您当前的位置:首页 > 发表论文>论文发表

表面活性剂在药剂的论文

2023-02-09 07:48 来源:学术参考网 作者:未知

表面活性剂在药剂的论文

表面活性剂在化妆品中的应用
摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化
妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。
详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。
关键词:表面活性剂;化妆品;功能;应用
表面活性剂在化妆品中的主要功能包括乳化、分
散、增溶、起泡、清洗、润滑和柔软等。表面活性剂
在化妆品中具有广泛的用途,起着重要的作用。化妆
品中所利用的表面活性剂的性能不仅仅是其单一的
性能,而是利用其多种性能,因此,表面活性剂是
化妆品生产中不可缺少的原料,广泛应用于化妆品
中。
化妆品是指以涂抹、喷、洒或者其他类似方法,
施于人体(皮肤、毛发、指趾甲和口唇齿等),以达
到清洁、保养、美化、修饰和改变外观,或者修正人
体气味,保持良好状态为目的的产品。目前,化妆品
的发展趋势是向疗效性、功能性和天然性方向发展。
1表面活性剂的分类
表面活性剂的分类方法有很多种,根据表面活性
剂的来源进行分类,通常把表面活性剂分为合成表面
活性剂、天然表面活性剂和生物表面活性剂三大类。
1.1合成表面活性剂
合成表面活性剂是指以石油、天然气为原料,通
过化学方法合成制备的表面活性剂。表面活性剂在性
质上的差异,除与烃基的大小和形状有关外,主要与
亲水基团类型有关。一般以亲水基团的结构为依据来
分类,按亲水基团是否带电可将表面活性剂分为离子
型和非离子型两大类,其中离子型表面活性剂又分为
阳离子表面活性剂、阴离子表面活性剂和两性离子表
面活性剂。
1.2天然表面活性剂
20世纪70年代的石油危机对以石油为基本原料
的表面活性剂工业产生了巨大的冲击,引起人们对能
源消耗、工艺生产过程、生态学和石油制品安全性等
一系列问题的思考,从而引发了以天然油脂为原料生
产表面活性剂的重大变革。由于生物新技术的应用,
油脂分离精制技术的发展,植物油脂品种的改良及增
产,使得大量获得价格较低的高纯度的天然油脂成为
可能,新的抗氧化剂的开发成功,解决了天然油脂腐
败变质的问题,再加上人们对安全及环保意识的提
高,以油脂为原料的天然表面活性剂的开发引起人们
的高度重视。目前在天然油脂中最受重视的要数棕榈
油和棕榈仁油。
1.3生物表面活性剂
生物表面活性剂是指由细菌、酵母和真菌等多种
微生物产生的具有表面活性剂特征的化合物。用微生
物生产表面活性剂是20世纪70年代后期国际生物工
程领域中研究的新课题。用微生物制取生物表面活性
剂可以得到许多难以用化学方法合成的产物,在结构
中引进了新的化学基团,而制得的产物易于被生物完
全降解,无毒性,在生态学上是安全的。生物表面活
性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸
系、磷脂系、脂肪酸系和高分子表面活性剂五类。
2表面活性剂的功能
表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消
泡和洗涤去污等多种功能。
当液体与固体表面接触时,气体被排斥,原来的
固-气界面消失,代之以固-液界面,这种现象称
为润湿。从普遍意义而言,润湿是一种流体被另一种
流体自表面取代的过程。
通常把一种物质的颗粒或液滴以及微小的形态分
散到另一介质中的过程叫分散。所得到的均匀、稳定
的体系叫分散体。
乳化是一种液体以微小液滴或液晶形式均匀分散
到另一种不相混溶的液体介质中形成的具有相当稳定
性的多相分散体系的过程。
表面活性剂在水溶液中形成胶束后,具有能使不
溶或微溶于水的有机化合物的溶解度显著增大的能
力,且溶液呈透明状,这种作用称为增溶作用。
由液体薄膜或固体薄膜隔离开的气泡聚集体称为
泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,
液体和气体的界面起主要作用。一般地说,当表面张
力低,膜的强度高时,不论是稳定泡沫还是不稳定泡
沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面
起作用:一方面是增强泡沫液膜的强度;另外,表面
黏度大,膜液体不易流动排出,延缓了液膜破裂,而
增强了泡沫的稳定性。
消泡作用分为破泡和抑泡两种。具有破泡能力的
物质称为破泡剂。有效的消泡剂既要能迅速破泡,又
要能在相当长的时间内防止泡沫生成。
洗涤去污作用是表面活性剂应用最广泛、最具有
实用意义的基本特性。洗涤去污过程是极为复杂的,
与污垢种类、基本性能、表面活性剂和助剂的种类和
结构密切相关,而其过程又是多种表面现象,如吸
附、润湿、渗透、乳化、分散、泡沫和增溶等在不同
情况下的综合效应。
3化妆品的分类
化妆品能对人体面部、皮肤表面、毛发和口腔起
清洁保护和美化作用。化妆品的品种多种多样,分类
方式也各不相同。按使用部位可分为:皮肤用化妆
品、毛发用化妆品、指甲用化妆品和口腔用化妆品。
按使用目的可分为:洁净用化妆品、基础保护化妆
品、美容化妆品和芳香制品,还可根据化妆品本身的
剂型分类。
4化妆品的原料
制造化妆品所用的原料有很多种,据统计大概有
3 000多种。根据化妆品原料在化妆品中所含比例的
大小,可分为基质原料和配合原料。基质原料是调配
各种化妆品的主体,也成为基础原料。膏霜类的油
脂,香粉类的滑石粉等均属基质原料;配合原料是用
来改善化妆品的某些性质和赋予色、香等的辅助原
料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配
合原料。配合原料在化妆品中的比例虽小,但对化妆
品的质量影响却很大。它们之间没有绝对的界限,某
一种原料在化妆品中起着基质原料的作用,而在另一
化妆品中可能仅起着辅助原料的作用。
4.1基质原料
1)油脂类
油脂是组成膏霜类化妆品的基本原料,主要起护
肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物
油脂的主要成分,在常温下呈液态的称为油,呈固态
的称为脂。根据来源又可分为植物性油脂和动物性油
脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏
仁油、花生油、大豆油和棕榈油等。动物油脂包括牛
油、猪油、貂油和海龟油等。这些动植物油脂加氢后
的产物称为硬化油。在化妆品中常用的硬化油有:硬
化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。
2)蜡类
蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化
妆品中主要作为固定剂,增加化妆品的稳定性,调节
其黏度,提高液体油的熔点,使用时对皮肤产生柔软
的效果。依据来源的不同,蜡类也可分为植物性蜡和
动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小
烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫
蜡等。
3)高碳烃类
用于化妆品原料中的烃类主要包括烷烃和烯烃,
它们在化妆品中的主要作用是其溶解作用,净化皮肤
表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤
表面水分的蒸发,提高化妆品的功效。在化妆品中用
的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。
4)粉类
粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等
粉类化妆品的基质原料。一般是不溶于水的固体,经

