2008年8月Angewandte Chemie杂志报道了澳大利亚莫纳什大学的利昂·斯皮西亚、罗宾·布里姆布来可比和安妮特·可罗,澳大利亚联邦科学与工业研究组织(CSIRO)的格哈德·斯伟格斯和美国普林斯顿大学的查尔斯·迪斯莫克斯共同开发了由一层涂层和维持植物光合作用的基本化学物质——锰组成的系统。该系统可模拟植物的光合作用,为利用阳光将水分解成氢和氧开辟了一条新途径。此项技术突破有望革新制氢工艺,从而利用太阳光大规模生产清洁的绿色能源——氢气。
光合作用是植物、藻类和某些细菌利用叶绿素,在可见光的照射下,将二氧化碳和水转化为有机物,并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是赖以生存的关键,而在面临能源和环境瓶颈的今天,这一过程中的能量转换也为人类提供了极其重要的启示。由于自然光谱的吸收率等原因,光合作用在多数植物中效率非常低,通常均低于0.5%。在人工设计的系统中,研发人员借鉴其光反应与电子传递的机制,并提高通量转化的效率,使其适于太阳能的转化利用。
事实上,在上述模拟光合作用的研究取得突破前,微生物制氢的已经成为了研究热点。自然界已发现有类似甲烷菌的制氢菌,但其菌种繁育不如甲烷菌那样简单。若能建立合适的菌种群落,制造氢气也会像制造沼气一样得到大规模应用。
模拟光合作用制氢或者微生物制氢过程正是仿生学“向自然学习”的思想典型。20世纪40年代以来,工程技术领域中出现了调节理论,人们开始在一般意义上把生物与机器进行类比,认识到二者包含自动调节系统。此后,科学研究和生产实践完全证实了生物和机器在许多问题上的共同之处。而控制论则把生物科学和工程技术从理论上联系起来,成为在原理上沟通生物系统与技术系统的桥梁,奠定了生物与机器在控制与通信方面进行类比的科学理论基础。之后,斯蒂尔提出了仿生学的研究理念。自上个世纪末以来,人们认识到大约35亿年的生命演化与协同进化过程优化了生物体宏观与微观结构,形态与功能具有无可比拟的优越性,仿生学也因此显示出巨大的生命力。
从研究模式上看,仿生学作为模仿生物建造技术装置的科学,是一门新兴的边缘科学,研究生物体的结构、功能和工作原理,并将这些原理移植于工程技术之中,发明性能优越的仪器、装置和设备,创造新技术。模拟光合作用制氢过程的例子很好地诠释了这一点。在植物的光合作用中,锰参与几种酶系统。由于锰可以在正二价和正四价两种化合价之间转换,所以主要在氧化还原和电子转移中发挥作用。这一思想为斯皮西亚等人的研究提供了启发。他们在确定锰簇是植物利用水、二氧化碳和阳光制造碳水化合物和氧气的中心枢纽后,开发出这种人造锰簇,并利用这些分子的能力将水分解成氢和氧。研究者将一层质子导体――Nafion薄膜覆盖在一个电极上,形成一层仅几微米厚的聚合体膜,这层聚合体膜充当锰簇的载体。锰在正常情况下不溶解于水,但可以和Nafion薄膜小孔中的催化剂结合,形成不易分解的稳定结构,当水到达此催化剂时,在阳光的照射下便发生氧化反应。
在能源和环境领域,这一技术显示了仿生技术的巨大应用潜力和价值。初步测试表明,此催化剂连续使用3天之后还有活性,由此分解出来的氢气和氧气可以在燃料电池中结合成水,产生电力供住宅和电动车全天24小时使用,且不排放碳而是排放水。虽然此系统的效率还有待提高,但研究者可以不断地从自然界中学习,使之更为高效,从而使氢这一能效高且没有碳排放的绿色清洁能源为未来社会所用。
生物体的电子传递过程在能源仿生技术上的另一重点研究领域是生物发光。生物发光和光合作用都是“电子传递”现象,而从某个角度上看,生物发光可以看作是光合作用的逆反应。光合作用是绿色植物吸取环境中的二氧化碳和水分,在叶绿体中,利用太阳光能合成碳水化合物,同时放出氧气。光能从水分子上释放电子,并把电子加到二氧化碳上,产生碳水化合物,这是一个还原过程。光合作用把光能转变成化学能,而生物发光是电子从荧光素分子上脱下来和氧化合,形成水,产生光。生物发光是将化学能转变成光能。生物光作为冷光源,具有效能高、效率大、不发热、不产生其它辐射、不会燃烧、不产生磁场等特点,对于手术室、实验室、易燃物品库房、矿井以及水下作业等,都是一种安全可靠的理想照明光源。通过模仿发光生物把一种形式的能量转换成另一种形式的能量,制造冷光板使其不需要复杂的电路和电力,就能白天吸收太阳光,晚上再将光能释放。人们先是从发光生物中分离出纯荧光素,后来又分离出荧光酶。现在已能人工合成荧光素,这就使人类模仿生物发光,创造一种新的高效光源——冷光源成为可能。然而,人们对于萤火虫等发光机制的研究仍然有待深入。如果将光合作用和生物发光机制在仿生学框架下同时加以研究,就有可能在能量利用的电子传递现象中取得进展,从而实现能源利用更为巨大的进步。
