您当前的位置:首页 > 发表论文>论文发表

地球物理学报参考文献格式

2023-02-10 16:46 来源:学术参考网 作者:未知

地球物理学报参考文献格式

安昌强,宋仲和,陈国英,陈立华,庄真,傅竹武,吕梓龄,胡家富.1993.中国西北地区剪切波三维速度结构.地球物理学报,36(3):317~325

陈国英,宋仲和,安昌强,陈立华,庄真,傅竹武,吕梓龄,胡家富.1991.华北地区三维地壳上地幔结构.地球物理学报,34(2):172~181

陈立华,宋仲和,安昌强,陈国英,庄真,傅竹武,胡家富,吕梓龄.1992.中国南北带地壳上地幔三维面波速度结构和各向异性.地球物理学报,35(5):574~583

董颐珍.1997.秦巴地区QB-1测线地震测深成果介绍.见:袁学诚主编,阿尔泰-台湾地学断面论文集.武汉:中国地质大学出版社,165~175

高锐,吴功建.1996.地球物理综合解释模型与现今地球动力学过程。《青藏高原岩石圈结构构造和形成演化》.北京:地质出版社,138~148

阚荣举,韩源.1992.云南遮放至马龙地学断面说明书.北京:地震出版社

李立.1996.中国大陆地壳上地幔电性特征.地球物理学报,36(增刊):136~139

李秋生,卢德源,高锐,李敬卫,范井义,熊贤明,张之英,刘文,李英康,闫全人,李德兴.2000.横跨西昆仑-塔里木接触带的爆炸地震探测.中国科学(D 辑),30(增刊):16~21

林中洋,蔡文伯,陈学波,王椿镛.1992.青海门源至福建宁德地学断面说明书.北京:地震出版社

卢德源,李秋生,高锐,李英康,李德兴,刘文,张之英.2000.横跨天山的人工爆炸地震剖面.科学通报,45(9):982~987

卢造勋,夏怀宽.1992.内蒙古东乌珠穆沁旗至辽宁东沟地学断面(说明书).北京:地震出版社

马杏垣,刘昌栓,刘国栋.1991.江苏响水至内蒙古满都拉地学断面说明书.北京:地质出版社

潘裕生,孔祥儒主编.1998.青藏高原岩石圈结构演化和动力学.广州:广东科技出版社,1~20

彭聪,高锐.2000.中国大陆及邻近海域岩石圈/软流圈结构横向变化研究.北京:地震出版社

宋仲和,安昌强,陈国英,陈立华,庄真,傅竹武,吕梓龄,胡家富.1991.中国西部三维速度结构及其各向异性.地球物理学报,34(6):694~707

宋仲和,陈国英,安昌强,陈立华,庄真,傅竹武,吕梓龄,胡家富.1992.中国东部及其相邻海域S波三维速度结构.地球物理学报,35(3):316~330

孙武城,马宝林,宋松岩,胡鸿翔.1992.湖北随州至内蒙古喀喇沁旗地学断面说明书.北京:地震出版社

孙武城,徐杰,扬主恩,张先康.1992.上海奉贤至内蒙古阿拉善左旗地学断面说明书.北京:地震出版社

汪集旸.1997.深部地热岩石圈研究中的意义及应注意的几个问题.见:张炳喜,洪大卫,吴宣志编,岩石圈研究的现代方法.北京:原子能出版社,113~126

吴功建,高锐,余钦范,程庆云,孟令顺,董学斌,崔作舟,尹周勋,沈显杰,周姚秀.1991.青藏高原“亚东—格尔木地学断面”综合地球物理调查与研究.地球物理学报,34(5):552~562

熊绍柏,赖明惠,刘若宾,于桂生.1993.屯溪—温州地带的岩石圈结构与速度分布.见:李继亮主编,东南大陆岩石圈结构与地质演化.北京:冶金工业出版社,250~256

胥颐,刘福田,刘建华,孙若昧.2000.天山地震带的地壳结构与强震构造环境.地球物理学报,43(2):184~193

徐新忠,齐雄飞,扬长来,党淑娟.1993.青海花石峡—甘肃阿克塞人工爆破地震测深成果.中国地球物理学会年刊.北京:地震出版社,80p

徐新忠,王有学,蒋亚明,党淑娟,聂定平.1997.新疆可可托海-甘肃阿克塞人工爆破地震测深剖面的地壳速度结构研究及其大地构造单元的划分.见袁学诚主编,阿尔泰-台湾地学断面论文集.武汉:中国地质大学出版社,1~13

尹周勋,赖明惠,熊绍柏,刘宏兵,滕吉文,孔祥儒.1999.华南连县—博罗—港口地带地壳结构及速度分布的爆炸地震探测结果.地球物理学报,42(3):383~392

袁学诚主编.1996.中国地球物理图集,国际岩石圈委员会201 号出版物,北京:地质出版社

张贻侠,孙运生,张兴洲,杨宝俊.1998.中国满洲里-绥芬河地学断面.北京:地质出版社

章惠芳.1988.广西柳州爆破观测和桂东地区地壳结构.中国大陆深部构造的研究与进展.北京:地质出版社

章惠芳.1988.中国东南沿海地区泉州爆破深地震测深资料的再解释.中国地震,4(2):96~102

赵俊猛,李植纯,马宗晋.2003.天山分段性的地球物学分析.北京:地学前缘,第10特刊,125~131

郑晔,滕吉文.1989.随县—马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征.地球物理学报,32(6):48~659

朱介寿.1997.中国及其邻区地球三维结构初始模型的建立.地球物理学报,40(5):623~638

庄真,傅竹武,吕梓龄,胡家富,宋仲和,陈国英,安昌强,陈立华.1992.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构.地球物理学报,35(6):694~709

你好: 我想往,《工程地球物理学报》投稿,想问一下它要求的格式、字体的大小,图片的格式如何,字体要什

可到它网站线上头稿,也看下投稿要求等等,图片放在WORD里就行,一般要求清晰

宁德—湖口地学断面下地壳的物质组成和时代——地球化学、Nd同位素和捕获锆石年龄证据

赵凤清 金文山 甘晓春

(天津地质矿产研究所,天津 300170)

孙大中

(中国科学院广州地球化学研究所,广州 510640)

