《多元统计分析及r语言建模王斌会》百度网盘pdf最新全集下载:链接:
1.1 多元统计分析的历史1.2 多元统计分析的用途1.3 多元统计分析的内容1.4 软件及其在统计分析中的应用1.4.1 强大的统计分析软件1.4.2 完整的数值计算软件1.4.3 免费的数据分析软件思考练习题 2.1 如何收集和整理多元分析资料2.2 数据的数学表达2.3 数据矩阵及R语言表示2.4 数据的R语言表示——数据框2.5 多元数据的R语言调用2.6 多元数据的简单R语言分析思考练习题 3.1 简述3.2 均值条图及R使用3.3 箱尾图及R使用3.4 星相图及R使用3.5 脸谱图及R使用3.6 调和曲线图及R使用3.7 其他多元分析图思考练习题 4.1 变量间的关系分析4.1.1 简单相关分析的R计算4.1.2 一元线性回归分析的R计算4.2 多元线性回归分析4.2.1 多元线性回归模型的建立4.2.2 多元线性回归模型的检验4.3 多元线性相关分析4.3.1 矩阵相关分析4.3.2 复相关分析4.4 回归变量的选择方法4.4.1 变量选择准则4.4.2 逐步回归分析思考练习题 5.1 数据的分类与模型选择5.1.1 变量的取值类型5.1.2 模型选择方式5.2 广义线性模型5.2.1 广义线性模型概述5.2.2 Logistic模型5.2.3 对数线性模型5.3 非线性回归模型5.3.1 一元非线性回归模型及其应用5.3.2 多元非线性回归模型概述5.3.3 多元非线性回归模型的计算思考练习题 6.1 判别分析的概念6.2 线性判别分析6.3 距离判别法6.3.1 两总体距离判别6.3.2 多总体距离判别6.4 Bayes判别法6.4.1 Bayes判别准则6.4.2 正态总体的Bayes判别思考练习题 7.1 聚类分析的概念和类型7.2 聚类统计量7.3 系统聚类法7.3.1 系统聚类法的基本思想7.3.2 系统聚类法的计算公式7.3.3 系统聚类法的基本步骤7.4 kmeans聚类法7.4.1 kmeans聚类的概念7.4.2 kmeans聚类的原理与计算7.5 聚类分析的一些问题思考练习题 8.1 主成分分析的直观解释8.2 主成分分析的性质8.3 主成分分析的步骤8.4 应用主成分分析的注意事项思考练习题 9.1 因子分析的思想9.2 因子分析模型9.3 因子载荷的估计及解释9.3.1 主因子估计法9.3.2 极大似然估计法9.3.3 因子载荷的统计意义9.4 因子旋转方法9.5 因子得分计算9.6 因子分析的步骤9.7 实际中如何进行因子分析思考练习题 10.1 对应分析的提出10.2 对应分析的基本原理10.3 对应分析的计算步骤10.4 对应分析应注意的几个问题思考练习题 11.1 引言11.2 典型相关分析的基本架构11.3 典型相关分析的基本原理11.4 典型相关系数的显著性检验11.5 典型相关系数及变量的计算思考练习题 12.1 MDS的基本理论和方法12.2 MDS的古典解12.3 非度量方法12.4 多维标度法的计算过程思考练习题 13.1 综合评价的基本概念13.2 综合评价中指标体系的构建13.2.1 选择并构建综合评价指标体系13.2.2 确定观测指标的量纲方法13.2.3 综合评价指标的合成方法13.2.4 确定评价指标的权数13.3 综合评价方法及其应用13.3.1 综合评分法13.3.2 层次分析法思考练习题 14.1 关于R语言14.1.1 什么是R语言14.1.2 为什么要用R语言14.1.3 R语言进行统计分析的优势和缺点14.2 关于Rstat软件14.2.1 Rstat简介14.2.2 Rstat使用简介 