一天,我在一本科学书上看到糖水可以制作隐形的墨水,于是,我在好奇心的驱使下,做起了实验。
我先把糖水调好,用毛笔蘸糖水在纸上写了开门大吉几个大字,然后把纸门晾干,什么都没有,我开始怀疑书了,最后,我用打火机稍微烧了一下,看见了一个开字呈现浅褐色的,我一见,欣喜若狂马上对正看电视的婆婆说:婆婆,快来,我给你表演魔术!于是,我又重新拿了一张白纸,写上婆婆两个大字,用吹风器把它吹干,就什么也没了,我赶忙问婆婆:你信不信,我可以不用笔,用火能写出‘婆婆’两个字来。婆婆,摇了摇头,显然是不信。
我找来打火机,烤了一会儿,可是烤得有点儿久,把纸不小心给烧了,婆婆笑了笑,我有点急了说:别得意,你等一等。我又在一张白纸在写了那两个字,然后晾干,这次我只是稍微烤了一会儿,字便显现了出来,我得意地笑着,婆婆赶快从我手中夺去纸翻来覆去地看着,就是不明白。
小伙伴们,你们明白吗,不明白,就让我给你讲一讲吧!
因为用糖水在纸上写了字后,晾干了,字形,图案,就会消失,火烤之后,字形图案会因糖分脱水,而呈现浅褐色。
动动脑筋,想一想除了糖水,还有哪些液体可以做隐形墨水呢?
科学神奇吧!
周末到了,妈妈让我把家里的皮鞋擦一下,我顺口答应了。走到鞋柜前,看着这些沾满尘土的皮鞋,我马不停蹄的擦起来。忽然,我脑子里闪过一道问题,为什么皮鞋会越擦越亮?
实验:我找了同样牌子同样款式的新旧两双皮鞋进行对比观察。我先用手触摸两双皮鞋的鞋面,发现新皮鞋的表面比旧皮鞋的表面光滑得多。旧皮鞋涂上鞋油,仔细擦过后,虽然亮了许多,但仍无法与新皮鞋相比。皮鞋的亮度是否与鞋面的光滑程度有关呢?
我取来一双没擦过的旧皮鞋,在放大镜下鞋面显得凹凸不平的。然后,我把一只鞋涂上鞋油并仔细擦拭,另一只不涂鞋油作空白对照。我发现第一只擦拭后,表面明显变光滑了许多,而且放在阳光下也比另一只有光泽。为什么两者会产生这样的差别呢?
我终于知道皮鞋为什么越擦越亮了。原来生活中的问号还真不少呢!
妈妈把家里搞成了一个小花园,花盆里装满了肥沃的泥土,各种各样的植物正生气勃勃地焕发着活力。芦荟绿得极艳,仿佛是一种液体的绿色,好像能拧出水来。紫薇花也欣然怒放,紫色的小花在一片草绿中透露着紫色的信号。一品红正如它的名字一样,红得似霞,深红色的花瓣下点缀着几片绿叶。我疑惑了:植物的生长必须依靠土壤吗?
于是,我找来两个塑料杯,在一只中盛上半杯水,放入三颗绿豆;另一只杯子中先放入1/4杯的泥土,放入一颗绿豆,再覆上土,压实,放在阳光可照射之处。
一天过去了,水里的绿豆没有发生太多的变化,但埋在泥土里的绿豆已发了芽,弯弯地贴着杯壁,正面看过去似乎是数字中的6。
过了两天,绿豆的动静越来越大,泡在水中的绿豆竟褪了皮,发了芽,样子颇似小蝌蚪。而放在泥土里的绿豆的芽已经有34厘米长了。
又过去了两天,绿豆的差距越来越明显。泡在水中的绿豆仍只有约莫摸1厘米左右长的芽儿,但在泥土中的绿豆的芽儿已破土而出,露出了小脑袋,似乎在惊喜地打量世界。
距离种下绿豆已有一周多时间,但现在的局势大有不同。在水里的绿豆因喝足了水,而长得越发粗壮,但现在的埋在土里的绿豆状况大不如前,因为土壤太过干燥而干枯,钻出泥土约有4厘米的芽儿已睡在了土地上。
我上网查了资料,才发现,原来植物必须的几个条件分别是:适宜的温度、阳光、空气与水份。当植物离开这些条件是便会死亡。
写科学小论文就是把自己在学科学、用科学的过程中看到、听到、想到的,经过整理、思考后将新的见解告诉大家。一篇科学小论文(以下简称小论文)应当包括论点、论据和论证三大要素。论点是小论文的灵魂,一般都以中心问题的形式出现,小作者围绕中心问题发表自己深刻而独特的见解。论据是为论点服务的,是为了使论点表述得更清楚明白而准备的事实材料。论证就是用论据证明论点的过程。
科技小论文实际上是我们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以靠逻辑推理得出结论。
那么,一篇高质量的科技小论文,要注意以下几点:
一、选好课题
撰写科技小论文,首先要考虑写什么,也就是课题的选择。选择课题是写好论文的关键。要注意以下原则:价值原则,即选题的理论价值和实用价值。要对其他的同学有启发、指导和参考的意义;可行原则,指主观和客观条件的可能性,即撰稿者个人的专业知识、理论修养、知识面、手头资料、实验条件、周围环境,不可贪大求深,应该量力而行;新颖原则,指课题应是他人未曾研究或研究过但未解决或完全解决,要注意“文贵创
第1篇:年龄问题
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3-1)=12(岁)( 吴江市震泽亿龙红木 - 亿龙文学 )
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
第2篇:数学小论文
1证明一个三角形是直角三角形
2用于直角三角形中的相关计算
3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:
周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”
商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方
用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。
在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:( 吴江市震泽亿龙红木 - 亿龙文学 )
如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。
如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理)
来源:
毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
第3篇:数学小论文
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。然而,有一件事却改变了我的看法。那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
第4篇:数学小论文
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以0.8,也就是35*0.8=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*0.8=28(元),40*0.8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈0.045,32/650≈0。049,0.049>0.045,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!