摘要 宁德—湖口断面东起福建省宁德市,西至江西省湖口市,穿越了华夏地块和扬子地块东南缘。华夏地块出露的最老的结晶基底为2400~2000Ma古元古代岩石,扬子地块最老的结晶基底为2200~2000Ma的古元古代岩石。这些基底岩石已遭受角闪岩相(华夏地块)或高绿片岩相—低角闪岩相(扬子地块东南缘)变质作用的改造,大体代表了断面穿越两地块的中地壳特征。火成岩的tDM和火成岩中捕获和/或继承锆石年龄变化于2750~2500Ma,有些达3100Ma,揭示了下地壳的年龄信息。华夏地块的大量花岗质岩石为S型且具负的εNd值,表明下地壳物质组成主体为长英质成分。华夏地块加里东期花岗质岩石的εNd值为—11~—8,而燕山期花岗质岩石的εNd为—6~—1,显示出随着时代的演化,华夏地块下地壳的物质组成由“富花岗质”(富集型)向“贫花岗质”(贫瘠型)方向演化,这主要是受地壳分异作用以及地幔物质添加作用的影响。扬子地块东南缘的花岗质岩石和酸性火山岩虽然主体仍以过铝S型为主,但其εNd值变化于—6~+4之间,表明扬子地块的下地壳有较多的地幔物质加入,造成其下地壳的成分成熟度低于华夏地块。

关键词 宁德—湖口断面 下地壳的成分和时代 华夏地块 扬子地块 tDM 捕获锆石年龄

1 引言

探讨大陆下地壳的时代和物质组成是一项十分艰难的研究工作,这主要是由于大陆地壳的形成具有十分复杂的历史和过程,同时人们也缺乏对深部地壳不均匀性的深入了解。近些年来在探讨下地壳信息方面已做了较多的尝试,如地震反射和衍射方法[4,14]、岩浆岩的深源包体的研究[12,13]以及对出露的深部地壳剖面的研究[1,2]。下地壳的物质组成和结构并不是一成不变的,往往随时代演化发生很大变化,那么怎样才能描绘这一动力学过程呢?地球化学,尤其是同位素地球化学,可以用作一种探针来剖析这个过程。本文主要通过地质、地球化学和地质年代学的综合研究来探讨宁德—湖口断面下地壳的性质。

2 宁德—湖口地学断面的地震波速结构

近些年来,华南已相继完成了宁德—湖口[15]、温州—屯溪[18]、泉州—黑水[11]数条地学断面(图1),其中宁德—湖口断面东起福建的宁德,经政和、崇安、乐平,至江西的湖口,穿越了华夏地块和扬子地块两大构造单元。地震波速结构揭示出断面走廊的地壳厚度约为30km,可划分出上、中、下地壳,界限约在10km和20km。上地壳的Vp为4.6~6.0km/s,密度为2.67~2.75g/cm3,主要由沉积岩、花岗质岩石和板岩、千枚岩之类的变质岩石组成。中地壳Vp由6.06km/s到6.25km/s,密度由2.79g/cm3到2.85g/cm3,主要由角闪岩相变质的岩石组成,其中在断面的东端(政和以东)在14km至17km深度之间,存在低速层(Vp≈5.9km/s),很可能属滑脱构造层性质。下地壳的Vp为6.30~7.15km/s,和长英质—镁铁质麻粒岩的Vp一致。下地壳的上部Vp≤7.0km/s,和酸性—中性麻粒岩的Vp吻合[14],下地壳的底部Vp>7.0km/s,表明其成分偏镁铁质成分,指示有较强烈的地幔物质添加。

图1 华南构造格架及地学断面位置略图

断面1、2、3分别代表温州—屯溪、宁德—湖口和泉州—黑水断面

3 断面走廊的变质基底

华夏地块的变质基底包括了三大构造层(图2):古元古代的麻源群、中元古代的马面山群和新元古代—早古生代的长汀超群(或称之为长汀浅变质岩系)。

图2 宁德—湖口地学断面走廊地质略图,主要表示变质基底的分布及特点

1—古元古代地层;2—中元古代地层;3—新元古代地层;4—新元古代—早古生代地层;5—寒武纪—白垩纪地层;6—第四纪;7—花岗质岩石

麻源群主要由黑云斜长片麻岩、石榴黑云斜长片麻岩、石榴云母片岩、云母石英片岩、夹斜长角闪岩和大理岩。这套岩石已遭受角闪岩相变质作用的改造,其p=400~650MPa,T=550~680℃[7],表明其埋深大致由16km至24km。麻源群上部的岩石流体包裹体以H2O为主,而下部则主要为CO2+H2O。麻源群地层至少遭受四期变形,前两期为韧性—塑性流变机制共轴叠加的平卧(或等斜)褶皱,大量的颗粒锆石U-Pb测年数据表明其时代为2400~2000Ma[3]。

马面山群与麻源群多呈构造接触关系,主要由变质的双峰式细碧—角斑岩(岩性为绿帘斜长角闪岩和钠长变粒岩)、十字石榴云母片岩、云母石英片岩、大理岩和石英岩。这套地层已遭受高绿片岩相—低角闪岩相变质作用的改造。同位素年龄值显示马面山群成岩时代为1400~1000Ma。

长汀超群呈构造关系和麻源群接触,为一套绿片岩相变质的岩石组合,下部岩性为斜长云母石英片岩、石英黑云片岩,上部为浅变质的粉砂岩、长石石英砂岩、板岩、千枚岩和杂砂岩。

综上所述,麻源岩的岩石组合大致反映了宁德—湖口断面东段华夏地块的中地壳的特点,长汀超群可能代表上地壳褶皱基底的特点,马面山群分布比较局限,从特点上看可能处于中地壳和上地壳的过渡带。

在扬子地块的东南缘,变质基底包括古元古代的星子群和中元古代的双桥山群(图2)。星子群出露于庐山附近,主要由十字石榴黑云片岩、石榴云母片岩、云母石英片岩和黑云斜长变粒岩组成,夹有斜长角闪岩、石英岩和不纯大理岩。岩石的变质程度为高绿片岩相—低角闪岩相,其T=530~600℃,p=400~570MPa,估计埋深大约在15~20km,由此推测星子群岩石组合反映了扬子地块东南块东南缘中地壳的特点。颗粒锆石U-Pb年龄表明其时代为2200~2000Ma。

双桥山群和星子群呈构造接触,主要由绢云母板岩、千枚状板岩、变质粉砂岩、杂砂岩和凝灰质板岩为主,夹有双峰式细碧角斑岩建造,岩石主体遭受低绿片岩相变质,局部达高绿片岩相,年龄为1700(?)~1000Ma。

4 断面的下地壳时代

沿断面走廊未见麻粒岩地体出露,因此下地壳的时代主要依靠Nd的模式年龄(tDM)和火成岩的捕获锆石年龄进行示踪研究。锆石是一种硅酸岩矿物,从理论上它应从SiO2饱和—过饱和岩浆中结晶,因此岩浆岩中捕获/或继承锆石时代揭示出深部长英质基底的时代信息。基性岩的tDM可以用来粗略估计“早期造壳时代(early crust formation age)”,而长英质火成岩的tDM可以解释为源岩的地壳滞留年龄(residence age)。

