余两个指标,总人口和总雇员。可以命名为人口因子。

因子分析要求最后得到的因子之间相互独立,没有相关性,而因子转换矩阵显示,两个因子相关性较低。可见,对因子进行旋转是完全有必要的。

结果解读:因子系数

因子得分就是根据这个系数和标准化后的分析变量得到的。在数据视图中可以看到因子得分变量。

结论

经过因子分析实现了目的,找到了两个综合评价指标,人口因子和福利因子。

从原来的 5 个指标挖掘出 2 个潜在的综合因子。可以对12 个地区给出客观评价。

可以根据因子1或因子2得分,对这12个地区进行从大到小排序,得分高者被认为在这个维度上有较好表现。

多元统计分析概述

后期会把每一章的学习笔记链接加上

多元统计分析 是研究多个随机变量之间相互依赖关系及其内在统计规律的一门学科

在统计学的基本内容汇总,只考虑一个或几个因素对一个观测指标(变量)的影响大小的问题,称为 一元统计分析 。

若考虑一个或几个因素对两个或两个以上观测指标(变量)的影响大小的问题,或者多个观测指标(变量)的相互依赖关系,既称为 多元统计分析 。

有两大类,包括:

将数据归类,找出他们之间的联系和内在规律。

构造分类模型一般采用 聚类分析 和 判别分析 技术

在众多因素中找出各个变量中最佳的子集合,根据子集合所包含的信心描述多元系统的结果及各个因子对系统的影响,舍弃次要因素,以简化系统结构,认识系统的内核(有点做单细胞降维的意思)

可采用 主成分分析 、 因子分析 、 对应分析 等方法。

多元统计分析的内容主要有: 多元数据图示法 、 多元线性相关 与 回归分析 、 判别分析 、 聚类分析 、 主成分分析 、 因子分析 、 对应分析 及 典型相关分析 等。

多元数据是指具有多个变量的数据。如果将每个变量看作一个随机向量的话,多个变量形成的数据集将是一个随机矩阵,所以多元数据的基本表现形式是一个矩阵。对这些数据矩阵进行数学表示是我们的首要任务。也就是说,多元数据的基本运算是矩阵运算,而R语言是一个优秀的矩阵运算语言,这也是我们应用它的一大优势。

直观分析即图示法,是进行数据分析的重要辅助手段。例如,通过两变量的散点图可以考察异常的观察值对样本相关系数的影响,利用矩阵散点图可以考察多元之间的关系,利用多元箱尾图可以比较几个变量的基本统计量的大小差别。

相关分析就是通过对大量数字资料的观察,消除偶然因素的影响,探求现象之间相关关系的密切程度和表现形式。在经济系统中,各个经济变量常常存在内在的关系。例如,经济增长与财政收人、人均收入与消费支出等。在这些关系中,有一些是严格的函数关系,这类关系可以用数学表达式表示出来。还有一些是非确定的关系,一个变量产生变动会影响其他变量,使其产生变化。这种变化具有随机的特性,但是仍然遵循一定的规律。函数关系很容易解决,而那些非确定的关系,即相关关系,才是我们所关心的问题。

回归分析研究的主要对象是客观事物变量间的统计关系。它是建立在对客观事物进行大量实验和观察的基础上,用来寻找隐藏在看起来不确定的现象中的统计规律的方法。回归分析不仅可以揭示自变量对因变量的影响大小,还可以用回归方程进行预测和控制。回归分析的主要研究范围包括:

(1) 线性回归模型: 一元线性回归模型 , 多元线性回归模型 。 (2) 回归模型的诊断: 回归模型基本假设的合理性,回归方程拟合效果的判定,选择回归函数的形式。 (3) 广义线性模型: 含定性变量的回归 , 自变量含定性变量 , 因变量含定性变量 。 (4) 非线性回归模型: 一元非线性回归 , 多元非线性回归 。

在实际研究中,经常遇到一个随机变量随一个或多个非随机变量的变化而变化的情况,而这种变化关系明显呈非线性。怎样用一个较好的模型来表示,然后进行估计与预测,并对其非线性进行检验就成为--个重要的问题。在经济预测中,常用多元回归模型反映预测量与各因素之间的依赖关系,其中,线性回归分析有着广泛的应用。但客观事物之间并不一定呈线性关系,在有些情况下,非线性回归模型更为合适,只是建立起来较为困难。在实际的生产过程中,生产管理目标的参量与加工数量存在相关关系。随着生产和加工数量的增加,生产管理目标的参量(如生产成本和生产工时等)大多不是简单的线性增加,此时,需采用非线性回归分析进行分析。

