您当前的位置:首页 > 发表论文>论文发表

人工智能与模式识别论文

2023-12-11 18:34 来源:学术参考网 作者:未知

人工智能与模式识别论文

“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!

对《人工智能》专业选修课教学的几点体会

摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。

关键词:人工智能 优选教材 考核方式内容 手段 实践

人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。

一、优选教材

目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。

二、考核方式

在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。

三、教学内容调整

对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。

四、教学手段的改进

(一) 激发学生的学习兴趣

经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。

(二) 借助多媒体教学

多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。   (三)提倡课堂 辩论

我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。

五、实践教学

实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。

人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。

参考文献

[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.

[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.

[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.

[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.

[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.

本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。

下一页分享更优秀的<<<人工智能结课论文

关于智能计算机的论文

智能计算机迄今未有公认的定义。在工具书中的解释为能存储大量信息和知识,会推理(包括演绎与归纳),具有学习功能,是现代计算技术、通信技术、人工智能和仿生学的有机结合,供知识处理用的一种工具。下面是我为大家整理的关于智能计算机的论文,希望大家喜欢!

关于智能计算机的论文篇一

《计算机在人工智能中的应用研究》

摘要:近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。本文针对计算机在人工智能中的应用进行研究,阐述了人工智能的理论概念,分析当前其应用于人工智能所存在的问题,并介绍人工智能在部分领域中的应用。

关键词:计算机;人工智能;应用研究

一、前言

人工智能又称机器智能,来自于1956年的Dartmouth学会,在这学会上人们最初提出了“人工智能”这一词。人工智能作为一门综合性的学科,其是在计算机科学、信息论、心理学、神经生理学以及语言学等多种学科的互相渗透下发展而成。在计算机的应用系统方面,人工智能是专门研究如何制造智能系统或智能机器来模仿人类进行智能活动的能力,从而延伸人们的科学化智能。人工智能是一门富有挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学与哲学。人工智能是处于思维科学的技术应用层次,是其应用分支之一。数学常被认为是多种学科的基础科学,数学也进入语言及思维领域,人工智能学科须借用数学工具。数学在标准逻辑及模糊数学等范围发挥作用,其进入人工智能学科,两者将互相促进且快速发展。

二、人工智能应用于计算机中存在的问题

(一)计算机语言理解的弱点。当前,计算机尚未能确切的理解语言的复杂性。然而,正处于初步研制阶段的计算机语言翻译器,对于算法上的规范句子,已能显示出极高的造句能力及理解能力。但其在理解句子意思上,尚未获得明显成就。我们所获取的信息多来自于上下文的关系以及自身掌握的知识。人们在日常生活中的个人见解、社会见解以及文化见解给句子附加的意义带来很大影响。

(二)模式识别的疑惑。采用计算机进行研究及开展模式识别,在一定程度上虽取得良好效果,有些已作为产品进行实际应用,但其理论以及方法和人的感官识别机制决然不同。人的形象思维能力以及识别手段,即使是计算机中最先进的识别系统也无法达到。此外,在现实社会中,生活作为一项结构宽松的任务,普通的家畜均能轻易对付,但机器却无法做到,这并不意味着其永久不会,而是暂时的。

三、人工智能在部分领域中的应用

伴随着AI技术的快速发展,当今时代的各种信息技术发展均与人工智能技术密切相关,这意味着人工智能已广泛应用于计算机的各个领域,以下是笔者对于人工智能应用于计算机的部分领域进行阐述。具体情况如下。

(一)人工智能进行符号计算。科学计算作为计算机的一种重要用途,可分为两大类别。第一是纯数值的计算,如求函数值。其次是符号的计算,亦称代数运算,是一种智能的快速的计算,处理的内容均为符号。符号可代表实数、整数、复数以及有理数,或者代表集合、函数以及多项式等。随着人工智能的不断发展以及计算机的逐渐普及,多种功能的计算机代数系统软件相继出现,如Maple或Mathematic。由于这些软件均用C语言写成,因此,其可在多数的计算机上使用。

(二)人工智能用于模式识别。模式识别即计算机通过数学的技术方法对模式的判读及自动处理进行研究。计算机模式识别的实现,是研发智能机器的突破点,其使人类深度的认识自身智能。其识别特点为准确、快速以及高效。计算机的模式识别过程相似于人类的学习过程,如语音识别。语音识别即为使计算机听懂人说

的话而进行自动翻译,如七国 语言的口语自动翻译系统。该系统的实现使人们出国时在购买机票、预定旅馆及兑换外币等方面,只需通过国际互联网及电话 网络,即可用电话或手机与“老外”进行对话。