【案例1】基于R语言的统计计算框架【案例2】多元数据的基本统计分析【案例3】广东省各地区城市现代化水平的直观分析【案例4】财政收入的多因素分析案例分析题【案例5】年龄和性别对服务产品观点的差异分析案例分析题【案例6】企业财务状况的判别分析案例分析题【案例7】我国区域经济的综合评价案例分析题【案例8】广东省各地区电信业发展情况综合分析案例分析题【案例9】因子分析在上市公司经营业绩评价中的应用案例分析题【案例10】对应分析在市场细分和产品定位中的应用案例分析题【案例11】农村居民收入和支出的典型相关分析案例分析题【案例12】国内各地区工资水平分析案例分析题附录A R使用界面和命令附录B R语言包及其函数附录C 自编R语言包及函数参考文献……
后期会把每一章的学习笔记链接加上
多元统计分析 是研究多个随机变量之间相互依赖关系及其内在统计规律的一门学科
在统计学的基本内容汇总,只考虑一个或几个因素对一个观测指标(变量)的影响大小的问题,称为 一元统计分析 。
若考虑一个或几个因素对两个或两个以上观测指标(变量)的影响大小的问题,或者多个观测指标(变量)的相互依赖关系,既称为 多元统计分析 。
有两大类,包括:
将数据归类,找出他们之间的联系和内在规律。
构造分类模型一般采用 聚类分析 和 判别分析 技术
在众多因素中找出各个变量中最佳的子集合,根据子集合所包含的信心描述多元系统的结果及各个因子对系统的影响,舍弃次要因素,以简化系统结构,认识系统的内核(有点做单细胞降维的意思)
可采用 主成分分析 、 因子分析 、 对应分析 等方法。
多元统计分析的内容主要有: 多元数据图示法 、 多元线性相关 与 回归分析 、 判别分析 、 聚类分析 、 主成分分析 、 因子分析 、 对应分析 及 典型相关分析 等。
多元数据是指具有多个变量的数据。如果将每个变量看作一个随机向量的话,多个变量形成的数据集将是一个随机矩阵,所以多元数据的基本表现形式是一个矩阵。对这些数据矩阵进行数学表示是我们的首要任务。也就是说,多元数据的基本运算是矩阵运算,而R语言是一个优秀的矩阵运算语言,这也是我们应用它的一大优势。
直观分析即图示法,是进行数据分析的重要辅助手段。例如,通过两变量的散点图可以考察异常的观察值对样本相关系数的影响,利用矩阵散点图可以考察多元之间的关系,利用多元箱尾图可以比较几个变量的基本统计量的大小差别。
相关分析就是通过对大量数字资料的观察,消除偶然因素的影响,探求现象之间相关关系的密切程度和表现形式。在经济系统中,各个经济变量常常存在内在的关系。例如,经济增长与财政收人、人均收入与消费支出等。在这些关系中,有一些是严格的函数关系,这类关系可以用数学表达式表示出来。还有一些是非确定的关系,一个变量产生变动会影响其他变量,使其产生变化。这种变化具有随机的特性,但是仍然遵循一定的规律。函数关系很容易解决,而那些非确定的关系,即相关关系,才是我们所关心的问题。
回归分析研究的主要对象是客观事物变量间的统计关系。它是建立在对客观事物进行大量实验和观察的基础上,用来寻找隐藏在看起来不确定的现象中的统计规律的方法。回归分析不仅可以揭示自变量对因变量的影响大小,还可以用回归方程进行预测和控制。回归分析的主要研究范围包括:
(1) 线性回归模型: 一元线性回归模型 , 多元线性回归模型 。 (2) 回归模型的诊断: 回归模型基本假设的合理性,回归方程拟合效果的判定,选择回归函数的形式。 (3) 广义线性模型: 含定性变量的回归 , 自变量含定性变量 , 因变量含定性变量 。 (4) 非线性回归模型: 一元非线性回归 , 多元非线性回归 。
