没说清楚啊,是五年级的学生写论文,还是关于五年级数学的论文?
一般论文格式如下:
题目
摘要:
关键词:
一、引言
二、正文(要求不高的话就分成三段,提出问题,分析问题,解决问题)
三、对策与建议
四、总结
参考文献
要是小学生写论文的话就简单多了,论点、论据什么的都有就行了
还是不明白可以QQ加“西北团”或者旺旺加“miao8214”。他们是专业做论文的,有问题可以去求教。
对中学数学教学的几点思考
进入新世纪以后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。究竟需要什么样的人才呢,专家们指出需要以下四种素质的人才:第一,有新观念;第二,能够不断从事技术创新;第三,善于经营和开拓市场;第四、有团队精神。为此数学教学中应加强学生这四个方面能力的培养。
一、在数学教学中培养学生的新观念、新思想
新观念中不仅包含对事物的新认识、新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。作为数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。
例 已知 a>=0,b>=0, 且 a+b=1, 求证 (a+2) (a+2) +(b+2) (b+2)>=25/2
证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段 x+y=1,(0=<x>=1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。而 d*d=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)>=25/2。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
二、在数学教学中培养学生的创新能力
创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生经营和开拓市场的能力
一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
四、 在数学教学中培养学生团队精神
团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.5、0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上我先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些使学生认识到只有齐心协力才能达到成功的彼岸。数学教学具有不仅使学生学知,学做;而且使学生学共同生活,学共同发展的目标任务。
参考资料:
小学数学论文写法如下:
1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。
2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。
3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。
4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
抓好基础知识,重视培养思维能力
一、基础知识必须让学生切实学好
1.从学生已有的知识和经验出发进行教学
数学具有严密的逻辑性,前后知识联系紧密,某一新的知识点往往是前一部分知识的发
展和延伸,同时又 是后一部分知识的基础。就课本上新知识点来说,一般包含着许多旧有
知识。因此,充分利用学生已有知识和 经验学习新知识,能激发学生学习兴趣,提高学习
积极性,又能形成良好的知识结构。如分数乘法中分数乘以 整数的意义没有变,仍是求几
个相同加数的和的简便算法。教学时通过对原有知识的复习,学生是容易理解的 。在讲例
1前我们可以提出:4个2是多少?用加法如何计算?用乘法如何计算?此时我们可以提问:
整数乘法的 意义是什么?在此基础上,我们进一步提出:4个2/9是多少?用加法如何列
式?用乘法又如何列式?学生列出(2/9)+(2/9)+(2/9)+(2/9),(2/9)×4。因为做分数加法时是以
原来的分母做分母,分子部分是相同加数求和, 所以(2/9)×4=(2×4)/9=8/9;引导学生观
察算式得出:分数乘以整数的方法是用分数的分子和整数相乘的积 作分子,分母不变。本
册分数除法中分数除以整数的意义与整数除法意义相同,教学时可通过学生已有知识引 入,
使学生掌握新知识。
2.通过实物、教具、学具或者实际事例使学生在理解的基础上掌握知识