(三)人工智能 计算机网络安全中的 应用。当前,在计算机的网络安全 管理中常见的技术主要有入侵检测技术以及防火墙技术。防火墙作为计算机网络安全的设备之一,其在计算机的网络安全管理方面发挥重要作用。以往的防火墙尚未有检 测加密Web流量的功能,原因在于其未能见到加密的SSL流中的数据,无法快速的获取SSL流中的数据且未能对其进行解密。因而,以往的防火墙无法有效的阻止应用程序的攻击。此外,一般的应用程序进行加密后,可轻易的躲避以往防火墙的检测。因此,由于以往的防火墙无法对应用数据流进行完整的监控,使其难以预防新型攻击。新型的防火墙是通过利用 统计、概率以及决策的智能方法以识别数据,达到访问受到权限的目地。然而此方法大多数是从人工智能的学科中采取,因此,被命名为“智能防火墙”。

(四)人工智能应用于计算机网络系统的故障诊断。人工神经网络作为一种信息处理系统,是通过人类的认知过程以及模拟人脑的 组织结构而成。1943年时,人工神经网络首次被人提出并得到快速 发展,其成为了人工智能技术的另一个分支。人工神经网络通过自身的优点,如联想记忆、自适应以及并列分布处理等,在智能故障诊断中受到广泛关注,并且发挥极大的潜力,为智能故障诊断的探索开辟新的道路。人工神经网络的诊断方法异于专家系统的诊断方法,其通过现场众多的标准样本进行学习及训练,加强调整人工神经网络中的阀值与连接权,使从中获取的知识隐藏分布于整个网络,以达到人工神经网络的模式记忆目的。因此,人工神经网络具备较强的知识捕捉能力,能有效处理异常数据,弥补专家系统方法的缺陷。

四、结束语

总而言之,人工智能作为计算机技术的潮流,其研究的理论及发现决定了计算机技术的发展前景。现今,多数人工智能的研究成果已渗入到人们的日常生活。因此,我们应加强人工智能技术的研究及开发,只有对其应用于各领域中存在的问题进行全面分析,并对此采取相应措施,使其顺利发展。人工智能技术的发展将给人们的生活、学习以及 工作带来极大的影响。

参考文献:

[1]杨英.智能型计算机辅助教学系统的实现与研究[J].电脑知识与技术,2009,9

[2]毛毅.人工智能研究 热点及其发展方向[J].技术与市场,2008,3

[3]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,1

[4]陈步英,冯红.人工智能的应用研究[J].邢台 职业技术学院学报,2008,1

关于智能计算机的论文篇二

《基于智能计算的计算机网络可靠性分析》

摘 要:当今社会是一个信息化社会,网络化应用已经遍及生产、生活、科研等各个领域,计算机网络化已经成为一种趋势,计算机网络的可靠性研究也越来越得到计算机业界的广泛重视。本文主要论述了智能粒度计算分割理论方法,采用动态数组分层实现计算机网络系统最小路集运算,阐述了计算机网络系统可靠性分析的手段。

关键词:智能算法;计算机网络;可靠性分析

1 影响计算机网络可靠性的因素

1.1 用户设备。用户设备是提供给用户使用的终端设备,其功能是否可靠深刻影响着用户的使用感受,而且还会对计算机网络的可靠性产生重要影响。确保用户终端在使用过程中的可靠性是计算机网络运行过程中日常维护的重要组成部分,用户终端的交互能力越高,其网络就越可靠。

1.2 传输交换设备。传输设备包括了传输线路和传输设备,在实践中,如果是由于传输线路原因造成的计算机网络故障,一般是比较难以发觉的,有时候为了找出这一故障原因所在,所需要耗费的工作量是比较大的。所以,在安装传输设备的时候要采用标准化的通信线路和布线系统,而且要充分考虑到冗余和容错能力,以最大程度保障网络的可靠性。在条件允许的情况下,最好采用双成线布线方式,以便在出现故障的时候可以切换网络线路。

1.3 网络管理。在一些比较大型的网络设备结构中,所使用的网络产品和设备都是不同的生产厂商生产的,规模比较大,结构也相对比较复杂。提高计算机网络的可靠性,可以保证信息传输具备完整性、降低信息丢失的发生率、减少故障及误码的发生率。提高计算机网络的可靠性需要采用先进的网络管理技术对运行中的网络参数进行实时采集,并排除存在的故障。

1.4 网络拓扑结构。网络拓扑结构是指采用传输介质将各种设备相互连接布局起来,主要体现在网络设备间在物理上的相互连接。计算机网络拓扑结构关系到整个网络的规划结构,是关系到计算机网络可靠性的重要决定因素之一。网络拓扑结构的性能主要受到网络技术、网络规模、用户分布和传输介质等因素的影响。随着人们对网络性能要求的提高,现在计算机网络拓扑结构需要满足更多的要求,比如容错直径、宽直径、限制连通度、限制容错直径等等。这些参数更加能够精确的衡量计算机网络的可靠性和容错性,以实现计算机网络规划的科学性和可靠性。