4.1 华夏地块下地壳的时代

前人对该区火成岩的同位素测年工作已发现一些大于2500Ma的年龄,朱玉磷(1985)发表的新桥花岗闪长岩的微量锆石U-Pb年龄为2713Ma,尔后,又相继报道了一些老的U-Pb年龄信息:汤湖花岗岩年龄2516Ma[9],清湖岩体2642Ma[10],德化花岗岩3051Ma年龄[17]。最近周新华(1992)在江绍断裂附近陈蔡群斜长角闪岩中获得了(3125±184)Ma的全岩Sm-Nd等时线年龄,这些年龄值多落在2750~2500Ma区间内,少数点达到3100Ma,揭示出华夏地块下地壳形成时代的信息。使用颗粒锆石U-Pb测年也发现华夏地块存在2415~2589Ma的年龄(表1),进一步佐证在华夏地块深部存在2750~2500Ma的长英质基底。

表1 断面走廊火成岩的捕获锆石U-Pb分析

① 误差为2σ;②对空白和稀释剂已作校正;③对空白、稀释剂和初始铅已作校正。

华夏地块的花岗岩分布非常广泛,侵位时代从古元古代延续至中生代,其元素地球化学和同位素地质化学特点显示出S型花岗岩特征,表明这些花岗岩主体是由深部长英质基底深熔作用的产物。因此花岗岩可以视为一种探针来分析下地壳时代和成分。

中条期花岗质岩石(1900士100)Ma的tDM为2602~2674Ma(表2,图3),其fsm/Nd和εNd变化很小,表明其同位素组成基本上没受到后期AFC过程的明显影响,因此2600~2700Ma大致可看作中条期花岗质岩石的源岩时代。

表2 华夏地块Sm、Nd同位素分析数据

加里东期花岗质岩石(400~450Ma)的tDM年龄多数落在1800~2500Ma区间内(表2,图3),这一时限和麻源群的时代大体吻合。野外证据表明加里东期花岗岩体与麻源群之间多呈侵入关系,并非麻源群分熔作用的产物,因此加里东期花岗质岩石的源岩时代应大于2500Ma。

燕山期花岗质岩石(100~120Ma)的tDM变化较大,但总体上小于2000Ma(表2,图3)。燕山期花岗质岩石具高的εNd值,暗示其源岩已遭受较强烈的地幔物质添加作用的影响,幔源物质添加作用可能是造成tDM年龄偏低的主要原因。

图3 华夏地块tDM年龄直方图

1—中条期花岗岩;2—加里东期花岗岩;3—燕山期花岗岩

图4 华夏地块斜长角闪岩的tDM年龄直方图(原始数据见赵凤清等,1995)

1—古元古代;2—中元古代

变质基性火山岩(斜长角闪岩)的tDM年龄已归纳于图4中,麻源群的斜长角闪岩的tDM主体在2400~2600Ma以及2000~2300Ma两个时间段内,马面山群的tDM为2000~2300Ma,揭示出华夏地块早期多期次地幔岩浆的底板垫托时代多发育在2000~2300Ma以及2400~2600Ma。

4.2 扬子地块(东南缘)下地壳的时代

扬子地块(东南缘)岩浆岩中许多捕获锆石的颗粒锆石U-Pb年龄大于2.2Ga(表1),大致可划分为2700~2800Ma和2200~2450Ma两个时间段内,揭示出扬子地块东南缘深部地壳长英质基底的时代信息,一些酸性火成岩的tDM年龄也佐证这一认识(表3)。

表3 扬子地块赣东北火成岩的Sm、Nd同位素分析数据

① 全岩;②斜长角闪岩;③角闪石。

基性火山岩的tDM变化很大,多数变化于2000~2400Ma和1300~1700Ma两个区间内,有一些tDM达2600~2800Ma(表3),指示了扬子地块东南缘发生了深部地壳的底板垫托作用的时代。

5 断面走廊下地壳的成分

火成岩的元素地球化学和同位素地球化学揭示出下地壳主体由长英质岩石组成,但成分变化十分复杂,两个地块下地壳成分存在较明显差异,在下地壳的不同深度层次成分也不尽相同,随着地质的演化下地壳的成分也发生一定程度的变化。

5.1 华夏地块下地壳的成分

中条期花岗质岩石类型为花岗闪长岩、二长花岗岩和钾长花岗岩,主体为S型,少量为I型或I型和S型的过渡型。花岗质岩石的εNd为-3.1~-2.6,147Sm/144Nd值为0.10~0.14,表明源岩应以长英质岩石为主。

加里东期花岗岩为高钾的钙碱性钾长花岗岩、碱长花岗岩和花岗闪长岩,主体以S型花岗岩为主。花岗质岩石具负的εNd值(-11~-8)和低的147Sm/144Nd值(0.1~0.14),表明它们应来源于“花岗质富集”的源岩。

燕山期花岗质岩石包括碱长花岗岩、钾长花岗岩以及二长花岗岩,在燕山晚期出现碱性花岗岩,元素地球化学显示这期花岗质岩石主体仍以S型为主,但较之前两期花岗岩其A型和I型相对于S型的比例增生。燕山期花岗岩的εNd为-6~-1,也明显高于前两期花岗岩。碱性花岗岩的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb值类似燕山期其它类型的花岗岩[20],表明它们的源岩是相似的,应来源于古老的地壳岩石的分熔作用,碱性花岗岩具有较高εNd,意味着有较强烈的地幔物质添加。

图5表示的是εNd随时代的演化过程,由此反映出中条期的下地壳成分演化程度要高于中条期(前者更富长英质),加里东期下地壳成分演化程度要高于燕山期。加里东期花岗岩的εNd值的特点表明其源岩基本上没受到地幔物质添加,因此由中条期至加里东期下地壳成分变化可能是受地壳分异作用影响的结果。燕山期花岗质岩石具较高的εNd值,其源岩很可能是地壳和受地幔物质添加的混合体,表明由加里东期至燕山期下地壳成分变化是受地幔物质添加的影响。

图5 华夏地块花岗岩的εNd—t图解

反映εNd随时代演化特点

5.2 扬子地块下地壳的组成

扬子地块东南缘晋宁期花岗质岩石(900Ga±500Ma)主要为钙碱性岩浆岩,岩石类型包括二长花岗岩、花岗岩、花岗闪长岩和钾长花岗岩,在有些岩体中含有富铝矿物(堇青石、石榴子石、黑云母)包体以及夕线片岩岩石包体[25]。地球化学特点也显示出S型特点。晋宁期花岗岩具较高的εNd值(-6~+4)(图6)和低的87Sr/86Sr值,表明其源岩中有大量的地幔物质加入。此外在扬子地块和华夏地块结合带,出露有M型花岗岩,也佐证扬子地块东南缘较之华夏地块在物质组成上更偏基性。