第5篇:数学小论文
我每次做数奥都是拿起一道题拉起来就做,因为我觉得这样做起来很快。可是今天做数奥时,有一道题改变了我的看法,做得快不一定是做得对,主要还是要做对。
今天,我做了一道题目把我难住了,我苦思冥想了好几个小时都没有想出来,于是我只好乖乖地去看基础提炼,让它来帮我分析。这道题目是这样的:求3333333333的平方中有多少个奇数数字?分析是这样的:3333333333的平方就是3333333333×3333333333,这道乘法算式由于数字太多使计算复杂,我们可以运用转化的方法化繁为简,也就是把一个因数扩大3倍,另一个因数缩小3倍,积不变。使题目转化为求9999999999×1111111111=(10000000000-1)×1111111111=11111111110000000000-1111111111=11111111108888888889因此,乘积中有十个奇数数字。这道题,我们还可以位数少的两个数相乘算起,就能发现积中奇数的数字个数。即3×3=9→积中有1个奇数数字。33×33=1089→积中有2个奇数数字。333×333=110889→积中有3个奇数数字。3333×3333=11108889→积中有4个奇数数字。……
从上面试算中,容易发现积是由1,0,8,9四个数字组成的,1和8的个数相同,比一个因数中的3的个数少1,0和9各一个,分别在1和8的后面。积中奇数的数字个数与一个因数中3的个数相同,可以推导出原题的积是:11111111108888888889,积中有10个奇数数字。
做了这道题,我知道做数奥不能求快,要求懂它的方法。
第6篇:科学小论文
一、神奇的墨水
一天,我在一本科学书上看到糖水可以制作隐形的墨水,于是,我在好奇心的驱使下,做起了实验。
我先把糖水调好,用毛笔蘸糖水在纸上写了“开门大吉”几个大字,然后把纸门晾干,什么都没有,我开始怀疑书了,最后,我用打火机稍微烧了一下,看见了一个“开”字呈现浅褐色的,我一见,欣喜若狂马上对正看电视的婆婆说:“婆婆,快来,我给你表演魔术!”于是,我又重新拿了一张白纸,写上“婆婆”两个大字,用吹风器把它吹干,就什么也没了,我赶忙问婆婆:“你信不信,我可以不用笔,用火能写出‘婆婆’两个字来。”婆婆,摇了摇头,显然是不信。
我找来打火机,烤了一会儿,可是烤得有点儿久,把纸不小心给烧了,婆婆笑了笑,我有点急了说:“别得意,你等一等。”我又在一张白纸在写了那两个字,然后晾干,这次我只是稍微烤了一会儿,字便显现了出来,我得意地笑着,婆婆赶快从我手中夺去纸翻来覆去地看着,就是不明白。
小伙伴们,你们明白吗,不明白,就让我给你讲一讲吧!
因为用糖水在纸上写了字后,晾干了,字形,图案,就会消失,火烤之后,字形图案会因糖分脱水,而呈现浅褐色。
动动脑筋,想一想除了糖水,还有哪些液体可以做隐形墨水呢?
科学神奇吧!