鉴于统计模型的多样性和各种模型的适应性,针对因变量和解释变量的取值性质,可将统计模型分为多种类型。通常将自变量为定性变量的线性模型称为 一般线性模型 ,如实验设计模型、方差分析模型; 将因变量为非正态分布的线性模型称为 广义线性模型 ,如 Logistic回归模型 、 对数线性模型 、 Cox比例风险模型 。

1972年,Nelder对经典线性回归模型作了进一步的推广,建立了统一的理论和计算框架,对回归模型在统计学中的应用产生了重要影响。这种新的线性回归模型称为广义线性模型( generalized linear models,GLM)。

广义线性模型是多元线性回归模型的推广,从另一个角度也可以看作是非线性模型的特例,它们具有--些共性,是其他非线性模型所不具备的。它与典型线性模型的区别是其随机误差的分布 不是正态分布 ,与非线性模型的最大区别则在于非线性模型没有明确的随机误差分布假定,而广义线性模型的 随机误差的分布是可以确定的 。广义线性模型 不仅包括离散变量,也包括连续变量 。正态分布也被包括在指数分布族里,该指数分布族包含描述发散状况的参数,属于双参数指数分布族。

判别分析是多元统计分析中用于 判别样本所属类型 的一种统计分析方法。所谓判别分析法,是在已知的分类之下,一旦有新的样品时,可以利用此法选定一个判别标准,以判定将该新样品放置于哪个类别中。判别分析的目的是对已知分类的数据建立由数值指标构成的 分类规则 ,然后把这样的规则应用到未知分类的样品中去分类。例如,我们获得了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标中发现两类人的区别。把这种区别表示为一个判别公式,然后对那些被怀疑患胃炎的人就可以根据其化验指标用判别公式来进行辅助诊断。

聚类分析是研究 物以类聚 的--种现代统计分析方法。过去人们主要靠经验和专业知识作定性分类处理,很少利用数学方法,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别和联系,特别是对于多因素、多指标的分类问题,定性分类更难以实现准确分类。为了克服定性分类的不足,多元统计分析逐渐被引人到数值分类学中,形成了聚类分析这个分支。

聚类分析是一种分类技术,与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。 聚类分析 与 回归分析 、 判别分析 一起被称为多元分析的三个主要方法。

在实际问题中,研究多变量问题是经常遇到的,然而在多数情况下,不同变量之间有一定相关性,这必然增加了分析问题的复杂性。主成分分析就是一种 通过降维技术把多个指标化为少数几个综合指标 的统计分析方法。如何将具有错综复杂关系的指标综合成几个较少的成分,使之既有利于对问题进行分析和解释,又便于抓住主要矛盾作出科学的评价,此时便可以用主成分分析方法。

因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,但其目的是 用有限个不可观测的隐变量来解释原变量之间的相关关系 。主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多元分析中,变量间往往存在相关性,是什么原因使变量间有关联呢? 是否存在不能直接观测到的但影响可观测变量变化的公共因子呢?

因子分析就是寻找这些公共因子的统计分析方法,它是 在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别 。例如,在研究糕点行业的物价变动中,糕点行业品种繁多、多到几百种甚至上千种,但无论哪种样式的糕点,用料不外乎面粉、食用油、糖等主要原料。那么,面粉、食用油、糖就是众多糕点的公共因子,各种糕点的物价变动与面粉、食用油、糖的物价变动密切相关,要了解或控制糕点行业的物价变动,只要抓住面粉、食用油和糖的价格即可。

对应分析又称为相应分析,由法国统计学家J.P.Beozecri于 1970年提出。对应分析是在因子分析基础之上发展起来的一种多元统计方法,是Q型和R型因子分析的联合应用。在经济管理数据的统计分析中,经常要处理三种关系,即 样品之间的关系(Q型关系)、变量间的关系(R型关系)以及样品与变量之间的关系(对应型关系) 。例如,对某一行业所属的企业进行经济效益评价时,不仅要研究经济效益指标间的关系,还要将企业按经济效益的好坏进行分类,研究哪些企业与哪些经济效益指标的关系更密切一些,为决策部门正确指导企业的生产经营活动提供更多的信息。这就需要有一种统计方法, 将企业(样品〉和指标(变量)放在一起进行分析、分类、作图,便于作经济意义.上的解释 。解决这类问题的统计方法就是对应分析。

