您当前的位置:首页 > 发表论文>论文发表

数学论文范文参考英文摘要

2023-02-10 15:29 来源:学术参考网 作者:未知

数学论文范文参考英文摘要

一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。这是是的极值点。而我们限制了。因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008

数学论文怎么写呢?

要看你写论文的目的啊。。如果是像一般本科毕业论文之类的。也要看你自己的要求。如果是想得优秀。。那应该要有自己新的出彩的东西。如果只是为了拿良好或者及格。那没关系。基本上随便写写。或者到以前现成的文献上各处搬点过来也可以了。。。
如果是要发表啥的。。那总要有点出彩的地方才行把
这里可以给你看下我本科学校(温州大学)数学学院论文要求

毕业论文的注意事项
(2008年11月20日)
一、毕业论文的意义
1、经受科学研究的初步训练,掌握科学研究的基本方法。
2、检验学生学习质量的重要手段。
3、本科学生毕业并获得学士学位的必要条件。

二、毕业论文的基本要求
1、论文任务书(由指导教师填写)
教师负责向学生讲解任务书中所规定的论文具体要求和目标,学生必须按任务书的要求进行论文的撰写。
2、开题报告(不少于2000字,由学生撰写)
选题的背景和意义,研究的基本内容和拟解决的主要问题,研究的方法及措施,研究工作的步骤与进度,主要参考文献等。通过上述描述可以让指导师作出判断:问题研究的价值和研究方法的可行性、题目的大小是否合适、参考资料是否充足等。
开题报告必须经指导教师签署意见及学院审定后才能生效。
3、文献综述(不少于2000字,由学生撰写)
由学生通过系统地查阅与所选课题相关的国内外文献,进行搜集、整理、加工,从而撰写的综合性叙述和评价文章。要全面地反映与本课题直接相关的国内外研究成果和发展趋势,指出该课题所需要进一步解决的问题。
文献综述的特点是综合性、描述性、评价性。它能反映学生的文献阅读能力和综合分析能力。
文献包括社会调查与科学实验材料、平时的学习记录或读书笔记、公开发表的论文或出版的著作(主流文献)。
文献中要求至少有两篇外文文献。
4、文献翻译
翻译的英文文献要求达到10000个字符以上(或翻译成中文后至少在2000汉字以上),翻译的文献应该与所研究的课题有关。
注意:文献翻译的题目应该是被翻译文献或资料的题目,而不是论文的题目。
5、论文及其格式
整体结构
封面
目录
标题(2号黑体)
(空两行)

姓名(4号宋体)
(班级)(5号宋体)
(空一行)
摘要:(小5号宋体加黑)摘要内容(小5号宋体)
关键词:(小5号宋体加黑)词语(小5号宋体)
(空一行)
正文(宋体小四号字(英文用新罗马体12),单倍行距,页码用小五号字,文中的一些段落标题,可以用4号宋体或者加黑)
(空一行)
参考文献(5号宋体加黑)
文献标题等(5号宋体)
(空一行)
英文摘要(New Roman 10号,内容与中文摘要相同)
范文1,范文2,,范文3

论文摘要:以浓缩形式概括所研究课题的内容,要突出本课题的成果和新见解。一般不超过300字。
关键字:正文主题内容信息的单词、词组或术语。一般为3--5个。
正文:论文的核心部分(不少于8000汉字)。包括引言、对课题内容和成果的详细表述、深入的分析和周密的论证、结束语、致谢等。可分成若干段落或章节,对各章节或段落要标以小标题或序号。
参考文献:罗列正文中所援引的文献,大多按引用的顺序排列。文献的篇数一般不少于10篇,其中至少有两篇外文文献。
期刊:[序号]作者,题名[J],期刊名称,出版年月,期号
书籍:[序号]著者,书名[M],版次,出版社,出版年月,起止页码
论文集: [序号]作者,题名[C]。见:编者,文集名,出版者,出版年月,起止页码.