第7篇:数学小日记
四(3)班顾雨婷
在一个明媚的周末,我和爸爸妈妈一起去商场买东西。“啊!商场可真大啊!”我不禁地赞叹道。我先来到玩具店,这里的洋娃娃长得可真是小巧玲珑,非常可爱。突然,我发现一些非常奇怪的形状,我就像篱弦的箭一样飞奔过去,那里可真是琳琅满目,多种形态各异的形状浮现在我的眼前。这时,爸爸边指着图形边问我:“这是什么图形啊?”我急说:“是长方体!”爸爸又问:“那你知道长方体的计算公式吗?”我皱起眉头,想了不知多少时间,可还是一窍不通。这时,一个干脆而又高亮的声音回响在我的耳边,原来是妈妈。妈妈温柔的说:“长方体的体积公式很简单,只要用长×宽×高,不信你就举个列子试试,你看,如果用v表示长方体的体积,用a、b、h分别表示长方体的长、宽、高。上面的公式可以写成:v=abh。”妈妈的话音刚落下,我便恍然大悟地说:“哦,我明白了,长方体的体积公式和圆柱形的体积公式是一样的,都是用长×宽×高的。”“我的宝贝女儿终于明白了做题目一定要自己思考,还要仔细做题。”说着,妈妈不禁流出了感动的泪水。在这一天中的购物,使我明白了许多的道理。
第8篇:语文数学星球历险记
在美国有一个小男孩,他叫洛齐·盖亚。
一个风光美好的日子,天空突然出现了一轮黑圈,将盖亚吸了进去。转眼间,盖亚来到了一个外星球上。这星球上的居民们很混乱,盖亚连忙拉住一位老外星人,问他这是怎麽回事?听过一段话后,盖亚才只到了。原来这里有两个国家:语文国和数学国。两国总统争辩哪国强而引发了战争。其实他们的战争并非什麽抢林弹雨之类的,而是双方互相出题。如果回答错误,就失败了。
盖亚的好奇心发亮了,他悄悄地跑到战斗场旁的一根大柱上偷看。只见语文王穿着苏轼套装,数学王则穿着华罗庚套装。数学王首先出题:934988706乘82633316等于?语文王哑了。他虽然语文博大精通,但对数学来说,1加1都不会,怎能解决这道题呢?只有乖乖认输了。语文王也出题了:“孙行者”的下句是什麽?数学王也像语文王一样成哑巴了。两国总统沉默不语了,看来他们明白了不学习其它知识是不行的。之后,语文王和数学王决定将语文国和数学国融合成一个国家,叫“语数国”。人们便互相学习,互相交流,互相发展。
盖亚不知不觉地回到了地球,他也知道了不能单学一种本领,不然就会受人轻视的喔!
第9篇:数学论文——数学的广泛
数学是什么呢?单纯的算式、枯廖乏味得标题?数学,不就是数的学问吗?那你就太不了解数学了。
我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
数学在生活中无处不在,我们的一切日常几乎都用到了它。如:
“水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学。”
“要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。”
“生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学。这使得生物学获得了重大的成就。
在买衣物时,物品所进行的优惠就运用到了数学中的折扣
与分率的知识运用。
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样,由此可见数学的广泛性。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
现在数学中角的运算出现了跨科学趋势,这是知识发展的结果,相信会有更多更新的综合题在这种趋势中产生,只希望我们能够迎着趋势,一同进步﹗
第10篇:数学论文
你有遇到过不会做的题目吗?可不今天我就遇到一个题不会了,这个问题是:一个挂钟一天一共敲了多少下?这个钟整点是几时它就敲几下,每半点时只敲一下。这个时钟现在在我们身边很少见,现大家都用上手机、电子时钟,很少见到这能讲话的钟。
当我遇到这题时,考虑到一天有24小时,先写的算式是:整点时敲---1+2+3+4+5+6+7+8+9+10+11+12=78(下);一天整点敲---78*2=156(下),因每天有24小时,以上才算12小时整的敲响数,所以在此要乘2才能算出一天所敲响的数;题中所讲每半点敲1下,可算出12*1=12(下)12*2=24(下);一天所敲响----156+24=180(下)
妈妈见我写的算式后对我说:“不光有这个方法,还有一简单的算法。”于是我开动小脑筋,还是想不出比此更简单的方法,无奈之下我只以能求助妈妈。
妈妈对我讲简单的方法从这12个小小数字中找规律:1、2、3、4、5、6、7、8、9、10、11、12,在此这12个数字帮它们找朋友,每两个数字为一组,每组得数一样多。在妈妈的提醒下我想到:这六组朋友:第一组--1+12=13、第二组—2+11=13、第三组—3+10=13……第六组—6+7=13。每12个数中有6个13个,一天整天中还有个12时,可列出:(6*13)*2=156(下)①;每半点敲一下,一天中有24小时,可得出:24*1=24(下)②。一整天时钟敲多少下,用①+②=156+24=180(下)。
首次我完成的结果虽然与在妈妈的提醒下完成的结果一样,但是两个的方法后者较简单速度也快。通过这题目,我明白了无论做什么题时,有最笨拙的方法也有简单的方法,只要你能找到规律,相信自己,一定行!只要你敢于思考、静心对待问题,新的方法总能出现的。