您当前的位置:首页 > 发表论文>论文发表

小学数学五年级教师论文

2023-12-12 04:22 来源:学术参考网 作者:未知

小学数学五年级教师论文

1、生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

小学五年级数学论文

小学数学教学论文:“分数的意义”课后反思
1、《课标》中指出:通过数学学习,学生能够积极参与数学学习活动,对数学有好奇心与求知欲。在数学学习活动中获得成功的体验,建立自信心。在“分数的意义”一课中有如下体现:(1)师:我们通过平均分一个物体,得到的一份或几份可以用分数来表示。今天我们继续研究分数,我们是仍然来分一个物体呢,还是试着来分一堆物体? 生:分一堆吧。教师创设条件,由学生选择教学的起点,充分体现了以人为本的教育理念。奥苏伯尔说过:“影响学生的最重要原因是学生已经知道了什么,学生还想知道什么。”在教师的组织下,学生主动参与教学过程,自觉地成为学习的主体。(2)师:出示一个装有苹果的果盘,果盘上用布遮盖,使学生能看到苹果,但无法看到苹果的个数。 师:老师这里有一堆苹果,如果把这堆苹果看作一个整体,平均分成2份,你们能根据已有的知识,说一说1份与这个整体之间的关系吗?把苹果盖起来,无法看到苹果的个数,这对小学生来说是有趣的,令人好奇的,虽然不好猜苹果的个数,但部分与整体的关系还是比较清楚的,这一环节的设计不仅抓住了学生的求知欲,更重要的是巧妙地铺垫了平均分的一堆物品具体有多少个并不重要,重点要研究平均分份后,部分与整体的关系。2、《课标》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在动手实践,自主探索与合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想和方法。“分数的意义”是一节概念课,在概念课的教学中更要注重数学活动的过程。本节课先后2次安排学生通过操作逐步经历从现实生活中抽象出分数的过程。(1)在复习阶段设计了“用你手中的学具能得到哪些分数?”目的在于帮助学生复习回忆对分数的已有认识。(2)在学习新知阶段设计了“请大家用纸袋内的学习材料动手分一分,然后用分数来表示你想要的部分。请同学们分组讨论后,用填表的形式记录讨论结果。”学生通过操作领悟到平均分的是什么物品不重要,平均分的是1个物品还是多个物品组成的群体也不重要,重要的是平均分了几份,我们要表示的是几份,学生在几十分钟的学习探索中,能对分数有如此深刻的认识,应归功于大量的数学活动。3、《课标》中指出:数学课程应突出体现发展性,数学学习内容应当是富有挑战性的,学生的学习活动应当是一个生动活泼、主动和有个性的过程。让概念教学具有一定的开放度,有利于提高学生的创造能力,实现不同的人在数学上得到不同发展。(1)本课在设计2次动手操作时具有一定的开发度。表现在学习材料是开放的,即每组学具的物品不同,多少也不同。使每组学生的操作结果各不相同。(2)在理解单位“1”时,具有一定的开发度。表现在分组探讨前面的谈话:“如果这不是一堆苹果,是一堆棋子、一堆卡片、一堆硬币……,你们能通过不同的分法,得到不同的分数吗?”以及抽象概括,构建新知时设问:“既然与分的是什么、是多少没关系,那么我们给象这样的一个物体、一个图形、一个计量单位、以及多个物体组成的一个整体,起个统一的名字叫做单位“1”。单位“1”除了可以是这些,还可以是哪些?”