在实际研究中,经常遇到一个随机变量随一个或多个非随机变量的变化而变化的情况,而这种变化关系明显呈非线性。怎样用一个较好的模型来表示,然后进行估计与预测,并对其非线性进行检验就成为--个重要的问题。在经济预测中,常用多元回归模型反映预测量与各因素之间的依赖关系,其中,线性回归分析有着广泛的应用。但客观事物之间并不一定呈线性关系,在有些情况下,非线性回归模型更为合适,只是建立起来较为困难。在实际的生产过程中,生产管理目标的参量与加工数量存在相关关系。随着生产和加工数量的增加,生产管理目标的参量(如生产成本和生产工时等)大多不是简单的线性增加,此时,需采用非线性回归分析进行分析。
鉴于统计模型的多样性和各种模型的适应性,针对因变量和解释变量的取值性质,可将统计模型分为多种类型。通常将自变量为定性变量的线性模型称为 一般线性模型 ,如实验设计模型、方差分析模型; 将因变量为非正态分布的线性模型称为 广义线性模型 ,如 Logistic回归模型 、 对数线性模型 、 Cox比例风险模型 。
1972年,Nelder对经典线性回归模型作了进一步的推广,建立了统一的理论和计算框架,对回归模型在统计学中的应用产生了重要影响。这种新的线性回归模型称为广义线性模型( generalized linear models,GLM)。
广义线性模型是多元线性回归模型的推广,从另一个角度也可以看作是非线性模型的特例,它们具有--些共性,是其他非线性模型所不具备的。它与典型线性模型的区别是其随机误差的分布 不是正态分布 ,与非线性模型的最大区别则在于非线性模型没有明确的随机误差分布假定,而广义线性模型的 随机误差的分布是可以确定的 。广义线性模型 不仅包括离散变量,也包括连续变量 。正态分布也被包括在指数分布族里,该指数分布族包含描述发散状况的参数,属于双参数指数分布族。
判别分析是多元统计分析中用于 判别样本所属类型 的一种统计分析方法。所谓判别分析法,是在已知的分类之下,一旦有新的样品时,可以利用此法选定一个判别标准,以判定将该新样品放置于哪个类别中。判别分析的目的是对已知分类的数据建立由数值指标构成的 分类规则 ,然后把这样的规则应用到未知分类的样品中去分类。例如,我们获得了患胃炎的病人和健康人的一些化验指标,就可以从这些化验指标中发现两类人的区别。把这种区别表示为一个判别公式,然后对那些被怀疑患胃炎的人就可以根据其化验指标用判别公式来进行辅助诊断。
聚类分析是研究 物以类聚 的--种现代统计分析方法。过去人们主要靠经验和专业知识作定性分类处理,很少利用数学方法,致使许多分类带有主观性和任意性,不能很好地揭示客观事物内在的本质差别和联系,特别是对于多因素、多指标的分类问题,定性分类更难以实现准确分类。为了克服定性分类的不足,多元统计分析逐渐被引人到数值分类学中,形成了聚类分析这个分支。
聚类分析是一种分类技术,与多元分析的其他方法相比,该方法较为粗糙,理论上还不完善,但应用方面取得了很大成功。 聚类分析 与 回归分析 、 判别分析 一起被称为多元分析的三个主要方法。
在实际问题中,研究多变量问题是经常遇到的,然而在多数情况下,不同变量之间有一定相关性,这必然增加了分析问题的复杂性。主成分分析就是一种 通过降维技术把多个指标化为少数几个综合指标 的统计分析方法。如何将具有错综复杂关系的指标综合成几个较少的成分,使之既有利于对问题进行分析和解释,又便于抓住主要矛盾作出科学的评价,此时便可以用主成分分析方法。
因子分析是主成分分析的推广,它也是一种把多个变量化为少数几个综合变量的多元分析方法,但其目的是 用有限个不可观测的隐变量来解释原变量之间的相关关系 。主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多元分析中,变量间往往存在相关性,是什么原因使变量间有关联呢? 是否存在不能直接观测到的但影响可观测变量变化的公共因子呢?