药剂毕业论文.. 要求详细的..

  【关键词】 靶向给药;药剂学;药物载体
  0引言

  常规剂型的药物经静脉、口服或局部注射后,药物分布于全身,真正到达治疗靶区的药物量仅为给药量的小部分,而大部分药物在非靶区的分布不仅无治疗作用,还会带来毒副作用. 因此,药物新剂型的开发已成为现代药剂学发展的一个方向,其中靶向给药系统(Targeted drug delivery system, TDDS)的研究已经成为药剂学研究热点〔1〕. TDDS指一类能使药物浓集定位于病变组织、器官、细胞或细胞内的新型给药系统. 靶向制剂具有疗效高、药物用量少. 毒副作用小等优点. 理想的TDDS应在靶器官或作用部位释药,同时全身摄取很少,这样,既可提高疗效,又可降低药物的毒副作用. TDDS要求药物能到达靶器官、靶细胞,甚至细胞内的结构,并要求有一定浓度的药物停留相当长的时间,以便发挥药效. 成功的TDDS应具备3个要素:定位蓄积、控制释药、无毒可生物降解. 靶向制剂包括被动靶向制剂、主动靶向制剂和物理化学靶向制剂3大类. 目前,实现靶向给药的主要方法有载体介导、受体介导、前药、化学传递系统等. 现就靶向给药方法研究进展作一介绍.