在相关分析中,当考察的一组变量仅有两个时,可用 简单相关系数 来衡量它们;当考察的一组变量有多个时,可用 复相关系数 来衡量它们。大量的实际问题需要我们把指标之间的联系扩展到两组变量,即 两组随机变量之间的相互依赖关系 。典型相关分析就是用来解决此类问题的一种分析方法。它实际上是 利用主成分的思想来讨论两组随机变量的相关性问题,把两组变量间的相关性研究化为少数几对变量之间的相关性研究,而且这少数几对变量之间又是不相关的,以此来达到化简复杂相关关系的目的 。

典型相关分析在经济管理实证研究中有着广泛的应用,因为许多经济现象之间都是多个变量对多个变量的关系。例如,在研究通货膨胀的成因时,可把几个物价指数作为一组变量,把若干个影响物价变动的因素作为另一组变量,通过典型相关分析找出几对主要综合变量,结合典型相关系数对物价上涨及通货膨胀的成因,给出较深刻的分析结果。

多维标度分析( multidimensional scaling,MDS)是 以空间分布的形式表现对象之间相似性或亲疏关系 的一种多元数据分析方法。1958年,Torgerson 在其博士论文中首次正式提出这一方法。MDS分析多见于市场营销,近年来在经济管理领域的应用日趋增多,但国内在这方面的应用报道极少。多维标度法通过一系列技巧,使研究者识别构成受测者对样品的评价基础的关键维数。例如,多维标度法常用于市场研究中,以识别构成顾客对产品、服务或者公司的评价基础的关键维数。其他的应用如比较自然属性(比如食品口味或者不同的气味),对政治候选人或事件的了解,甚至评估不同群体的文化差异。多维标度法 通过受测者所提供的对样品的相似性或者偏好的判断推导出内在的维数 。一旦有数据,多维标度法就可以用来分析:①评价样品时受测者用什么维数;②在特定情况下受测者可能使用多少维数;③每个维数的相对重要性如何;④如何获得对样品关联的感性认识。

20世纪七八十年代,是现代科学评价蓬勃兴起的年代,在此期间产生了很多种评价方法,如ELECTRE法、多维偏好分析的线性规划法(LINMAP)、层次分析法(AHP)、数据包络分析法(EDA)及逼近于理想解的排序法(TOPSIS)等,这些方法到现在已经发展得相对完善了,而且它们的应用也比较广泛。

而我国现代科学评价的发展则是在20世纪八九十年代,对评价方法及其应用的研究也取得了很大的成效,把综合评价方法应用到了国民经济各个部门,如可持续发展综合评价、小康评价体系、现代化指标体系及国际竞争力评价体系等。

多指标综合评价方法具有以下特点: 包含若干个指标,分别说明被评价对象的不同方面 ;评价方法最终要 对被评价对象作出一个整体性的评判,用一个总指标来说明被评价对象的一般水平 。