因子分析就是寻找这些公共因子的统计分析方法,它是 在主成分的基础上构筑若干意义较为明确的公因子,以它们为框架分解原变量,以此考察原变量间的联系与区别 。例如,在研究糕点行业的物价变动中,糕点行业品种繁多、多到几百种甚至上千种,但无论哪种样式的糕点,用料不外乎面粉、食用油、糖等主要原料。那么,面粉、食用油、糖就是众多糕点的公共因子,各种糕点的物价变动与面粉、食用油、糖的物价变动密切相关,要了解或控制糕点行业的物价变动,只要抓住面粉、食用油和糖的价格即可。
对应分析又称为相应分析,由法国统计学家J.P.Beozecri于 1970年提出。对应分析是在因子分析基础之上发展起来的一种多元统计方法,是Q型和R型因子分析的联合应用。在经济管理数据的统计分析中,经常要处理三种关系,即 样品之间的关系(Q型关系)、变量间的关系(R型关系)以及样品与变量之间的关系(对应型关系) 。例如,对某一行业所属的企业进行经济效益评价时,不仅要研究经济效益指标间的关系,还要将企业按经济效益的好坏进行分类,研究哪些企业与哪些经济效益指标的关系更密切一些,为决策部门正确指导企业的生产经营活动提供更多的信息。这就需要有一种统计方法, 将企业(样品〉和指标(变量)放在一起进行分析、分类、作图,便于作经济意义.上的解释 。解决这类问题的统计方法就是对应分析。
在相关分析中,当考察的一组变量仅有两个时,可用 简单相关系数 来衡量它们;当考察的一组变量有多个时,可用 复相关系数 来衡量它们。大量的实际问题需要我们把指标之间的联系扩展到两组变量,即 两组随机变量之间的相互依赖关系 。典型相关分析就是用来解决此类问题的一种分析方法。它实际上是 利用主成分的思想来讨论两组随机变量的相关性问题,把两组变量间的相关性研究化为少数几对变量之间的相关性研究,而且这少数几对变量之间又是不相关的,以此来达到化简复杂相关关系的目的 。
典型相关分析在经济管理实证研究中有着广泛的应用,因为许多经济现象之间都是多个变量对多个变量的关系。例如,在研究通货膨胀的成因时,可把几个物价指数作为一组变量,把若干个影响物价变动的因素作为另一组变量,通过典型相关分析找出几对主要综合变量,结合典型相关系数对物价上涨及通货膨胀的成因,给出较深刻的分析结果。
多维标度分析( multidimensional scaling,MDS)是 以空间分布的形式表现对象之间相似性或亲疏关系 的一种多元数据分析方法。1958年,Torgerson 在其博士论文中首次正式提出这一方法。MDS分析多见于市场营销,近年来在经济管理领域的应用日趋增多,但国内在这方面的应用报道极少。多维标度法通过一系列技巧,使研究者识别构成受测者对样品的评价基础的关键维数。例如,多维标度法常用于市场研究中,以识别构成顾客对产品、服务或者公司的评价基础的关键维数。其他的应用如比较自然属性(比如食品口味或者不同的气味),对政治候选人或事件的了解,甚至评估不同群体的文化差异。多维标度法 通过受测者所提供的对样品的相似性或者偏好的判断推导出内在的维数 。一旦有数据,多维标度法就可以用来分析:①评价样品时受测者用什么维数;②在特定情况下受测者可能使用多少维数;③每个维数的相对重要性如何;④如何获得对样品关联的感性认识。
20世纪七八十年代,是现代科学评价蓬勃兴起的年代,在此期间产生了很多种评价方法,如ELECTRE法、多维偏好分析的线性规划法(LINMAP)、层次分析法(AHP)、数据包络分析法(EDA)及逼近于理想解的排序法(TOPSIS)等,这些方法到现在已经发展得相对完善了,而且它们的应用也比较广泛。
而我国现代科学评价的发展则是在20世纪八九十年代,对评价方法及其应用的研究也取得了很大的成效,把综合评价方法应用到了国民经济各个部门,如可持续发展综合评价、小康评价体系、现代化指标体系及国际竞争力评价体系等。
多指标综合评价方法具有以下特点: 包含若干个指标,分别说明被评价对象的不同方面 ;评价方法最终要 对被评价对象作出一个整体性的评判,用一个总指标来说明被评价对象的一般水平 。
目前常用的综合评价方法较多, 如综合评分法、综合指数法、秩和比法、层次分析法、TOPSIS法、模糊综合评判法、数据包络分析法 等。
R -- 永远滴神~
1. 因子分析模型
因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。
因子分析的基本思想:
把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子
因子分析模型描述如下:
(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。
(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。
(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:
x1 = a11F1+ a12F2 +…+a1mFm + e1
x2 = a21F1+a22F2 +…+a2mFm + e2
………
xp = ap1F1+ ap2F2 +…+apmFm + ep
称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。
其矩阵形式为: x =AF + e .
其中:
x=,A=,F=,e=
这里,
(1)m £ p;
(2)Cov(F,e)=0,即F和e是不相关的;
(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;
D(e)=,即e1,e2,…,ep不相关,且方差不同。
我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。
A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。
2. 模型的统计意义
模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。
因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。
将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。
3. 因子旋转
建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。
旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。
4.因子得分
因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。
设公共因子F由变量x表示的线性组合为:
Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m
该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。