  1载体介导的靶向给药

  常用的靶向给药载体是各种微粒. 微粒给药系统具有被动靶向的性能. 有机药物经微粒化可提高其生物利用度及制剂的均匀性、分散性和吸收性,改变其体内分布. 微粒给药系统包括脂质体(LS),纳米粒(NP)或纳米囊(NC),微球(MS)或微囊(MC),细胞和乳剂等. 微粒靶向于各器官的机制在于网状内皮系统(RES)具有丰富的吞噬细胞,可将一定大小的微粒(0.1~3.0 μm)作为异物摄取于肝、脾;较大的微粒(7~30 μm)不能滤过毛细血管床,被机械截留于肺部;而小于50 nm的微粒可通过毛细血管末梢进入骨髓.

  肝癌、肝炎等肝脏疾病是常见病和多发病,但目前药物治疗效果很不理想,其原因除药物本身药理作用尚不够理想外,不能将药物有效地输送至肝脏的病变部位也是一重要原因. 将一些抗肿瘤、抗肝炎药物制备成微粒,给药后可增加药物的肝靶向性. 米托蒽醌白蛋白微球(DHAQ BSA MS)的体内分布研究发现,给药20 min时,DHAQ BSA MS和米托蒽醌(DHAQ)在小鼠体内分布有显著差异,DHAQ BSA MS约有80%的药物集中在肝脏,而85.9%以上的DHAQ存在于血液中〔2〕. 张莉等〔3〕考察去甲斑蝥素(NCTD)微乳的形态、粒径分布及生物安全性,研究NCTD微乳及其注射液在小鼠体内的组织分布,结果表明,NCTD微乳较NCTD注射液增强了药物的肝靶向性,降低了肾脏分布,在一定程度上延长药物在小鼠体内的循环时间. 纳米粒和纳米囊肝靶向制剂的研究报道较多,如氟尿嘧啶、阿霉素、羟基喜树碱、狼毒乙素、环孢素等抗癌药物都被制成了纳米靶向制剂〔4〕. 王剑红等〔5〕采用二步法制备米托蒽醌明胶微球,粒径在5.1~25.0 μm范围的占总数87.36%,体外释药与原药相比延长了4倍. 经小鼠体内分布试验表明具有明显的肺靶向性,靶向效率增加了3~35倍,肺中药代动力学行为可用一室开放模型描述,平均滞留时间延长10 h. 在纳米粒表面上包封亲水性表面活性剂,或通过化学方法连接上聚乙二醇或其衍生物,可以减少与网状内皮细胞膜的亲和性,从而避免网状内皮细胞的吞噬,提高毫微粒对脑组织的靶向性. Gulyaev等〔6〕以生物降解材料聚氰基丙烯酸丁酯为载体,以吐温80为包封材料制备了阿霉素毫微粒,研究结果表明脑中阿霉素浓度是对照组的60倍. 一些易于分解的多肽或不能通过血脑屏障的药物(如达拉根、洛哌丁胺、筒箭毒碱)通过制成包有吐温80的生物降解毫微粒在动物身上已取得一定的靶向治疗效果〔7〕. 研究表明粒径是影响微粒进入骨髓的关键因素,粒径越小越容易进入骨髓. 彭应旭等〔8〕制得不同粒径的柔红霉素聚氰基丙烯酸正丁酯毫微粒,小鼠尾静脉给药,小粒径组(70±24) nm骨髓内柔红霉素浓度是大粒径组(425±75) nm的1.58倍. 骨髓会因肿瘤浸润、化疗药物或严重感染受到抑制. 研究表明,多种生长因子,如人粒细胞集落刺激因子(GCSF),粒细胞巨噬细胞集落刺激因子(GMCSF)可促使骨髓细胞自我更新、分裂增殖,并提高其活性. 利用骨髓靶向载体可提高药物在骨髓内分布,并避免血象中的不良反应. Gibaud等〔9〕以聚氰基丙烯酸异丁酯、异己酯毫微粒为载体携带GCSF,提高了其在骨髓内的分布.