新元古代的流纹岩(800~900Ma)从矿物组成和地球化学特征上也具有S型特征,然而其εNd值为-1.9~+2.8,显示出与晋宁期花岗岩相似的地球化学特征。

6 结论

通过对宁德—湖口地学断面的地质、地球化学和地质年代学研究,可能获取到断面走廊下地壳性质的一些信息,将其归纳为:

① 花岗质岩石和酸性火山岩的元素和同位素地球化学特征表明华夏地块下地壳的成分主体由长英质组成,尤其是在地壳形成的早期阶段。地球物理资料也显示出同样的信息,宁德—湖口断面的地震波速结构反映下地壳除在局部地段的底部外,主体上Vp<7.0km/s,这一特征和酸性—中性麻粒岩的Vp值范围吻合。

图6 扬子地块岩浆岩的εNd—t图解

② 两个地块下地壳的物质组成存在较大差异,扬子地块下地壳在物质成分上较之华夏地块演化程度较差,表明扬子地块的下地壳有更为强烈的地幔物质加入。

③ 同位素地球化学示踪研究结果显示出下地壳的成分随着地质演化发生较大的变化,总体的演化趋势由“富花岗质”向“贫花岗质”方向转化,其原因可能是受地壳分异作用以及地幔物质添加作用改造的结果。

④ 通过对火成岩的tDM年龄和捕获锆石的年龄详细研究,断面走廊下地壳可能形成于2750~2500Ma,有些于3100~3000Ma已形成。尔后,地幔物质添加(以底板垫托方式为主)比较发育,华夏地块的时限为2400~2600Ma和2200~2300Ma,扬子地块则发生于2000~2400Ma和1300~1600Ma两个时间段内。

参考文献

[1]D.M.Fountain and M.H.Salisbury.Exposed cross section through the continental crust:Implication for crustal structure,petrology and evolution.Earth Planet.Sci.Lett.,1981,90,263~277.

[2]D.M.Fountain,R.Arculus and R.W.Kay.Continental lower crust.Elsevier:Amsterdam,1992.

[3]甘晓春,李惠民,孙大中,庄建民.闽北前寒武纪基底的地质年代学研究.福建地质,1993,12,17~32.

[4]W.S.Holbrook,W.D.Mooney and N.I.Christensen.The seismic velocity structure of the deep crust.In:Continental lower crust.D.M Fountain,R.Arculus and R.W.Kay(eds).1~43,Elsevier,1992.

[5]黄萱,孙继民,D.J.Depaolo,吴克隆.福建白垩纪岩浆岩的Nd、Sr同位素研究.岩石学报,1986,2,50~63.

[6]黄萱,D.J.Depaolo.华南古生代花岗岩类Nd、Sr同位素研究和华南基底.岩石学报,1989,5,28~36.

[7]金文山等.福建前加里东期区域变质岩系的岩石学、地球化学和变质作用.福建地质,1993,12,240~261.

[8]B.M.John,X.H.Zhou and J.L.Li.Formation and tectonic evolution of southeastern China and Taiwan:Isotopic and geochemical constraints.Tectonophysics,1990,183,145~160.

[9]李献华,M.Matsumoto,桂训唐.华南汤湖花岗岩中25亿年太古宙残留锆石的发现及其意义初探.科学通报,1989,3,206~209.

[10]H.Martin,B.Bonin,J.Didier等.中国东南部福州花岗质杂岩的岩石学和地球化学.地球化学,1991,2,101~117.

[11]秦葆湖.台湾黑水地学大断面所揭示的湖南深部构造.湖南地质,1991,10,89~96.

[12]R.L.Rudnick and S.R.Taylor.The composition and petrogenesis of the lower crust:a xenolith study.J.Geophy.Res.,1987,92,13981~14005.

[13]R.L.Rudnick.Xenoliths-samples of the lower continental crust.In:continental lower crust.D.M.Fountain,R.Arculus and R.W.Kay(eds).Elsevier,1992,269~316.

[14]J.B.Smithson.A physical model of the lower crust from north America based on seismic reflection data.In:The Nature of the lower Continertal Crust.J.B.Dawson et al.(eds).23~34.Geological Society Special Pub.,1986,24.

[15]王椿镛,林中洋,陈学波.青海门源—福建宁德地学断面的综合地球物理研究.地球物理学报,1995,38,590~598.

[16]王银喜等.浙江龙泉早元古代花岗岩的发现及基底时代的讨论.地质论评,1992,38,525~531.

[17]王振民.华夏古陆及其相关地质问题的新认识.见:福建省地学论文集.福州:福建地图出版社,1996,116~136.

[18]熊绍柏,赖明惠,刘宏宾,于桂生等.屯溪—温州地带的岩石圈结构与速度分布.见:东南大陆岩石圈结构与地质演化(李继亮主编).北京:冶金工业出版社,1993,250~256.

[19]袁忠信,张宗清.南岭花岗岩类岩石Sm、Nd同位素特征及岩石成因探讨.地质论评,1992,38,1~15.

[20]张理刚.中国东部富碱侵入岩铅同位素组成特征模式及地质意义.地球科学,1994,19,227~234.

[21]赵凤清,陈云剑,李荣安.闽北前加里东期变质基底的多期变形和构造层次.福建地质,1993,12,33~40.

[22]赵凤清,金文山,甘晓春.江绍断裂两侧早元古代变质基底特征及形成的构造环境.安徽地质,1994,4,73~81.

[23]赵凤清,金文山,甘晓春等.华夏地块前加里东期变质基底的特征及深部地壳性质.地球学报,1995,3,235~245.

[24]周新华,胡世玲,任胜利,李继亮.东南超壳多阶段构造演化同位素年代学制约.见:东南大陆岩石圈结构与地质演化(李继亮主编).北京:冶金工业出版社,1993,69~77.

[25]周新民,王德滋.皖南低87Sr/86Sr初始比值的过铝花岗闪长岩及其成因.岩石学报,1988,8,37~44.

[26]朱玉磷.对新桥岩体时代的讨论.中国区域地质,1988,4,353~357.