目前常用的综合评价方法较多, 如综合评分法、综合指数法、秩和比法、层次分析法、TOPSIS法、模糊综合评判法、数据包络分析法 等。

R -- 永远滴神~

多元统计分析的简介

multivariate statistical analysis研究客观事物中多个变量(或多个因素)之间相互依赖的统计规律性。它的重要基础之一是多元正态分析。又称多元分析 。 如果每个个体有多个观测数据,或者从数学上说, 如果个体的观测数据能表为 P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析 。 它是数理统计学中的一个重要的分支学科。20世纪30年代,R.A.费希尔,H.霍特林,许宝碌以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到迅速发展。50年代中期,随着电子计算机的发展和普及 ,多元统计分析在地质 、气象、生物、医学、图像处理、经济分析等许多领域得到了广泛的应用 ,同时也促进了理论的发展。各种统计软件包如SAS,SPSS等,使实际工作者利用多元统计分析方法解决实际问题更简单方便。重要的多元统计分析方法有:多重回归分析(简称回归分析)、判别分析、聚类分析、主成分分析、对应分析、因子分析、典型相关分析、多元方差分析等。早在19世纪就出现了处理二维正态总体(见正态分布)的一些方法,但系统地处理多维概率分布总体的统计分析问题,则开始于20世纪。人们常把1928年维夏特分布的导出作为多元分析成为一个独立学科的标志。20世纪30年代,R.A.费希尔、H.霍特林、许宝禄以及S.N.罗伊等人作出了一系列奠基性的工作,使多元统计分析在理论上得到了迅速的进展。40年代,多元分析在心理、教育、生物等方面获得了一些应用。由于应用时常需要大量的计算,加上第二次世界大战的影响,使其发展停滞了相当长的时间。50年代中期,随着电子计算机的发展和普及,它在地质、气象、标准化、生物、图像处理、经济分析等许多领域得到了广泛的应用,也促进了理论的发展。多元分析发展的初期,主要讨论如何把一元正态总体的统计理论和方法推广到多元正态总体。多元正态总体的分布由两组参数,即均值向量μ(见数学期望)和协方差矩阵(简称协差阵)∑ (见矩)所决定,记为Np(μ,∑)(p为分布的维数,故又称p维正态分布或p 维正态总体)。设X1,X2,…,Xn为来自正态总体Np(μ,∑)的样本,则μ和∑的无偏估计(见点估计)分别是和分别称之为样本均值向量和样本协差阵,它们是在各种多元分析问题中常用的统计量。样本相关阵R 也是一个重要的统计量,它的元素为其中υij为样本协差阵S的元素。S的分布是维夏特分布,它是一元统计中的Ⅹ2分布的推广。另一典型问题是:假定两个多维正态分布协差阵相同,检验其均值向量是否相同。设样本X1,X2,…,Xn抽自正态总体Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要检验假设H 0:μ1=μ2(见假设检验)。在一元统计中使用t统计量(见统计量)作检验;在多元分析中则用T2统计量,,其中,,·,T2的分布称为T2分布。这是H.霍特林在1936年提出来的。在上述问题中的多元与一元相应的统计量是类似的,但并非都是如此。例如,要检验k个正态总体的均值是否相等,在一元统计中是导致F统计量,但在多元分析中可导出许多统计量,最著名的有威尔克斯Λ统计量和最大相对特征根统计量。研究这些统计量的精确分布和优良性是近几十年来多元统计分析的重要理论课题。多元统计分析有狭义与广义之分,当假定总体分布是多元正态分布时,称为狭义的,否则称为广义的。近年来,狭义多元分析的许多内容已被推广到更广的分布之中,特别是推广到一种称为椭球等高分布族之中。按多元分析所处理的实际问题的性质分类,重要的有如下几种。 简称回归分析。其特点是同时处理多个因变量。回归系数和常数的计算公式与通常的情况相仿,只是由于因变量不止一个,原来的每个回归系数在此都成为一个向量。因此,关于回归系数的检验要用T2统计量;对回归方程的显著性检验要用Λ统计量。回归分析在地质勘探的应用中发展了一种特殊的形式,称为趋势面分析,它以各种元素的含量作为因变量,把它们对地理坐标进行回归(选用一次、二次或高次的多项式),回归方程称为趋势面,反映了含量的趋势。残差分析是趋势面分析的重点,找出正的残差异常大的点,在这些点附近,元素的含量特别高,这就有可能形成可采的矿位。这一方法在其他领域也有应用。 由 k个不同总体的样本来构造判别函数,利用它来决定新的未知类别的样品属于哪一类,这是判别分析所处理的问题。它在医疗诊断、天气预报、图像识别等方面有广泛的应用。例如,为了判断某人是否有心脏病,从健康的人和有心脏病的人这两个总体中分别抽取样本,对每人各测两个指标X1和X2,点绘如图 。可用直线A将平面分成g1和g2两部分,落在g1的绝大部分为健康者,落在g2的绝大部分为心脏病人,利用A的垂线方向l=(l1,l2)来建立判别函数y=l1X1+l2X2,可以求得一常数с,使 y<с 等价于(X1,X2)落在g1,y>с等价于(X1,X2)落在g2。由此得判别规则:若,l1X1+l2X2C判,即此人为心脏病人;若,l1X1+l2X2=c则为待判。此例的判别函数是线性函数,它简单方便,在实际问题中经常使用。但有时也用非线性判别函数,特别是二次判别函数。建立判别函数和判别规则有不少准则和方法,常用的有贝叶斯准则、费希尔准则、距离判别、回归方法和非参数方法等。无论用哪一种准则或方法所建立的判别函数和判别规则,都可能产生错判,错判所占的比率用错判概率来度量。当总体间区别明显时,错判概率较小;否则错判概率较大。判别函数的选择直接影响到错判概率,故错判概率可用来比较不同方法的优劣。变量(如上例中的X1和X2)选择的好坏是使用判别分析的最重要的问题,常用逐步判别的方法来筛选出一些确有判别作用的变量。利用序贯分析的思想又产生了序贯判别分析。例如医生在诊断时,先确定是否有病,然后确定是哪个系统有病,再确定是什么性质的病等等。 又称数值分类。聚类分析和判别分析的区别在于,判别分析是已知有多少类和样本来自哪一类,需要判别新抽取的样本是来自哪一类;而聚类分析则既不知有几类,也不知样本中每一个来自哪一类。例如,为了制定服装标准,对 N个成年人,测量每人的身高(x1)、胸围(x2)、肩宽(x3)、上体长(x4)、手臂长(x5)、前胸(x6)、后背(x7)、腰围(x8)、臀围(x9)、下体长(x10)等部位,要将这N个人进行分类,每一类代表一个号型;为了使用和裁剪的方便,还要对这些变量(x1,x2,…,x10)进行分类。聚类分析就是解决上述两种分类问题。设已知N个观测值X1,X2,…,Xn,每个观测值是一个p维向量(如上例中人的身高、胸围等)。聚类分析的思想是将每个观测值Xi看成p维空间的一个点,在p维空间中引入“距离”的概念,则可按各点间距离的远近将各点(观测值)归类。若要对 p个变量(即指标)进行分类,常定义一种“相似系数”来衡量变量之间的亲密程度,按各变量之间相似系数的大小可将变量进行分类。根据实际问题的需要和变量的类型,对距离和相似系数有不同的定义方法。按距离或相似系数分类,有下列方法。①凝聚法:它是先将每个观察值{Xi}看成一类,逐步归并,直至全部观测值并成一类为止,然后将上述并类过程画成一聚类图(或称谱系图),利用这个图可方便地得到分类。②分解法:它是先将全部观测值看成一类,然后逐步将它们分解为2类、3类、…、N类,它是凝聚法的逆过程。③动态聚类法:它是将观测值先粗糙地分类,然后按适当的目标函数和规定的程序逐步调整,直至不能再调为止。若观察值X1,X2,…,Xn之间的次序在分类时不允许打乱,则称为有序分类。例如在地质学中将地层进行分类,只能将互相邻接的地层分成一类,不能打乱上下的次序。用于这一类问题中的重要方法是费希尔于1958年提出的最优分割法。聚类分析也能用于预报洪水、暴雨、地震等灾害性问题,其效果比其他统计方法好。但它在理论上还很薄弱,因为它不象其他方法那样有确切的数学模型。 又称主分量分析,是将多个变量通过线性变换以选出较少个数重要变量的一种方法。设原来有p个变量x1,x2,…,xp,为了简化问题,选一个新变量z,,要求z尽可能多地反映p个变量的信息,以此来选择l1,l2,…,lp,当l1,l2,…,lp选定后,称z为x1,x2,…,xp的主成分(或主分量)。有时仅一个主成分不足以代表原来的p个变量,可用q(

