您当前的位置:首页 > 发表论文>论文发表

初二数学论文2000字

2023-02-11 07:01 来源:学术参考网 作者:未知

初二数学论文2000字

  初二数学论文篇二
  初二数学两极分化的成因和对策

  【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。

  【关键词】初中数学 两极分化 原因 对策

  从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。

  一、初中数学出现两极分化的原因

  初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。

  二、避免初二数学两极分化的办法

  1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯

  良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。

  2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧

  千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。

  3.以良好的心态对待各种数学考试。

  数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。

  三、对待初中数学两极分化中的学生应采取的措施

  虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。

  初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。

  【参考文献】

  1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,2012.19.

  2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,2010.2.

  (作者单位:546100广西来宾市第三中学)

  
看了“初二数学论文怎么写”的人还看:

1. 2000字的初中数学论文怎么写

2. 初中数学小论文范文

3. 初中数学论文范文

4. 有关初中数学小论文范文

5. 数学小论文的范文

数学小论文初二

  2的学生数学论文:《勾股定理的证明方法探究》

  勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

  据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!

  勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

  勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

  首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

  1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

  左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
  a^2+b^2=c^2。
  这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

  2.希腊方法:直接在直角三角形三边上画正方形,如图。

  容易看出,

  △ABA’ ≌△AA'C 。

  过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

  △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

  于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

  即 a2+b2=c2。

  至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

  这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

  以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

  ⑴ 全等形的面积相等;

  ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

  这是完全可以接受的朴素观念,任何人都能理解。

  我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

  如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

  赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

  西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

  下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

  如图,

  S梯形ABCD= (a+b)2

  = (a2+2ab+b2), ①

  又S梯形ABCD=S△AED+S△EBC+S△CED

  = ab+ ba+ c2

  = (2ab+c2)。 ②

  比较以上二式,便得

  a2+b2=c2。

  这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

  1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

  在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

  如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

  △BCD∽△BAC,△CAD∽△BAC。

  由△BCD∽△BAC可得BC2=BD ? BA, ①

  由△CAD∽△BAC可得AC2=AD ? AB。 ②

  我们发现,把①、②两式相加可得

  BC2+AC2=AB(AD+BD),

  而AD+BD=AB,

  因此有 BC2+AC2=AB2,这就是

  a2+b2=c2。

  这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

  在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

  设△ABC中,∠C=90°,由余弦定理

  c2=a2+b2-2abcosC,

  因为∠C=90°,所以cosC=0。所以

  a2+b2=c2。

  这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

  人们对勾股定理感兴趣的原因还在于它可以作推广。

  欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

  从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

  勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

  若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

  总之,在勾股定理探索的道路上,我们走向了数学殿堂

  56

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页