水合物层下伏游离气渗漏过程的数值模拟及实例分析

苏正1,2,曹运诚1,吴能友1,22,Lawrence M.Cathles3,陈多福1,2

苏正,(1980—),博士,助理研究员,主要从事天然气水合物及盆地流体活动的数值模拟研究,E-mail:。

注:本文曾发表于《地球物理学报》,2009,12:3124-3131,本次出版有修改。

1.中国科学院边缘海地质重点实验室/广州地球化学研究所,广州 510640

2.中国科学院广州天然气水合物研究中心/可再生能源与天然气水合物重点实验室/广州能源研究所,广州 510640

3.Department of Earth&Atmospheric Sciences,Cornell University,Ithaca,New York 14853-1504,USA

摘要:海洋环境中天然气水合物层是理想的毛细管封闭层,游离气被抑制在水合物层下,游离气层的气体压力随气体聚集和气层厚度的增加而升高,当气压超过封闭层的毛细管力时,游离气会克服毛细管进入压力、刺入上覆封闭层孔隙空间,毛细管封闭作用随之消失,从而形成水合物下伏游离气向海底的渗漏。通过对该过程进行的数值模拟计算表明:渗漏气体是以活塞式驱动上覆沉积层中的孔隙水向海底排出,水合物稳定带内流体渗漏速度随水流柱高度的减小而增加,当水流阻抗大于相应沉积层段的静岩压力时,沉积层将转变为流沙,流沙沉积被海流移除后便在海底留下凹陷麻坑。麻坑形成后流体运移通道演化为气体通道,气体快速排放。麻坑深度主要取决于游离气层的厚度和水合物封闭层(底界)的深度,而与沉积层的渗透率无关。麻坑深度一定程度上指示了渗漏前水合物层下伏游离气层的资源量。对布莱克海台海底麻坑的深度数值模拟计算表明,形成4 m深的海底麻坑需要至少22 m厚的游离气层。

关键词:天然气水合物;毛细管封闭;游离气渗漏;麻坑;布莱克海台

Numerical Computation and Case Analysis of the Venting Process of Free Gas Beneath Hydrate Layer

Su Zheng1,2,Cao Yuncheng1,2,Wu Nengyou1,2,Lawrence M.Cathles3,Chen Duofu1,2

1.CAS Key Laboratory of Marginal Sea Geology/Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China

2.CAS Guangzhou Centerfor Gas Hydrate Research/CAS Key Laboratory of Renewable Energy and Gas Hydrate/Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China

3.Department of Earth&Atmospheric Sciences,Cornell University,Ithaca,New York 14853-1504,USA

Abstract:A hydrate layer is an ideal capillary seal,beneath which free gas is trapped.Gas overpressure increases as gas accumulates and gas column grows.Capillary seals have the property that they fail completely when gas pressure reaches the point that they are invaded by gas,and thereafter they offer little resistance to gas venting.After the seepage is triggered,the venting gas will push the overlying water upward at increasingly higher velocities as the gas “piston”approaches the seafloor.Numerical model shows that as the water velocity increases,the near surface sediments will become quick at a depth that the resistance of water flow exceeds the hydrostatic pressure of the sediment hosting the water flow.These quick sediments can then be removed by bottom ocean currents,leaving a hollow pockmark on the seafloor.Thereafter,afree gas pathway isformed below the pockmarks and the reservoir gas drains quickly.The pockmark depth is afunction of thickness of free gas column beneath the hydrate and depth of the hydrate seal (bottom of hydrate layer).Interestingly,pockmark depth does not depend on sediment permeability.Pockmark depth implies the resource amount offree gas beneath hydrate layer.The model shows that a 22-m-thick free gas layer at least is needed toform a 4-m-deep pockmark on the rise of Blake ridge.

Key words:gas hydrate;capillary seal;gas seepage;pockrnarks; Blake ridge

0 引言

在海洋环境水合物稳定带内孔隙水溶解甲烷浓度超过甲烷水合物形成的溶解度时,溶解甲烷会结晶形成水合物,随着水合物含量的增加,形成水合物层圈闭,并在其之下发育游离气层[1-4]。在特定的条件水合物层之下的游离气沿通道向上渗漏进入海底,并在海底形成麻坑、自生碳酸盐岩、生物群落、气泡羽状体,如俄勒冈外海水合物脊[5]、布莱克海台等[6]、北刚果陆坡[7-8]、挪威外海[9]以及中国南海[10]。虽然水合物层下伏游离气向上渗漏活动在水合物发育区比较普遍,但是水合物层下伏游离气向上渗漏的机制和泄漏过程中的流体动力学特征,及流体渗漏对海底沉积地层的破坏(形成麻坑)过程并不清楚。

水合物层下伏游离气受到水合物层毛细管作用的封闭,随气体聚集和气层厚度增长,水合物下伏游离气的压力持续增加,当气体超压克服毛细管封闭作用后气体渗漏被激发,超压气体推动孔隙水向上排出,在海底形成麻坑,麻坑深度反映了流体的破坏强度和游离气层的超压幅度。因此,本文将应用水合物层毛细管封闭机理和沉积孔隙流体渗漏动力学,研究水合物稳定带之下游离气如何向上突破的动力学过程,建立游离气层压力状态与麻坑深度之间的数值模型,通过海底麻坑特征揭示水合物系统游离气层的演化规律。

1 毛细管封闭及游离气渗漏机理

海底沉积层中存在2种毛细管力封闭作用。第一类毛细管力封闭作用是存在于小型的气藏顶部的毛细管封闭作用,属于低渗透率的气体捕集封闭。封闭层的孔隙度和渗透率较低,而水更倾向存在于较小的孔隙空间,因此封闭层的孔隙空间完全被水占有,而封闭层之下含气层的孔隙度和渗透率相对较高[11]。碎屑沉积物孔隙介质一般为水润湿相,气液界面处的毛细管力阻止天然气进一步向上运移,使气体处于孔隙较大的沉积层段,但当气体压力超过相应孔隙的气体的毛细管进入压力时,超压气体将刺入封闭层的小孔隙,气藏开始排气,并在上覆沉积层中产生气体的渗漏通道。侵入毛细管压力由拉普拉斯方程给出[12]:

南海天然气水合物富集规律与开采基础研究专集

其中:γ为界面张力,取值0.027 N/m[13],rf和rc分别代表小孔隙和大孔隙的有效孔隙半径。

第二类毛细管封闭作用存在于气-液二相共存的沉积孔隙中,气液二相均可流动[14-15]。由于整个沉积体是由沉积颗粒构成的孔隙介质,孔隙水优先占据并被吸附在孔隙的喉道位置,具有小孔径的孔喉部位产生的毛细管力抑制了孔隙腔中气体的流动。此类毛细管封闭条件是孔隙内2种流体共存,且二者均可流动。在渗漏活动初期这种情况出现在气流柱顶部和气柱周围的气-水混合的部位,沉积层中毛细管封闭线的位置随气柱的发育而变迁,这种毛细管封闭作用约束了气流柱的形状和发育,并使气流柱有一个相对平坦的顶部;同时也会形成一个相对稳定的通道直径,这意味着渗漏气柱顶部的气-水界面相对平坦,在理想均质介质中渗漏气体以“活塞”式向上推进。但是当渗漏气柱遇到渗透率在横向上不均匀或不连续(如断层)的沉积介质时会出现分支或扭曲的气体通道。