如何上好小学五年级数学实践活动论文

一、从生活中的故事入手,创设情境调动学生学习兴趣  数学知识与现实生活是有密切联系的,新教材中也给出了许多例子,如:认识人民币,认识长度单位等,都是我们经常在生活中要用到的。教师要尽量用学生熟悉的生活情境或生活经验入手引出学习内容,这样学生乐于接受。也可以让学生例举数学知识在生活中的应用。小学生有着好奇心、疑问心、爱美心强和活泼好动的特点。数学教师要从这些方面多去思考,充分地发挥小学生非智力因素在学习中的作用,在课堂中创设出学与“玩”融为一体的教学方法,学生在“玩”中学,在学中“玩”。尤其是农村的孩子,更喜欢做游戏。例如:在上认识人民币这一环节时,通过教学,让学生认识了人民币后,我就把学生分成几个小组,模拟“超市购物”,学生对这一活动很感兴趣,在活动中复习巩固了所学知识。  二、亲自动手实践操作,让学生的感性认识上升到理性认识教师在数学教学中应注意培养学生动手实践、自主探索的精神。农村小学生年龄小,抽象思维能力弱,我们教师应引导学生充分利用和创造各种图形或物体,调动各种感观参与实践,同时教给学生操作方法,让学生通过观察、测量、拼摆、画图、实验等操作实践,激发思维去思考,从中自我发现数学知识,掌握数学知识。让学生动手实践,能激发学生的学习兴趣。例如:在教学米、厘米、分米这一环节时,我让学生量一量书的长度,量一量字典的厚度,再量一量自己的身高,作好记录,然后自己建立自己成长的小档案,这样学生由感性认识上升到了理性认识。加强操作活动,让学生多种感官参与学习,不仅能激发他们的学习兴趣,顺应他们好奇、好动的特点,而且能丰富他们的感性认识。三、做学生的知心朋友,构建轻松和谐的师生关系  农村的孩子读书年龄稍小,性格又比较内向,在课堂上,他们不太善于发言,因此,老师就要创设良好的课堂氛围,使师生的双边活动轻松和谐,教师要善于鼓励学生大胆发言,展示自我。对表达能力较差的学生,老师要以信任鼓励的目光和话语激活学生的思维。这样,学生自然敢于讲真话、讲实话,个性得到充分地张扬。让学生在自主活动中,自主学习、主动实践。教师还要注意学生的学法指导,培养学生的综合能力,养成良好的学习习惯,使学生对于数学的学习抱有一种想学、乐学、会学的态度。四、帮助农村孩子建立学习数学的自信心  农村的孩子和城市的孩子有着很大的差别,他们很多东西没见过,没玩过,性格也不像城市的孩子活泼。作为农村的数学教师,要善于发现学生的有点,创设愉悦的教学环境,帮助孩子建立学习数学的自信心。对于学习能力少弱的学生,适当降低学习要求,多给他们表现的机会,多用激励的语言在他们的身上。这样,孩子就会对数学越来越感兴趣。从而主动学习数学。  五、适时的口头表扬和物质奖励是上好农村数学课堂的“添加剂”  都说“好孩子是夸出来的”。教师要给每一位学生成功的机会,尤其要“偏爱”学习困难的学生。教师要善于设法消除学生的紧张畏惧心理,对学生在课堂上的表现,采用激励性的评价、补以适当的表扬。激励性的评价、口头表扬能让学生如沐春风、敢想敢问、敢讲敢做。如:你说得真棒!你的这种做法真好!我为你的这个想法感到骄傲!你可以当小老师了!这些激励性的评价让学生充满信心。只有这样,课堂教学才能充满生命的活力,学生的个性才能得到充分的展现,学生的创造、创新火花才能迸发。如在练习时,学生在规定的时间内完成老师布置的作业,老师奖励“小红旗”给学困生,有时候学生表现较为优秀,可以适当奖励一些学习用品。学生得到老师的奖励,参与学习的积极性就高了,就会更进一步地去发现问题,发挥前所未有的想象力,从而摆脱苦学的烦恼,进入乐学的境界,极大地发展创新能力。  总之,我们在农村小学数学教学中,应联系生活实际,通过多种形式,创设有意义的、富有挑战性的、激励性的活动,最大限度地激发学生学习的内在动力。让学生把所学知识用于生活,从而激发他们学习探究的欲望。让农村的小学数学课堂真正“活”起来。

适合五年级写的数学小论文一篇(400字 加标题)

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。所以正确答案应该是:452.5=112.5(千米),112.5+18=130.5(千米),130.52=261(千米)和452.5=112.5(千米),112.5-18=94.5(千米),94.52=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 大家一定从小就开始奇怪了,0到底是怎么来的呢?关于0的起源,有以下几种观点。①、古巴比伦的0的符号是用空位来表示的,例如要表示一百零一,古巴比伦写作1。1②、在古印度数学中,发现0的最早记载是公元876年,欧洲许多数学家都同意这一观点。公元6世纪,印度人就开始用“?”,后来变成了一个圆圈。到了公元九世纪就固定成了今天的“0”。③、0的故乡在中国。我国最早的诗歌总集《诗经》中就有0的记载,只不过当时0的意思是“暴风雨末了的小雨滴”。在我国远古时代的结绳记数法中,0是在对“有”的否定中出现的,意思是“没有”。总之,有关0的起源还没有一个定论。 但是无论如何,0自从一出现就具有非常旺盛的生命力,现在,它广泛应用于社会的各个领域。 在课堂上,常听老师说,0就是没有的意思,你有0元钱,就代表没有钱;你有0支笔,就代表你没有笔。在这样的情况下,温度表上的0度就代表着没有温度吗?答案肯定是否定的。纯净的冰水混合物的温度就是0度。 想一想我们四年级学的素数与合数吧!老师是这样解释的“自然数可以分成3类:1、素数与合数,一个自然数只有一和它本身两个因数的数是素数,因数大于3个就是合数,1单独为一种。”那0也是自然数,它是最小的自然数,0到底是质数还是合数呢?这个谁也说不清楚。 我还有一个关于0的问题,自然数也可以分成奇数与偶数,能被2整除的数就是合数,反之就是奇数。0是奇数还是偶数呢?看上去像偶数,但又说不准,到底是什么数谁也不清楚。 0还有许多奇妙有趣的事就在我们身边呢,大家一起来发现吧! 麻烦采纳,谢谢!

有趣的职业 小赵、小丁、小张分别是教师、医生和律师,只知道:1小赵比教师年纪大;2小张和教师不同岁;3小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据1小赵比教师年纪大和3小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据2小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单,我运用了排除法,比如:根据条件1和3就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在我们学习数学的过程中,我们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。

千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

模糊不过vncjhvb

数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变数(一个变数在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变数在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变数,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,巨集观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 望采纳。

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不著头脑,我心里琢磨著,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按著这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

第一页 居中 先写题目 第二行写班级、姓名 换页 找关于论文的主题的例子 写完一个例子写两行左右的说明,例如这题的做法是怎么样的 写三到五个例题即可 一般用WROD两页即可,建议多写,但不要写的题目太难,不符合你的年龄段

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页