您当前的位置:首页 > 发表论文>论文发表

模糊数学论文如何简要介绍

2023-02-10 20:06 来源:学术参考网 作者:未知

模糊数学论文如何简要介绍

模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。

由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。

扩展资料

模糊数学为现代数学的基础,集合可以表现概念,把具有某种属性的东西的全体称为集合。现实生活中许多事物(或现象)的变化是过渡性的,没有明确的界限,如人长得高、矮、胖瘦等,都是模糊性的语言。

正思通感围像具有模物性的特征,为了提高分类精度,在通感图像识别中,引人模糊数学方法是很有前景的。应当指出,在目前的技术条件下,并算机自动识别方法还无法代特目视解译方法。

用一道题及解答来介绍什么是模糊数学

十世纪六十年代,产生了模糊数学这门新兴学科。

模糊数学的产生

现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。

但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。

在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。

各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。

我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。

在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。

人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。

模糊数学的研究内容

1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。

模糊数学的研究内容主要有以下三个方面:

第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。察德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。

在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为0.5,即“半老”,60岁属于“老”的程度0.8。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。

第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。

为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。

如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。

人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。

为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊罗基还很不成熟,尚需继续研究。

第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。

模糊数学的应用

模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。

目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。

模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。

模糊数学是什么?能举个例子吗?谢谢麻烦告诉我

再举一个例子,我们现在要从一片西瓜地里找出一个最大的西瓜,那是件很麻烦的事。必须把西瓜地里所有的西瓜都找出来,再比较一下,才知道哪个西瓜最大。西瓜越多,工作量就越大。如果按通常说的,到西瓜地里去找一个较大的西瓜,这时精确的问题就转化成模糊的问题,反而容易多了。由此可见,适当的模糊能使问题得到简化。
确实,像上面的“一粒”与“一堆”,“最大的”与“较大的”都是有区别的两个概念。但是它们的区别都是逐渐的,而不是突变的,两者之间并不存在明确的界限,换句话说,这些概念带有某种程度的模糊性。类的,我们说一个人很高或很胖,但是究竟多少厘米才算高,多少千克才算胖呢?像这里的高和胖都是很模糊了。
模糊数学模糊数学是研究现实中许多界限不分明问题的一种数学工具,其基本概念之一是模糊集合。利用模糊数学和模糊逻辑,能很好地处理各种模糊问题。
模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。
模糊数学这种相当新的数学方法和思想方法,虽有待于不断完善,但其应用前景却非常广阔。
模糊数学是运用数学方法研究和处理模糊性现象的一门数学新分支。它以“模糊集合”论为基础。模糊数学提供了一种处理不肯定性和不精确性问题的新方法,是描述人脑思维处理模糊信息的有力工具。它既可用于“硬”科学方面,又可用于“软”科学方面。