从仿生学的诞生、发展,到现在短短几十年的时间内,研究成果已经非常可观。仿生学的问世开辟了独特的技术发展道路,也就是向生物界索取蓝图的道路,它大大开阔了人们的眼界,显示了极强的生命力,在能源技术上的应用潜力也极其巨大,有助于破解人们所面临的能源瓶颈问题,同时解决石化能源等所带来的环境问题。
1. 溶胶-凝胶法制备纳米材料研究进展2. 电子显微镜在纳米材料研究中的应用3. SPM与纳米材料组装研究进展4. 稀土发光纳米材料的研究进展5. II-VI族纳米材料研究进展6. 纳米材料在生命科学中的应用研究进展7. III-V族纳米材料研究进展8. 仿生技术与纳米材料研究进展9. 纳米机器人研究进展10. 纳米技术与国防安全11. 纳米科技中的伦理学研究进展12. 纳米技术与军事现代化研究进展13. 水热法在纳米科技中的应用14. 激光拉曼光谱在纳米材料分析中的研究进展15. 纳米材料粒度分析研究进展16. 纳米蓄能材料研究进展17. 锂离子电池纳米材料研究进展18. 染料敏化太阳能电池用纳米材料研究进展19. 纳米科技人才的培养与需求现状
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!
纳米材料综述
【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。
【关键词】 纳米、纳米技术、纳米材料、纳米结构
1 引言
著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]
1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]
2 纳米技术
纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
3 纳米材料
3.1纳米材料的概念
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。
3.2纳米材料的分类
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
(1)纳米粉末
纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。
(2)纳米纤维
纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。
(3)纳米膜
纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。
(4)纳米块体
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
4 纳米材料的应用
由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
5 纳米材料的前景
纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。
6 结束语
纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。
参考文献
[1]孙红庆.科技天地―计划与市场探索[M],2001/05
[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.
[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.