海洋环境扩散型水合物稳定带与下伏游离气之间属于第一类毛细管力的封闭,在水合物稳定带底部水合物含量最高[3,16],水合物的形成降低了孔隙介质的有效孔隙度和渗透率,使水合物层的孔隙度低于下伏游离气层的孔隙度,水合物层的有效孔隙半径小于游离气层的有效孔隙半径。亲水性的水合物沉积层内除水合物外的其余孔隙空间被水占据,而下伏沉积体的孔隙空间完全被气体充填,水合物层与游离气层之间就存在一个上覆孔隙水与下伏游离气的界面。因此在水合物层与游离气层界面(大孔隙与小孔隙之间)上产生毛细管力,其方向指向孔隙半径较大的含气层,阻止下伏气体进入上覆含水层(水合物层),抑制气体向上运移。但是当下伏游离气层中的气体压力超过上覆水合物封闭层的毛细管力时,超压气体将刺入水合物封闭层,使水合物层的毛细管封闭作用完全失效或仅剩很小的封闭作用,气体泄漏开始。超压的气体渗漏进入水合物稳定带后,随着气柱的增长气体逐渐侵占原有孔隙水所占的孔隙空间,驱使孔隙水向上排出,并最终泄漏进入海底。水合物稳定带内气柱的增长过程受第二类毛细管封闭作用的控制,使气流柱以“活塞”式增长,而没有出现气流弯曲和分支,这与地球物理资料显示的近于垂直的流体渗漏通道(气囱)特征一致[8-9,17-19]。

图1给出了海洋水合物层下伏游离气渗漏过程。游离气在水合物层底界之下聚集,气层厚度和气体超压逐渐增加(A),当气体压力超过水合物封闭层的毛细管力时,高压气体会在封闭薄弱点或气层最顶端刺穿封闭,使水合物毛细管封闭失效(B)。气流柱在高压作用下向上推进,并驱使上覆沉积孔隙水向外排出。气流柱高度(hg)逐渐增长,而水流柱高度(hw)相应缩短(B到C过程)。如果气压驱动力保持相对恒定,由于岩层对水的黏滞力(或水流阻抗)远大于其对气的黏滞力(或气流阻抗),随水流柱高度hw减小,流体渗漏速度将越来越快,在单位长度水流柱上的压降(等于岩层对水流的黏滞力)随流体速度的增长而增加。在气流接近海底时流体速度明显增强,浅层水流阻抗(即水流对地层的作用力)超过相应沉积体的静岩压力,浅层含水沉积将被流沙化,当流沙化的沉积物被海底底流搬运后,便在海底形成“新鲜的”麻坑,此时麻坑下形成单一的气体运移通道(D)。由于气体黏度远小于水的黏度(约为1/60),气体排放异常迅速,游离气藏中气体会很快排干,流体渗漏通道中的气流逐渐退化(E),孔隙流体压力回归静水压力,孔隙水重新占据水合物封闭层和流体渗漏通道的孔隙空间,在气量通量减小体系温度降低的过程中伴随者水合物的生成(此文中不做详细论述),并因此减小了流体流动速度,少量气体仍可滞留在流体渗漏通道内,在地震记录上显示为气烟囱,水合物层底部的毛细管封闭作用恢复,水合物层之下游离气的聚集过程再次启动(F)。

图1 水合物下伏游离气渗漏概念模型示意图[11]

Z为海底以下深度,h为水合物稳定带厚度(或水合物封闭层深度)。黑色带表示毛细管封闭层,浅灰色表示气体所占据孔隙沉积层。A.气体被封闭在水合物层之下;B.气体刺穿封闭层开始泄漏C.气柱高度增加,推动水流向外排出,水流柱高度相应缩短,流体运移速度不断增加;D.含水流沉积中孔隙压力超过静岩压力,在海底出现麻坑,形成单一的气流通道;E.游离气藏中的天然气被逐渐排空,孔隙超压消失,流体通道中的气流柱逐渐退化;F.气流柱完全消失,在海底留下气烟囱,并有水合物生成,水合物封闭作用恢复,并开始新的气体聚集

2 游离气渗漏过程的数学模型

气体渗漏过程中(图1)气柱和水柱都是在游离气超压的驱动下流动,流体运移的总驱动力等于气体超压(ρw-ρg)gd。气流柱不断增大,并且以同一速度推动渗漏通道内的上覆孔隙水向上流动。假定水合物稳定带为一种均质孔隙介质,渗漏通道内流体(水和气)的渗漏速率相同,孔隙介质内流体渗漏模型可用达西定律描述为

南海天然气水合物富集规律与开采基础研究专集

其中:Δp为流体运移总推动力,是施加在气流柱和水流柱上的压降之和(Δpg+Δpw),或者是气流阻抗与水流阻抗之和,等于气层底部的超压(ρw-ρg)gd;ρ为流体密度;d为游离气层的厚度;μ为流体黏度;V为流体速度;k为沉积体的渗透率;krg和krw分别为沉积体孔隙气和水的相对渗透率;hg和hw分别为气流柱和水流柱的高度。

假定气流柱中气的饱和度和水流柱中水的饱和度均为1,气和水的相对渗透率为1。由方程(1),流体(气体和水)的运移速度表示为

南海天然气水合物富集规律与开采基础研究专集

在方程(2)中,若 可知流体运移速度随气流柱高度(hg=h-hw)的增长而增加。对方程(2)进行积分得到气柱增长方程:

南海天然气水合物富集规律与开采基础研究专集

利用方程(3)既可以计算渗漏气流柱增长到某一高度所需要的时间,也可以计算某一时间点水合物稳定带内气流柱的高度。

由方程(1)和方程(2)可知,孔隙介质中单位长度流体柱所受阻抗随气流柱高度的增加(或水流柱高度的减小)而增加,也就是说沉积物格架所受流体的反作用力(流体阻抗)逐渐增加,当流体阻抗超过相应沉积体的静岩压力时,相应沉积层将被流体化而成为流沙[20],渗漏流体速度须满足 。流沙沉积被海流移除后在海底形成麻坑,被流沙化沉积体的底界确定了麻坑深度。用 替换方程(2)中流体速度V,麻坑深度hpm替换水流柱高度hw,即可得到麻坑深度方程:

南海天然气水合物富集规律与开采基础研究专集

方程(4)中,若μw≌60μg、krw≌krg≌1(假定水流柱中水的饱和度和气流柱中气的饱和度近似为1),方程(4)可简化为

南海天然气水合物富集规律与开采基础研究专集

在一定的温压条件下流体密度和黏度为常数[12]。因此,方程(5)中麻坑深度可近似为水合物下伏的游离气层厚度(d)和水合物封闭层深度(h)的函数,与沉积体的渗透率无关。模型计算中所有参数取国际标准单位。

3 模型应用及讨论

美国卡罗莱纳外海的布莱克海台区是典型的水合物发育区,既有完美的BSR显示,又有游离气的渗漏活动及在海底形成的麻坑[6,21-22]。大洋钻探计划(ocean drilling program)1 64航次对布莱克海台进行了钻探取心研究,其中997站位钻至海底之下750 m,穿过了BSR(海底之下450 m),其中180~462 m 层段含水合物,水合物平均饱和度为6%,位于水合物稳定带底部(462 m)的水合物体积分数最高为24%[4]。996站位于布莱克底辟链的最南端,处于997站位西北98 km,最大钻孔深度为63 m,刚好位于麻坑之中,地震剖面显示该区BSR深度为440 m,深部底辟作用使上覆地层变形、形成小型断层,成为有利的流体渗漏通道,在海底发育有深4 m、直径50 m的麻坑,并且正在发生气体渗漏(图2),钻探获得的水合物体积分数高,最高达沉积孔隙的99%[6,21-23]。

驱动流体运移的气体超压取决于游离气层的厚度。如果下伏游离气层厚度达100 m(图1),其总的流体驱动力(等于气体超压)可达到0.8 MPa;如果游离气层厚度为22 m,流体超压驱动力为0.18 MPa(图3最左端A点)。渗漏开始时水流柱高度分数(等于hw/h)为1,总水流阻抗等于气体总超压,整个气流柱高度增加而降低。但是由于水流速度增加,施加在单位长度水流柱上的驱动力和相应的黏滞力增加,水流阻抗逐渐趋近海底相应深度沉积层静岩压力,且在水流柱高度分别小于40 m(对于游离气层厚度为100 m)和4 m(对于游离气层厚度为22 m)时水流阻抗超过沉积介质的质量(图3D点)。该位置以上的沉积物被流沙化[20],转变成颗粒悬浮的液状混合体,这种流沙化沉积被海流搬运后在海底形成麻坑。利用方程(3)可以计算游离气从水合物稳定带底部渗漏到达海底所需的时间。假定渗漏率为10-12m2时, 100 m厚的游离气层泄漏到海底的时间大约为5 a。

图2 布莱克海台地震反射强度剖面揭示的BSR、底辟构造、海底麻坑及与ODP977站位揭示的BSR深度比较

a.地震反射强度显示布莱克海台水合物发育、气体聚集以及底辟构造顶端的流体渗漏[22];b.为ODP997站位BSR揭示的水合物封闭层深度[21]

图3 渗漏通道中的流体阻抗和含水沉积层的静岩压力曲线交点指示麻坑深度

水合物稳定带中气流柱高度增加(顶部坐标向右),水流柱高度减小(底部坐标向右),水流阻抗和静岩压力随之减小,水流阻抗大于静岩压力时发生流沙破坏,曲线交点位置指示麻坑深度(D点)。布莱克海台100 m的游离气层发生渗漏时在海底可形成40 m深的麻坑,而22 m厚的气层泄漏时可形成4 m深的海底麻坑(最右边灰色阴影)

方程(2)中流体渗漏速率与渗透率成正比,但方程(4)中麻坑深度不依赖于沉积体渗透率,只是水与气体相对渗透率比的函数,而相对渗透率决定于孔隙流体的饱和度[12],因此沉积体渗透率控制流体渗漏速率,但不控制麻坑形成。实际上,渗透率越大,气体渗漏越快,麻坑形成越快;气体超压在水流柱和气流柱之间的分配不依赖于渗透率,而是决定于气体的超压幅度,以及流体黏度和气流柱高度(或水流柱高度)。

利用方程(5)可以简单计算海底麻坑深度,同时在已知水合物底界(封闭层)深度和麻坑深度,也可以通过方程(5)计算游离气层的厚度。图4显示麻坑深度与游离气层厚度和封闭层深度的关系。在给定封闭层深度,麻坑深度随游离气层厚度的增加而增大,相反较深的沉积层厚度削弱了渗漏流体对麻坑的挖掘作用,水合物封闭层越浅,形成一定深度的麻坑所需的游离气层厚度越小。

图4 水合物封闭层深度和麻坑深度与游离气层厚度的关系

麻坑深度主要决定于游离气层厚度和水合物封闭层埋深,与游离气层厚度呈正比,与水合物层埋深呈反比。如果水合物封闭层深700m,形成4m深的麻坑需要27m的游离气层,如果水合物封闭深度为440 m,则需要22 m的游离气层,如果水合物封闭层深100m,仅需要1l m厚的游离气层

地球物理显示布莱克海台ODP996站位周围的BSR深度为440 m,而在ODP996站位正下方游离气藏气体沿底辟构造上升至大约220 m(图2)处,在沿小断层渗漏至海底,由方程(5)可知麻坑深度与渗透率无关,取决于游离气藏的埋深和游离气层的厚度。对于海底4 m深的麻坑,计算表明在水合物层之下至少需要有22 m厚的游离气层。苏正和陈多福[4]计算了布莱克海台997站位的水合物和游离气体积分数分布,在水合物稳定带底界之下26 m处的气体饱和度为28%,底界之下74 m处气体饱和度为0.2%,其中水合物体积分数分布与同一区域的ODP995站位是相近的[24]。28%的气体饱和度大于气体流动所需20%的饱和度,而底界之下74 m处0.2%的气体饱和度不能流动,也不能传递孔隙气体压力。如果20%的饱和度指示可传递气层的底界,则气层的有效压力传递厚度约为30 m,这与笔者22 m厚的游离气层模型计算结果相近(图5)。实际上,该钻位水合物平均体积分数约为6%[4],可封闭气层厚度为24 m(三角点所示),接近模型估计的22 m。此外,在水合物稳定带底部的水合物饱和度达24%[4],其毛细管作用可封闭约33 m的游离气层(菱形点所示),与Flemings等[25]估计的极限破坏厚度29 m相似(虚线所示位置),接近但略小于30 m的参考厚度。然而,在996站位游离气发生泄漏后, 997站位扩散型水合物的体积分数仍在持续增加[26],水合物层的封闭能力也相应增强,游离气层厚度不断增长,因此,997站位游离气厚度(30 m)大于996站位游离气发生泄漏时的22 m气层厚度是合理的。