  基因治疗是一种专一性的靶向治疗. 基因治疗就是利用基因转移技术将外源重组基因或核酸导入人体靶细胞内,以纠正基因缺陷或其表达异常. 纳米颗粒作为基因载体具有一些显著的优点. 纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会像普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等.

  2受体介导的靶向给药

  利用细胞表面的受体设计靶向给药系统是最常见的主动靶向给药系统. 去唾液酸糖蛋白受体(ASGPR)是一种跨膜糖蛋白,它存在于哺乳动物的肝实质细胞上. 其主要功能是去除唾液酸糖蛋白和凋亡细胞、清除脂蛋白. 研究发现,ASGPR能特异性地识别N乙酰氨基半乳糖、半乳糖和乳糖,利用这些特性可以将一些外源的功能性物质经过半乳糖等修饰后,定向地转入到肝细胞中发挥作用. Lee等合成了三分枝N乙酰氨基半乳糖糖簇YEE,它与肝细胞的结合能力为乙酰氨基半乳糖单糖的1万倍. 我们考察了半乳糖苷修饰的十六酸拉米夫定酯固体脂质纳米粒(LAPGSLN)的肝靶向性,其靶向效率为4.66,比未修饰纳米粒的靶向效率高3.7倍〔10〕. 药物通过与大分子载体连接,再对载体进行半乳糖化,可以产生较好的肝靶向效果. 若能使药物直接半乳糖化,则可以简化耦联环节,提高靶向效率. 这一思路对蛋白类药物而言,较易实现. 蛋白质或多肽(分子质量在一定范围)在连接上半乳糖后,都有可能成为受体结合的肝靶向性物质. 小分子物质经类似途径能否靶向于肝,取决于糖和药物密度、分子质量、摄取屏障等多方面因素. 小分子药物共价连接乳糖或半乳糖,初步揭示其靶向性并不好,有关机制和可行性尚待进一步探讨.

  半乳糖基化壳聚糖(GC)与质粒pEGFPN1混和制备成纳米微囊复合物,体外转染SMMC7721细胞. 将含1 mg质粒的纳米微囊经肝动脉和门静脉注射入犬体内,实验结果表明半乳糖基化壳聚糖在体外有较高的转染率,在犬体内有肝靶向性,可用作肝靶向基因治疗的载体〔11〕. 大多数肿瘤细胞表面的叶酸受体数目和活性明显高于正常细胞. 以叶酸作为导向淋巴系统或肿瘤细胞的放射性核素的载体,同时将叶酸作为靶向肿瘤细胞的抗肿瘤药物的载体已做了广泛的研究〔12〕.

  表皮生长因子受体(EGFR)是一种跨膜糖蛋白,由原癌基因cerbB1所编码,是erbB受体家族之一,在多种肿瘤中观察到EGFR高水平的表达,如神经胶质细胞瘤、前列腺癌、乳腺癌、胃癌、结直肠癌、卵巢癌和胸腺上皮癌等. 针对富集EGFR的恶性肿瘤,方华圣等〔13〕成功地建立了EGFR富集的恶性肿瘤的靶向基因治疗方法.