论文数据分析方法有哪些

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

统计分析论文

统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!

浅谈统计分析与决策

[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。

[关键词] 统计分析 分析方法 决策

统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?

狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。

广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。

搞好统计分析,需要解决选题、分析、撰写报告三个问题。

一、统计分析选题

所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。

怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。

统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。

统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。

二、统计分析方法

统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。

统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。

统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。

形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。

对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。

所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,

没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。

从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。

三、统计分析报告的撰写

统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。

准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。

快:就是在决策层决策之前,不失时机地及时提供分析报告。

新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。

深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。

活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。

统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。

1.准确地表述事实

每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。

2.透彻地阐明本质

现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。

阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。

3.深刻地揭示规律

规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。

4.恰当地提出建议

认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。

以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。

统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。

试谈统计分析方法应用

【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。

【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言

随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。

二、多元统计分析方法的主要应用

统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。

聚类分析

它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。

判别分析

判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。

主成分分析

主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。

因子分析

因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。

三、构建多元统计分析方法检验体系的必要性

(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量

多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。

(二)多元统计分析统计检验体系的基础理论

多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。

(三)关于统计检验体系

将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:

a.主成分分析统计检验体系

b.因子分析统计检验体裂引

c.系统聚类分析统计检验体系

d.判别分析统计检验体裂

e.对应分析统计检验体系

f.典型相关分析统计检验体系

四、多元统计分析方法应用中需要注意的几个共性问题

1.关于原始数据变量的总体分布问题。

对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。

样本容量问题。

进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。

原始变量之间的相关性以及非线性关系问题。

多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。

数据处理问题。

多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。

五、结束语

在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。

【参考文献】

[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.

[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.

[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.

[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页