三、论文工作程序
1、选题(11月20日至12月15日),分三轮进行。选题网址:

经过三轮师生双向选题确定论题和指导师:
11月21日至11月30日第一轮选题
12月1日至12月10日第二轮选题
12月11日至12月15日第三轮选题
在每轮选题期间,每位学生至多预选两个论题,并且要及时与相关指导老师联系并商定,防止选题无效。确定题目和指导师后请及时告知学院办公室(龚老师),以免影响其他同学选题。
学生也可自选论题,但应及时与相关教师商讨确定。
三论选题后仍没有确定题目的同学将由学院指定。
12月16至12月20日由学院调整汇总并最后确定,论文研讨方向和指导师确定后,不得随意更改和变动。
2、任务书和开题报告
08年12月下旬由指导教师向学生下达论文任务书,学生接到任务书后,开始搜集查阅文献资料,并在教师的指导下开始撰写开题报告。
09年3月10日前完成开题报告以班级为单位上交学院教学办公室。
3、文献综述和文献翻译
09年3月31日前完成文献综述和文献翻译以班级为单位上交到学院教学办公室。
4、论文初稿
09年4月30日前写出论文初稿,并交给指导教师,经指导师修改后返回给学生。在此前后应随时与指导师保持联系,当面听取指导师的意见,对论文进行2到3次修改。
5、论文正稿
09年5月22日前完成论文正稿,用A4纸打印,加封面和目录装订成册,一式三份(一份自留,一份交指导师,一份以班级为单位上交到学院教学办公室)
6、纪律约束
在整个论文工作期间,学生与指导师必须保持密切联系,至少有6次接受指导师的面授指导。
若学生没有按期完成某个阶段的工作,则必须提交书面理由,指导师给出初步意见,由学位委员会决定是否影响其毕业论文的成绩。
填写工作记录卡
7、答辩
09年5月30日进行论文答辩,所有学生和指导师都要参加。

标准的数学论文的格式是什么?顺便再给几个例文

  楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.

  这里的一篇是偏向交作业的

  下面一个是正式发表的双语版本

  张彧典人工证明四色猜想 山西盂县党校数学高级讲师

  用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。

  最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。

  附:论文

  用“H·Z—CP“求解赫伍德构形

  张彧典 (山西省盂县县委党校 045100)

  摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。

  关键词:H—CP Z—CP H·Z—CP

  《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。
  为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。
  如图1所示:
  四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。
  在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。
  现在具体确立赫伍德构形的不可避免集。
  在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。
  如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。
  其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。
  如图3:设图1中有C1-D2链、D1-C2链存在时。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
  如图4:设图1中有C1-D2链、B2-A2链存在时。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
  如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。
  如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。
  如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。
  如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。
  图9:设图8中有B2-A2链与A1-D1环相交。
  其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。
  如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。
  对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:
  若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。
  若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。
  下面从理论上证明图2—10组成的不可避免集的完备性。
  在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:
  B1-A2、B1-D2、B2-C2、B2-A2
  B1-A2、B1-D2、B2-C2、D1-C2
  C1-D2、B1-D2、B2-C2、B2-A2
  C1-D2、B1-D2、B2-C2、D1-C2
  而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:
  A-B与C-D、A-C与B-D、A-D与B-C;
  还有12组可相交组合:
  A-B与A-C、A-D、B-C、B-D;
  A-C与A-D、B-C、C-D ;
  A-D与B-D、C-D;
  B-C与B-D、C-D;
  B-D与C-D。
  我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。
  到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。
  参考文献:
  〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

  附英文版

  Using H·Z-CP Solves Heawood Configuration
  Zhang Yu-dian
  Yu Xian Party School, Yu Xian 045100, Shanxi, China

  Abstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.

  Key words: H-CP Z-CP H·Z-CP

  Introduce
  Thesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.
  For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.
  As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.
  In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.
  As follows, the detailed Heawood configuration’s inevitable sets is given.

  Result
  It is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.
  As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):
  Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.
  As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
  As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
  As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.
  Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.
  As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.
  As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.
  As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.
  As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.
  Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.
  In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].
  For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.
  If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).
  If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).
  The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.
  In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:
  B 1-A2、B 1-A2、B2-C2、B2-A2
  B 1-A2、B 1-D2、B2-C2、D1-C2
  C 1-D2、B 1-D2、B2-C2、B2-A2
  C 1-D2、B 1-D2、B2-C2、D1-C2
  There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:
  A-B and C-D、A-C and B-D、A-D and B-C;
  Otherwise there are 12 kinds of intersectant combinations:
  A-B and A-C、A-D、B-C、B-D;
  A-C and A-D、B-C、C-D ;
  A-D and B-D、C-D;
  B-C and B-D、C-D;
  B-D and C-D。
  Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.
  By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.

  Bibliography:
  〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页