但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。
(1)回归估计法
F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。
(2)Bartlett估计法
Bartlett估计因子得分可由最小二乘法或极大似然法导出。
F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X
(3)Thomson估计法
在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:
F = XR-1A¢ = X (X ¢X+W)-1A¢
这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:
F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢
5. 因子分析的步骤
因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
(1)确认待分析的原变量是否适合作因子分析。
(2)构造因子变量。
(3)利用旋转方法使因子变量更具有可解释性。
(4)计算因子变量得分。
(ii)因子分析的计算过程:
(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。
(2)求标准化数据的相关矩阵;
(3)求相关矩阵的特征值和特征向量;
(4)计算方差贡献率与累积方差贡献率;
(5)确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
(6)因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
(7)用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
(8)综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
(9)得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
Rotated Component Matrix,就是经转轴后的因子负荷矩阵,
当你设置了因子转轴后,便会产生这结果。
转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。
SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框,
其中有5种因子旋转方法可选择:
1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。
2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。
3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。
4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化。
5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性。
上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 度。后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90度。
直交转轴法的优点是因子之间提供的讯息不会重叠,受访者在某一个因子的分數与在其他因子的分數,彼此独立互不相关;缺点是研究迫使因素之间不相关,但这种情况在实际的情境中往往并不常存在。至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。
在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。
2,主成分分析(principal component analysis)
将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
(1)主成分分析的原理及基本思想。
原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
(2)步骤
Fp=a1mZX1+a2mZX2+……+apmZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。
A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。
进行主成分分析主要步骤如下:
1. 指标数据标准化(SPSS软件自动执行);
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名;
选用以上两种方法时的注意事项如下:
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。
(1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。
选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:
Ⅰ.选主成分方法提取因子进行因子分析。
Ⅱ.计算主成分表达式系数。
Ⅲ.标准化数据。
Ⅳ.计算主成分得分。
我们的程序也将依该思路展开开发。
(2)对为何要将Component Matrix表数据除以特征根开方的解释
我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。
成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。
3,聚类分析(Cluster Analysis)
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。
在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。
4.判别分析(Discriminatory Analysis)
判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
5.对应分析(Correspondence Analysis)
对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。
运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。
这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。