纳米材料与应用
摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。
关键词 :纳米材料 性能 应用
纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约1.5倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。
纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。
纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。
来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。
通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。
应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。
纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。
常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。
由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。
目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。
近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。
参考文献:
[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)
[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)
纳米吸波复合材料的研究与
发展趋势
吸波复合材料主要是应用在飞机,坦克等表面
来降低其被探测和摧毁的概率,提高目标的生存能
力。吸波复合材料是一类功能复合材料,它能吸收投
射到它表面的电磁波能量,并通过材料的介质损耗
使电磁波能量转变成热能或其它形式的能量_1]。吸
波复合材料是由功能体(吸收剂)和基体组成。当吸
波复合材料中的功能体为纳米量级时,吸波复合材
料将产生不同于常规材料的吸波性能。在已公开报
道的纳米吸波复合材料中,性能比较突出的是美国
研制的“超黑粉”纳米吸波复合材料_2J,它实质上就
是以纳米石墨为功能体的石墨一热塑性复合材料和
石墨环氧树脂复合材料。
纳米吸波复合材料之所以具有不同寻常的吸波
性能是因为纳米材料的特殊结构引起的口]。一方面,
纳米微粒尺寸为1~100 nm,远小于雷达发射的电
磁波波长,对电磁波的透过率大大高于常规材料,这
就大大降低了电磁波的反射率;另一方面,纳米微粒
材料的比表面积比常规微粒大3~4个数量级,对电
磁波和红外光波的吸收率也比常规材料高得多。此
外,随着颗粒的细化,颗粒的表面效应和量子尺寸效
应变得突出,颗粒的界面极化和多重散射成为重要
的吸波机制,量子尺寸效应使纳米颗粒的电子能级
发生分裂,其间隔正处于微波能量范围(10 ~10
eV从而形成新的吸波通道_|J。
吸波复合材料按其应用形式可分为涂敷型吸波
复合材料和结构型吸波复合材料。
1 涂敷型吸波复合材料
纳米铁氧体吸波复合材料_5。o]
铁氧体吸波复合材料是既有一定介电常数和介
电损耗,又有一定磁导率和磁损耗的双复介质。它除
有电子共振损耗外,还具有铁氧体特有的畴壁共振
损耗、磁矩自然共振损耗和粒子共振损耗等特性。其
作用机理可概括为铁氧体对电磁波的磁损耗和介电
损耗。
23(5):796—800.
[37] 李华,Bocaz—Beneventi G,Have J.计算机与应用化
学_J],2002,1 9(3):296—297.
[38] 熊少祥,李建军,程介克.分析测试学报EJ3,1996,15
(3):69—73.
将铁氧体纳米颗粒与聚合物复合而成的纳米复
合吸波材料能有效吸收和衰减电磁波和声波,被认
为是一种极好的吸波材料。铁氧体纳米复合材料多
层膜在7~17 GHz的频率段内的峰值吸收为一4O
dB,小于一lO dB的频宽为2GHz_l 。王国强等人对
比了纳米铁氧体/导电聚合物复合吸波材料和非纳
米铁氧体/导电聚合物复合吸波材料的吸波性能。实