模糊数学由美国控制论专家L.A.扎德(L.A.Zadeh,1921--)教授所创立。他于1965年发表了题为《模糊集合论》(《Fuzzy Sets》)的论文,从而宣告模糊数学的诞生。L.A.扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能象人脑那样进行灵活的思维与判断问题。尽管计算机记忆超人,计算神速,然而当其面对外延不分明的模糊状态时,却“一筹莫展”。可是,人脑的思维,在其感知、辨识、推理、决策以及抽象的过程中,对于接受、贮存、处理模糊信息却完全可能。计算机为什么不能象人脑思维那样处理模糊信息呢?其原因在于传统的数学,例如康托尔集合论(Cantor′s Set),不能描述“亦此亦彼”现象。集合是描述人脑思维对整体性客观事物的识别和分类的数学方法。康托尔集合论要求其分类必须遵从形式逻辑的排中律,论域(即所考虑的对象的全体)中的任一元素要么属于集合A,要么不属于集合A,两者必居其一,且仅居其一。这样,康托尔集合就只能描述外延分明的“分明概念”,只能表现“非此即彼”,而对于外延不分明的“模糊概念”则不能反映。这就是目前计算机不能象人脑思维那样灵活、敏捷地处理模糊信息的重要原因。为克服这一障碍,L.A.扎德教授提出了“模糊集合论”。在此基础上,现在已形成一个模糊数学体系。
所谓模糊现象,是指客观事物之间难以用分明的界限加以区分的状态,它产生于人们对客观事物的识别和分类之时,并反映在概念之中。外延分明的概念,称为分明概念,它反映分明现象。外延不分明的概念,称为模糊概念,它反映模糊现象。模糊现象是普遍存在的。在人类一般语言以及科学技术语言中,都大量地存在着模糊概念。例如,高与短、美与丑、清洁与污染、有矿与无矿、甚至象人与猿、脊椎动物与无脊椎动物、生物与非生物等等这样一些对立的概念之间,都没有绝对分明的界限。一般说来,分明概念是扬弃了概念的模糊性而抽象出来的,是把思维绝对化而达到的概念的精确和严格。然而模糊集合不是简单地扬弃概念的模糊性,而是尽量如实地反映人们使用模糊概念时的本来含意。这是模糊数学与普通数学在方法论上的根本区别。恩格斯说:“辩证法不知道什么绝对分明的和固定不变的界限,不知道什么无条件的普遍有效的‘非此即彼!’它使固定的形而上学的差异互相过渡,除了‘非此即彼!’,并且使对立互为中介;辩证法是唯一的、最高度地适合于自然观的这一发展阶段的思维方法。
模糊数学产生的直接动力,与系统科学的发展有着密切的关系。在多变量、非线性、时变的大系统中,复杂性与精确性形成了尖锐的矛盾。L.A.扎德教授从实践中总结出这样一条互克性原理:“当系统的复杂性日趋增长时,我们作出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特性。”这就是说,复杂程度越高,有意义的精确化能力便越低。复杂性意味着因素众多,时变性大,其中某些因素及其变化是人们难以精确掌握的,而且人们又常常不可能对全部因素和过程都进行精确的考察,而只能抓住其中主要部分,忽略掉所谓的次要部分。这样,在事实上就给对系统的描述带来了模糊性。“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。”因此,必须寻找到一套研究和处理模糊性的数学方法。这就是模糊数学产生的历史必然性。模糊数学用精确的数学语言去描述模糊性现象,“它代表了一种与基于概率论方法处理不确定性和不精确性的传统不同的思想,……,不同于传统的新的方法论”。它能够更好地反映客观存在的模糊性现象。因此,它给描述模糊系统提供了有力的工具。
L.A.扎德教授于1975年所发表的长篇连载论著《语言变量的概念及其在近似推理中的应用》(《The Concept of a Linguistic Variable &Its Application to Approximate Reasoning》),提出了语言变量的概念并探索了它的含义。模糊语言的概念是模糊集合理论中最重要的发展之一,语言变量的概念是模糊语言理论的重要方面。语言概率及其计算、模糊逻辑及近似推理则可以当作语言变量的应用来处理。人类语言表达主客观模糊性的能力特别引人注目,或许从研究模糊语言入手就能把握住主客观的模糊性、找出处理这些模糊性的方法。有人预言,这一理论和方法将对控制理论、人工智能等作出重要贡献。
模糊数学诞生至今仅有22年历史,然而它发展迅速、应用广泛。它涉及纯粹数学、应用数学、自然科学、人文科学和管理科学等方面。在图象识别、人工智能、自动控制、信息处理、经济学、心理学、社会学、生态学、语言学、管理科学、医疗诊断、哲学研究等领域中,都得到广泛应用。把模糊数学理论应用于决策研究,形成了模糊决策技术。只要经过仔细深入研究就会发现,在多数情况下,决策目标与约束条件均带有一定的模糊性,对复杂大系统的决策过程尤其是如此。在这种情况下,运用模糊决策技术,会显得更加自然,也将会获得更加良好的效果。
我国学者对模糊数学的研究始于70年代中期,然而发展甚速,已有了一支较强的研究队伍,成立了中国模糊集与系统学会,出版了《模糊数学》杂志。出版了许多颇有价值的论著,例如,汪培庄教授所著《模糊集与随机集落影》、《模糊集合论及其应用》,张文修教授编著的《模糊数学基础》等等。我国学者把模糊数学理论应用于气象预报,提高了预报质量,在1980年召开的国际气象学术讨论会上,我国所提交论文得到会议的好评。在中医医疗诊断方面,还制成了《关幼波教授治疗肝病计算机诊断程序》。实践表明,该计算机的医疗效果良好,为继承、发扬祖国医学作出了贡献。这一经验也被推广应用于治疗急腹症等方面。我国学者应用模糊数学理论,在地质探矿、生态环境、企业管理、生物学、心理学等领域,也都分别取得了较好的应用成果。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页