图5 布莱克海台的水合物饱和度和所能封闭的游离气层厚度

气层厚度随水合物饱和度增加而增高,水平虚线与气层厚度曲线的交点(29 m)为Flemings等预测的997站位气层的临界水力压裂厚度[25],圆形点标示约30 m的实际气层厚度,三角形点显示平均饱和度6%的水合物能封闭24m的气层,而饱和度24%的水合物可封闭33 m的游离气层(菱形点)

4 结语

本文构建了水合物层下伏游离气渗漏动力学过程的数学模型,游离气被水合物层的毛细管作用所圈闭,下伏游离气的超压随游离气层的增长而增加;当气体超压超过作用于水合物与游离气层界面的毛细管阻力时,游离气渗漏进入上覆水合物稳定带,并以“活塞式”驱动上覆孔隙水向外排出,渗漏速度随水流柱高度的减小而增加;当水流阻抗超过相应层段的静岩压力时沉积体变为流沙,流沙沉积被海流带走便在海底留下麻坑。模型显示麻坑深度为游离气层厚度和水合物封闭层埋深的函数,而与沉积介质的渗透率无关。游离气渗漏形成的海底麻坑对水合物下伏游离气层的厚度具有指示作用,在已知水合物封闭层深度和海底麻坑深度条件下,模型可以计算水合物层下伏游离气藏发生渗漏时的气层厚度,在布莱克海台海底发育有4 m深的麻坑,它的形成需要至少22 m厚的游离气层。

致谢:挪威国家石油公司Martin Hovland教授提供了全球麻坑基础资料和最新信息,表示感谢。

参考文献

[1]Xu W ,Ruppel C.Predicting the Occurrence,Distribution,and Evolution of Methane Gas Hydrate in Porous Marine Sediments[J].Journal of Geophysical Research,1999,104:5081-5095.

[2]Davie M K,Buffett B A.A Steady State Model for Marine Hydrate Formation:Constraints on Methane Supply from Pore Water Sulfate Profiles[J].Journal of Geophysical Research,2003,108(B10): 2495,doi:10.1029/2002JB002300.

[3]Chen Duo-Fu,Su Zheng,Cathles L M.Types of Gas Hydrates in Marine Environments and Their Thermodynamic Characteristics[J].Terrestrial Atmospheric and Oceanic Sciences,2006,17(4) :723-737.

[4]苏正,陈多福.海洋环境甲烷水合物溶解度及其对水合物发育特征的控制[J].地球物理学报,2007,50(5): 1518-1526.

[5]Trehu A M,Bohrmann G,Rack F R,et al.Proceedings ofthe Ocean Drilling Program,Initial Reports Volume 204[M].TX:Ocean Drilling Program,2003.

[6]Paull C K,Spiess F N,Ussler W Ⅲ,et al.Methane-Rich Plumes on the Carolina Continental rise: Associations with Gas Hydrates[J].Geology,1995,23: 89-92.

[7]Sahling H,Bohrmann G,Spiess V,et al.Pockmarks in the Northern Congo Fan area,SW Africa: Complex seafloor features shaped by Fluid Flow[J].Marine Geology,2008,249 : 206-225.

[8]Gay A,Lopez M,Berndt C,et al.Geological Controls on Focused Fluid Flow Associated with Seafloor Seeps in the Lower Congo Basin[J].Marine Geology,2007,244 (1/2/3/4):68-92.

[9]Hovland M,Svensen H,Forsberg C F,et al.Complex Pockmarks with Carbonate-Ridges off Mid-Norway:Products of Sediment Degassing[J].Marine Geology,2005,218:191-206.

[10]陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报,2004,47(3):483-489.

[11]Cathles L M.Changes in Sub-Water Table Fluid Flow at the End of the Proterozoic and Its Implicationsfor Gas Pulsars and MVT Leadzinc Deposits[J].Geofluids,2007,7(2): 209-226.

[12]Bear J.Dynamics of Fluids in Porous Media[M].New York:Elsevier,1972.

[13]Vigil G,Xu Z,Steinberg S,et al.J.Interactions of Silica Surfaces[J].J Colloid Interface Sci,1994,165:367.

[14]Cathles L M.Capillary Seals as a Cause of Pressure Com-partmentation in Sedimentary Basins:Presented at the Gulf Coast Section SEPM Foundation 21 st Annual Research Conference on Petroleum Systems of Deep-Water Basins,2001:561-572.

[15]Shosa J D,Cathles L M.Experimental Investigation of Capillary Blockage of Two-Phase Flow in Layered Porous Media,in Petroleum Systems of Deep-Water Basins: Global and Gulfof Mexico Experience: Proceedings ofthe GCSSEPM Foundation.21 st Annual Bob F.Perkins Research Conference,2001:725-739.

[16]苏正,陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学,2006,30(2).

[17]Hovland M,Judd A G.Seabed Pockmarks and Seepages.Impact on Geology,Biology and the Marine Environment.London:Graham&Trotman Ltd.,1988.

[18]Hovland M,Svensen H.Submarine Pingoes:Indicators of Shallow Gas Hydrates in a Pockmark at Nyegga,Norwegian Sea[J].Marine Geology,2006,228:15-23.

[19]Gay A,Lopez M,Cochonat P,et al.I so1ated Seafloor Pockmarks Linked to BSRs,Fluid Chimneys,Polygonal Faults and Stacked Oligocene-Miocene Turbiditic Palaeochannels in the Lower Congo Basin[J].Marine Geology,2006,226(1/2):25-40.

[20]Nicholl M J,Karnowski M.Laboratory Apparatus for the Demonstration of Quicksand[J].Journal of Geoscience Education,2006,54(5): 578-583.

[21]Matsumoto R,Paull C,Wallace P.the Leg 164 Scientific party[C]//Gas hydrate sampling on the Blake Ridge and Carolina Rise: ODP,Leg 164 Preliminary Report,1996.

[22]Taylor M H,Dillon W P,Pecher I A.Trapping and Migration of Methane Associated with the Gas Hydrate Stability Zone at the Blake Ridge Diapir:New Insights from Seismic Data[J].Marine Geology,2000,164:79-89.

[23]Paull C K,Matsumoto R,Wallace P J,et al.Proc.ODP,Sci.Results[C].164:TX:Ocean Drilling Program,2000.

[24]王秀娟,吴时国,刘学伟.天然气水合物和游离气饱和度估算的影响因素[M].地球物理学报,2006,49(2):504-511.

[25]Flemings P B,Liu X,Winters W J.Critical Pressure and Multiphase Flow in Blake Ridge Gas Hydrates[J].Geology,2003,31: 1057-1060.

[26]Liu X,Flemings P B.Dynamic Multiphase Flow Model of Hydrate Formation in Marine Sediments[J].Journal of Geophy sical Resea rch,2007,112,B03101,doi:10.1029/2005JB004227.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页