小学阶段是儿童从形象思维向抽象逻辑思维发展的转变阶段,仍应重视运用实物、教具、
学具进行教学, 增加感性认识,促进学生对知识的理解和掌握。如长方体和正方体是学生
第一次接触的立体图形,如果空间观 念不强,在计算长方体的表面积与体积时就会混淆。
教师要重视实物、教具的演示作用,教学时可分为以下三 步:一是让学生搜集大小不同、
形状各异的长方体实物,引导学生观察,使学生对长方体的特征有一个初步的 感性认识。
二是用“切土豆”的方式使学生认识长方体的特征,如取一个较大的土豆,切一刀切出一个
平面, 切两刀出来两个面、一条棱,切三刀出来三个面、三条棱和一个顶点……切六刀就
成为六个面、十二条棱、八 个顶点的长方体(注意面与面要成直角)。三是出示长方体的框
架模型,让学生指出长方体的面、棱和顶点, 并画出长方体的直观图,引导学生对照长方
体框架模型指出相对应的面、棱和顶点。这样才能使学生牢固掌握 长方体的特征,形成长
方体的概念。
二、引导学生参与获取知识的思维过程,培养思维能力
1.计算教学要让学生参与探究法则和算理的形成
法则和算理是计算的根据,掌握法则和算理对于提高计算能力会起到重要作用。因此在
计算教学时要让学 生参与探究法则和算理的形成,从而帮助学生熟练地掌握、使用算理和
法则。
教学分数乘以分数的计算法则时,教师先出示例题:“一台拖拉机每小时耕地3/5公顷,
3/4小时耕地多少 公顷?提问:如果把已知条件换成整数或小数应怎样计算?接着让学生根
据整数和小数乘除法的算理给例题列 式,这样学生就能明白,分数乘除法的算理和计算法
则是从整数和小数的计算法则中演绎过来的。然后教师出 示下列三幅图,引导学生观察、
分析、思考,并演示计算过程,最后让学生讨论归纳出分数乘以分数的计算法 则,这样,
学生得到的不仅仅是法则。
引导学生得出:任何物体都占有一定的空间,“物体所占空间的大小叫做物体的体积”。这样
教学,学生得到的绝不仅仅是一个文字概念。
2.几何教学让学生参与公式的推导过程
长方体的体积公式:长方体的体积=长×宽×高,学生记住这个公式并不难,但是要理
解为什么计算长方 体的体积要这样计算是比较困难的,为此,我们必须让学生参与公式的
推导过程。教学时可这样进行:
(1)把一个土豆(或萝卜及其他容易切开的物体)切成一个长4厘米、宽3厘米、高2
厘米的长方体,引导学 生观察后指导学生把这个长方体切成1立方厘米的小正方体,再让
学生数一数这个长方体切成了多少个1立方厘 米的小正方体,并说明小正方体的总和就是
这个长方体的体积,每个小正方体都是这个长方体的体积单位。然 后组织学生讨论:是怎
么切的,长方体的体积应如何计算?
(2)让学生把24块1立方厘米的正方体,摆成体积是24立方厘米的长方体,进行操作
实验,然后整理出如下 的摆法: 每排块数 排数 层数 总块数(体积) 4 3 224 6 4 1 24 6 2
2 24 8 3 1 24 12 2 1 24
引导学生从上面实验得出:长方体的体积=长×宽×高。
为了全面提高教学质量,着眼于学生素质的提高,数学教学还应注重学生的操作和实践
活动,在操作和实践活动中培养学生解决简单实际问题的能力。
同学们,在你们的数学学习中是否和我一样,有一些不经意的发现?现在我就来介绍我的几个发现。 如果要你算一个多位数乘5,你是不是准备列竖式?我却可以口算,因为我发现一个小诀窍。想知道吗?让我来告诉你:算48532×5的积,先找到这个数485320,再把它除以2,你会口算吗?242660这就是48532×5的积了。知道为什么吗?我把原来的数先扩大10倍,再缩小2倍,是不是相当于扩大5倍呀?你掌握这个小窍门了吗? 同样的发现我还有:一个数乘1.5只要用它本身加上它的一半就可以了。(想想为什么?)一个数乘15呢?用刚才的方法再加一步——你已经想到了吧,再扩大10倍就好了! 我还发现一个多位数,末两位符合这个要求:十位上十奇数,个位上是5,用它乘5,积的末两位肯定是75。我想这是为什么呢?因为多位数的个位与5相乘得25,积的个位是5,向十位进2,而十位的奇数与5相乘的到的是几十五,这个5应该和个位进上来的5相加写在十位上,所以这个积的十位上肯定是7,个位上肯定是5。同样的道理,你不难推出,一个多位数十位上是偶数,个位上是5,它与5相乘,积的末两位肯定是25。 这个发现能用我前面所说的一个数乘5的巧妙算法来解释吗?想想看,它们是一致的,因为这个数扩大10倍后,末两位是50,再除以2,可能百位上有余数1,与50合起来150÷2=75是末两位上的数字,也可能百位上没有余1,那么50÷2的商就是末两位上的数字。 同学们,我的这个小发现是不是很微不足道?但我很自豪,这是我自己动脑筋观察和思考的结果。伟大的发现不是由这点点滴滴组成的吗?同学们,让我们一起做一个勤于思考、善于发现的人吧!