今天晚上老师给我们布置了预习四年级下册第85页的作业,老师说这项任务非常有意思,也很有挑战性。回家打开书本一看,该页的题目的《三角形的内角和》,我心中充满了疑惑,什么是三角形的内角呢?什么又是三角形的内角和呢?这一连串的问题困扰着我。经过电脑老师的帮助我知道了三角形有内角和外角区别,所谓内角就是三角形内部的角,这三个内角的度数之和就是三角形的内角和,电脑老师还说在三角形的内角和是180度。 为什么呢,三角形的形状各异,高矮胖瘦各不相同,为什么内角和都相等呢?我不相信,我要自己检验一下。
心动不如行动,我自己在纸上随手画了一个锐角三角形,经过自己的测量,三个角的度数分别是48度、82度、50度,三个角之和还真是180度。我心想,锐角三角形的内角和应该比钝角三角形的内角和小一些,这次我要画一个钝角三角形试试。画完之后我的更加仔细的进行了测量,三个内角分别是127度、29度、24度。内角和怎么还是180度呢?为什么会这样呢,明明是两个不一样的三角形,怎么内角和会是惊人的一样呢?这是偶然还是必然呢?有没有其他的验证方法呢?一个个更大的问号在我脑海中盘旋。
我琢磨着:三角形的内角和就是把三个内角相加,而且角的大小跟两条边的长短没有关系,由两条边叉开的大小决定。那可不可以把这三个角剪下来再拼一拼呢?说不定会有什么发现呢!
为了便于拼接,我找来一张稍微硬的纸,随便画了一个三角形,延边剪下,并且用彩笔给三个角标上了名字:1、2、3。然后把这三个角剪了下来,不一会功夫,这1、2、3号角都被解放了,成为了独立的家伙。这三个家伙能给我带来什么呢?想到这我不禁有点暗喜。
但是我应该怎样拼这三个角呢?怎样让这三个家伙见面呢?又是一个拦路虎。 不着急,让我先定神想想:刚才在测量的时候是把三个角的度数相加,这会我应该让三个角顶点相对,也就是头对头。“对,就是这样。”我像发现新大陆似的。 我先把1号和2号角顶点相对,组成了一个大角,然后把3号三角形顶点向内,三个家伙相聚了,像是多年不见的朋友,紧紧的凑在一起叙旧呢?真可爱! 我认真的观察着这一副相聚图,他们三个组成的大角的两条边在一条直线上。这不是平角吗?天啊,我发现了,三角形的内角和就是180度。在那一刹那,我抑制不住心中的激动,高兴的蹦了起来。
我通过自己测量和剪拼发现了任何一个三角形的内角和都是一样的,不分大小,不分形状。我更高兴的是,只要勤于思考,勤于动手,敢于尝试,我们能发现很多的数学知识。以后我还要坚持这样去探索数学世界的奥秘
1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接:
满意请采纳
例谈椭圆与三角形相关问题
解析几何与三角是高中数学的重要内容,两者结合能体现两主干知识的内在联
系和知识之间的综合应用,而在知识网络交汇处设计的试题历来受命题者的青睐,
在各级各类考试中频频出现,各省和全国高考卷对此也情有独钟.本文就以椭圆和三
角形相关问题作一归例谈解析.
粗;一、三角形边长问题
例1设只、抓为椭圆兰十丝=1的两个焦点.p为椭圆上一点.已知尸、抓、几是一个直
94
角三角形的三个顶点,且}PF,l>IP不飞I,求里旦的值.IP不’2l
分析:利用定义,求出两焦半径即可将问题解决.但根据直角的位置,分两种情
解:(l)若乙尸凡式为直角,则}PFl}2二}PFz}2+l名FzI,,…}PF,}2=(6一IPF,l)’+20,得}PF,l=
14.。。.4}尸F,}7
—,廿?21=一,…二二丁,=一33}件铆2
(2)若乙FIPFz为直角,则IFIFzlz=IPFzlz+IPFI尸,…20:lPF.}2+(6一}PF,l)’,得IPFI}=4,
IPFI.二2,故塑二2.!丹U
本题还可以根据椭圆的对称性,求出P点的坐标:略解如下
(l)若乙PFzFI为直角,P(二,力满足方程组
。V了
兰+竺=l’’“
94
拭吓,{),..·器
7一2
一一
扩扩=
(2)若乙乙PFz为直角尹(:,力满足方程组x2
—十9丝=l4
n13V污es
1--1
—
终可亏!
5/
四l二2.
}PFzl
说明:本题的直角三角形直角的位置没有确定,要分类讨论,这点不注意就可能
导致解题不全,其二是解题利用方程的思想.
髻撇鑫全、离心率问题
例2已知脆椭圆兰+止=1(a>。>0)上一点.只、兀是左右两焦点在△抓PF,中.若
矿乙2
乙凡外飞二90“,求椭圆离心率的取值范围.
解法一:设P(x。,y0),由椭圆的第二定义可得}PFll=a+ex0,}PFzl=a一:。,丫乙凡PFz=
900,
:.}PF,lz+IPFz臼几月,,即az+e、;二2c,,则了鉴2c,,.,.
:.。·
{粤,‘}·
二〕卫二又因为0<e<1
a2
解法二:以口为圆心,以。为半径作圆,此圆必须与椭圆有交点,因为在交点处的
尸,显然满足乙FIPFz=900,所以。应满足占蕊。<a,由。<a知0<e<l,由乙毛。得了一,城。,,即
了成2cz,二)交互:.。。「竺二,1….
2LZJ
说明:题中△凡PFz称为椭圆的“焦点三角形”,根据焦点三角形的特征,解题的主
要途径是:椭圆的两个定义(或焦半径公式)和正余弦定理(或勾股定理),以及数形结
合的思想.
若将Fl、凡变式为长轴的两个端点,角度再作=点变化即可变为下面题目
(上海市高考题)已知椭圆尸+尹=l(a>b>0)上一点
了bz
A、B是长轴的两个端点,如
果椭圆上存在一点Q使得乙AQB=1200.求椭圆的离心率。的取值范围.
翼纂l戴弃角形面积何题
以椭圆为载体考查三角形面积问题,或以三角形面积为载体考查椭圆的问题是
考试卷中经常出现的一类问题.
例32oo7浙江卷)如图,直线:二k:+b与椭圆吐十4
户l交于A,B两点,记△AoB的面积为s.
(I)求在k=O,0<b<l的条件下,s的最大值;
(11)略
分析:本题利用椭圆和直线的位置关系,结合不
等式性质不难解决.
‘
(I)解:设点A的坐标为(二;,b),点B的坐标为(x2,的,由兰十。任1,解得为=士Vl二石万,
所以s=生b.
2
Ix,一zl=Zb.、月二歹城bZ+l一梦月.当且仅当b=V2
2
时.5取到最大值1.
本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几
何的基本思想方法和综合解题能力一直高考的热点问题.