  3抗体介导的靶向给药

  mAb是药物良好的靶向性载体, 将其通过共价交联或吸附到药物载体(如脂质体、毫微粒、微球、磁性载体等)或药物具有自身抗体(如红细胞)或抗体与细胞毒分子形成结合物,避免其对正常组织毒性,选择性发挥抗肿瘤作用. 徐凤华等〔14〕利用己二酰肼制备腙键连接的聚谷氨酸表阿霉素,然后使其与单抗交联制得偶合物. 偶合物较好地保留了抗体活性,体外细胞毒性较游离药物略有下降,但表现出单抗介导的靶细胞选择性杀伤作用,为其进一步制备细胞靶向的肿瘤化疗药物奠定了基础.

  用于治疗白血病的CMA676是由一种人源化的mAb hp 67.6与新型的抗肿瘤抗生素calicheamicin的N乙酰γ衍生物偶联而成的〔15〕,当CMA676与CD33抗原相结合,抗原抗体复合物迅速内在化,进入胞内后,calicheamicin衍生物被水解释放,通过序列特异性方式与DNA双螺旋的小沟结合,使脱氧核糖环中的氢原子发生转移,从而使DNA双链断裂,诱导细胞死亡〔16〕. EGFR mAb可直接作用于EGFR的细胞外配体结合区,阻滞配体的结合,如IMCC225, ABXEGFR和EMD55900等,能抑制细胞生长和存活率,诱导细胞凋亡和抑制血管生成,曲妥珠单抗(Trasruzumab)作用于erbB2的细胞外区域,该药已获美国FDA批准用于转移性的乳腺癌的治疗〔17〕. IMCC225具有增强细胞毒性药物和放射治疗效应的作用,IMCC225与拓扑特肯(TPT)的联合用于荷有人类结肠癌移植体的裸鼠,能提高其生存率〔18〕. 由第四军医大学和成都华神集团股份有限公司联合研制的治疗肝癌新药碘〔13lI〕美妥昔单抗注射液,日前获得国家食品药品监督管理局颁发的生产文号,即将上市. 这是全球第一个专门用于治疗原发性肝癌的单抗导向同位素药物.

  4制成前体药物

  一些药物与适当的载体反应制备成前体药物,给药后药物就会在特定部位释放,达到靶向给药的目的. 脑是人高级神经活动的指挥中枢,也是神经系统最复杂的部分. 但由于血脑屏障(bloodbrain barrier, BBB)的存在,使得大部分治疗药物不能有效透过BBB. 含OH, NH2, COOH结构的脂溶性差的药物可通过酯化、酰胺化、氨甲基化、醚化、环化等化学反应制成脂溶性大的前体药物,进入CNS后,其亲脂性基团通过生物转化而释放出活性药物. 张志荣等〔19〕合成了3′, 5′二辛酰基氟苷,并制备了其药质体,给小鼠静脉注射后用HPLC法测定药物在体内各组织的分布,结果表明,氟苷酯化后的前体药物的药质体有良好的脑靶向性.

  结肠内有大量的细菌,能产生许多独特的酶系,许多高分子材料在结肠被这些酶所降解,而这些高分子材料作为药物载体在胃、小肠由于相应酶的缺乏不能被降解,这就保证药物在胃和小肠不释放. 如多糖、果胶、瓜耳胶、偶氮类聚合物和α, β, γ环糊精均可成为结肠给药体系的载体材料. 常利用结肠内厌氧环境,使偶氮键还原的特点制成偶氮前体药物. 柳氮磺胺吡啶是由5氨基水杨酸(5ASA)与磺胺吡啶用偶氮键连接而成. 口服后在结肠释药,发挥5ASA治疗溃疡性结肠炎的作用,减少其胃肠吸收产生的全身不良反应. 5ASA也与非生理活性的高分子聚合物通过偶氮双键制成前体药物〔20〕. 糖皮质激素共价连接于多糖〔21〕,环糊精〔22〕制成的前药,口服后在结肠部位可释放出药物,可用于结肠炎的治疗. 我们〔23,24〕合成了果胶酮洛芬(PTKP)前药,进行了体内外评价. 结果表明,此前药在不同pH环境下结构稳定,只能被结肠果胶酶特异性降解,释放出KP,发挥治疗作用. 也可以利用结肠pH差异和时滞效应设计结肠靶向给药系统〔25〕.