验结果表明,在8~12 GHz的频段内,纳米吸波复
合材料的吸收率均高于非纳米吸波复合材料_1引。
铁氧体吸波复合材料的研究重点在于如何通过
调整材料本身的化学组成、粒径及其分布、粒子形貌
及分散性等来提高复合材料损耗特性和降低其密
度。美国已研制出一系列薄层状铁氧体吸波复合涂
料,并成功应用于F一117A战斗机。
纳米金属粉吸波复合材料_l �6�8
从金属的电子能级跃迁、原子相对振动的光学
波、原子的转动能级和原子磁能级的分析可以看出,
具有磁性的金属超细颗粒与电磁波有强烈的相互作
用,具备大量吸收电磁波能量的条件_l 。
纳米金属粉吸波复合材料具有微波磁导率较
高、温度稳定性好(居里温度高达770 K)等突出优
点,己得到了广泛应用。纳米金属粉吸波复合材料主
要包括羰基纳米金属粉复合材料和纳米磁性金属粉
复合材料两类。其中羰基纳米金属粉主要包括羰基
Fe、羰基Ni和羰基Co等:纳米磁性金属粉主要包
括Co、Ni、CoNi和FeNi等。
陈利民等人[1副制备了高抗氧化能力的纳米金
属吸波复合材料y一(Fe,Ni)。实验结果表明,该材料
在厘米波和毫米波波段均有较好的吸波性能。法国
科学家最新研制成功了一种由CoNi纳米金属合金
粉与绝缘层构成的复合材料。将该材料与粘合剂复
合而成的吸波复合材料的电阻率高于5 Q�6�1cm,在
50 MHz~50 GHz的频率范围内具有良好吸波性
能 引。
纳米有机聚合物吸波复合材料
作为功能体的导电聚合物主要包括聚乙炔、聚
苯胺、聚吡咯、聚噻吩等。其主要的吸波机理是:利用
某些具有共轭主链的高分子聚合物,通过化学或电
化学方法与掺杂剂进行电荷转移作用来设计其导电
结构,实现阻抗匹配和电磁损耗,从而吸收雷达波。
将不同种类的无机纳米相与有机聚合物复合可
以制成强吸收的电阻损耗型、介电损耗型、磁损耗型
纳米吸波复合材料。比如,将碳纳米管与聚合物复合
能形成一种性能优良的电阻型宽带吸波复合材料。
因为碳纳米管具有良好的导电性,引入到聚合物中
不仅可形成导电网络,而且对复合材料有增强作用,
比常规的炭黑、石墨填充到聚合物中的吸波性能强
得多。
结构型纳米吸波复合材料n。 们
结构型吸波复合材料既能吸波,又能承载,具有
频率宽、效率高、不增加消极重量等优点。目前结构
型吸波复合材料主要有两大类:蜂窝夹层型吸波复
合材料和层压平板型吸波复合材料口 。。]。
下面主要研究作为功能体的结构型纳米复合材
料的特点与应用。
纳米SiC吸波复合材料lL2 。
SiC功能体具有密度小、耐高温性能好和吸收
频带宽等优点,但常规制备的SiC吸收效率较低,不
能直接作为吸波复合材料的功能体。因此,必须对
SiC进行一定的处理以提高其吸收效率。一般采取
以下两种处理方法:提高SiC的纯度和对其进行有
控制的掺杂。日本利用高纯度的原料,制得了纯度极
高的SiC粉体。前苏联曾用掺杂的方法提高了SiC
的吸波性能。
此外,还可以采用多层复合的结构形式进行改
进。日本用二氧化碳激光法制备出了具有优良吸波
性能的Si/C/N 和Si/C/N/O 吸波复合材料 。
最新的研究结果表明,Si/C/N和Si/C/N/O纳米吸
波复合材料在毫米波段和厘米波段均有优良的吸波
性能。
纳米SiC纤维吸波复合材料
SiC系列纤维具有强度高、模量高、热膨胀系数
低、电阻率可调节等特性和耐高温氧化直径小、易于
编织等特点,是高性能复合材料的理想增强剂。由于
常规SiC纤维的电阻率分布在10。~10 Q �6�1C1TI的
范围内,而其电阻率在10 ~10。Q�6�1C1TI范围内才具
备较好的吸波效果。因此,SiC纤维必须用适当的处
理来调节其电阻率。一般采用的方法为高温处理法
和掺杂异元素法。
王 军等人L2 制备出力学性能良好、电阻率连
续可调的纳米SiC/Ti复合纤维。将这种纤维与环氧
树脂复合后可得到具有良好的吸波性能的结构型吸
波复合材料。
前景展望
针对吸波材料“薄、轻、宽、强”等性能方面的更
高要求,需要首先研制出具有吸波性能的纳米粉体,
然后根据具体要求将不同种类的纳米粉体进行各种
形式的复合以获得最佳吸波性能。在先进复合材料
基础上发展起来的既能隐身又能承载的结构型吸波
复合材料,是当今吸波复合材料的主要发展方向。其
关键技术主要包括复合材料层板的研制、介电性能
的设计匹配、有“吸、透、散”等功能的夹芯材料的研
制与设计及诸因素的优化组合匹配等。
随着先进探测器的相继问世,吸波复合材料必
将发展成能兼容米波、厘米波、毫米波、红外和激光
等多波段的吸波复合材料。