  5化学传递系统

  化学传递系统(chemical delivery system, CDS)是一种输送药物透过生理屏障到达靶部位,再经生物转化释放药物的药物传递系统. CDS通常是将含OH, NH2, COOH结构的药物共价连接于二氢吡啶载体(Q),药物(D)与靶向剂二氢吡啶结合为DQ结合物,建立了二氢吡啶―二氢吡啶钅翁盐氧化还原脑内定向转释递药系统. Chen等〔26〕设计了Tyr Lys的脑靶向CDS,并评价它的药效. Lys的C末端接亲脂性胆甾烯酯,N末端通过一种L氨基酸桥接靶向剂1,4二氢葫芦巴碱(含吡啶结构)制成Tyr Lys CDS,全身给药后,通过被动扩散机制透过BBB,且经酶催化1,4二氢葫芦巴碱变为季铵盐型使其存留于脑内. 通过小鼠甩尾间隔期实验证明,Tyr Lys CDS作用时间明显延长. Mahmoud等〔27〕将吸电子羧甲基连接到氮原子构建了一种新的二氢吡啶载体介导的脑定向转释系统(N羧甲基1,4二氢吡啶3,5二酰胺),该载体稳定,具有良好的脑定向转释能力.

  靶向给药的研究还面临许多实质性的挑战. 提高药物在靶组织的生物利用度;提高TDDS对靶组织、靶细胞作用的特异性;使生物大分子更有效地在作用靶点释放,并进入靶细胞内;体内代谢动力学模型;质量评价项目和标准,体内生理作用等问题都是研究的重点. 随着靶向给药系统研究的深入,新的靶向给药途径、新的载药方法将会不断出现,遇到的问题会逐步解决. 靶向给药的研究不仅具有理论意义,而且会产生明显的经济和社会效益.

  【参考文献】

  〔1〕 Theresa MA, Pieter RC. Drug delivery systems: Entering the mainstream 〔J〕. Science, 2004;303(5665):1818-1822.

  〔2〕 张志荣,钱文. 肝靶向米托蒽醌白蛋白微球的研究〔J〕. 药学学报,1997;32(1):72-78.

  Zhang ZR, Qian WJ. Study on mitoxantrone albumin microspheres for liver targeting 〔J〕. Acta Pharm Sin, 1997;32(1):72-78.

  〔3〕 张莉,向东,洪诤,等. 肝靶向去甲斑蝥素微乳的研究〔J〕. 药学学报,2004;39(8):650-655.

  Zhang L, Xiang D, Hong Z, et al. Studies on the liver targeting of norcantharindin microemulsion 〔J〕. Acta Pharm Sin, 2004;39(8):650-655.

  〔4〕 韩勇,易以木. 纳米粒肝靶向作用机制的研究进展〔J〕. 中国药师,2002;5(12):751-752.

  Han Y, Yi YM. Studies on the liver targeting mechanism of nanoparticles 〔J〕. Chin Pharm, 2002;5(12):751-752.

  〔5〕 王剑红,陆彬,胥佩菱,等. 肺靶向米托蒽醌明胶微球的研究〔J〕. 药学学报,1995;30(7):549-555.

  Wang JH, Lu B, Xu PL, et al. Studies on lung targeting gelatin microspheres of mitoxantrone 〔J〕. Acta Pharm Sin, 1995;30(7):549-555.

  〔6〕 Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 8Ocoated nanoparticles 〔J〕. Pharm Res, 1999;16(10):1564-1569.

  〔7〕 Ramge P, Unger RE, Oltrogge JB, et al. Polysor bate 80coating enhances uptake of polybutylcyanoacrylate(PBCA)nanoparticles by human and bovine primary brain capillary endothelial cells 〔J〕. Eur J Neurosci,2000;12(6):1931-1940.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页