2 基于智能计算的网络可靠性分析

2.1 基于智能计算的网络可靠性概念。计算机网络系统的组成部分包括了节点和连接节点的弧,节点又可以分为输入节点(只有输出弧但没有节点属于输入弧的)、输出节点(只有输入弧而没有输出弧的节点)和中间节点(非输入、输出节点);网络又可以分为有向网络(全部都是由有向弧组成的网络)、无向网络(全部由无向弧组成的网络)以及混合网络(包含了有向弧和无向弧)。在一些结构比较复杂的网络系统中,为了能够准确分析系统的可靠性,一般会用网络图来表示。在分析网络可靠性的时候,我们通常会做这样的简化:系统或弧只存在正常和故障两种状态;无向弧不同方向都有相同的可靠度;任何一条弧发生故障都不会影响到其他弧的正常使用。

2.2 网络系统最小路集的节点遍历法。求网络系统最小路集的方法一般有以下三种方法:其一,邻接矩阵又叫联络矩阵法,其原理就是对一个矩阵进行乘法和多次乘法运算,这种方法比较适合节点不多的网络进行手算操作,但在节点数非常多的时候就不太适合了,因为那样运算量会很大,对计算机的容量要求也很高,运算时间也很长,不太适合这种方法;其二,布尔行列式法,该种方法类似于求矩阵行列式,这种方法比较容易理解,操作简便,可以用手工处理,但是在节点比较多的网络中的应用就比较繁琐;其三,节点遍历法以其条理清晰、能够求解多节点数的复杂网络而被广泛使用,但是该方法判断条件较多,在考虑欠周全的时候容易出现差错。求网络系统最小路集的基本方法是:从输入节点I开始逐个点遍历,一直到输出点L,直到找到所有的最小路集为止,在这个过程中需要作出以下几个判断:判断当前节点是否有跟之前的节点重复;判断是否有找到最小路集;判断是否已经完成所有最小路集的寻找。

2.3 基于智能粒度计算分割的计算机网络系统最小路集运算。粒是论域上的一簇点,而这些点往往难以被区别、接近,或者是跟某种功能结合在一起,而粒计算是盖住许多具体领域的问题求解方法的一把大伞,具体表现为区间分析、分治法、粗糙集理论。基于智能粒度计算改进节点遍历法的计算机网络系统最小路集运算方法一般作如下操作:首先是将传统网络系统最小路集节点遍历计算方法中的二维数组用一维表示出来,容易表示为n-1,这是因为n节点的网络系统最小路集的最大路长小于或等于n-1,即是启用一维动态数组,从输入节点到输出节点,逐个节点遍历,并将结果存放在一维数组中,当找到最小路集之后,就可以将结果写入到硬盘的文件中,再继续寻找下一个最小路集,找到后写入硬盘文件,依次类推下去直到找到所有的最小路集,释放一维动态数组;其次,将融入到运算中的数组以动态的方式参与到运算中去,完成运算功能后就立即释放掉,这样就可以节省内存空间,提高整体的运算速度;再者,根据节点表示的最小路集文件,将其转变成用弧表示的最小路集,并储存起来以便于后续的相关计算;最后,利用智能粒度计算分割对象理论方法,采用动态数组分层实现,从而实现对计算机网络系统的可靠性分析。

3 计算机网络可靠性的实现

3.1 计算机网络层次、体系结构设计。可靠的计算机网络除了要配套先进的网络设备,且其网络层次结构和体系结构也要具备先进性,科学合理的网络层次和体系结构设计可以将网络设备的性能充分的发挥出来。网络层次设计就是要将分布式的网络服务随着网络吞吐量的增多而搭建起规模化的高速网络分层设计模型。网络的模块化层次设计可以随着日后网络节点的增加,网络容量不断的增大,以加大确定性,方便日常的操作性。

3.2 计算机网络的容错能力实现。容错性设计的指导原则是“并行主干、双网络中心”,其具体设计为:其一,将用户终端设备和服务器同时连接到计算机网络中心,一般需要通过并行计算机网络和冗余计算机网络中心的方法来实行;其二,将广域网范围内的数据链路和路由器相互连接起来,以确保任何一数据链路的故障不会对局部网络用户产生影响;其三,尽量使用热插热拔功能的网络设备,这样不但可以使得组网方式灵活,还可以在不切断电源的情况下及时更换故障模块,从而提高计算机网络长时间工作的能力;最后,采用多处理器和特别设计的具有容错能力的系统来操作网络管理软件实现容错的目的。

3.3 采用冗余措施。提高计算机网络系统的容错性是提高计算机网络可靠性的最有效方法,计算机网络的容错性设计就是寻找常见的故障,这可以通过冗余措施来加强,以最大限度缩短故障的持续时间,避免计算机网络出现数据丢失、出错、甚至瘫痪现象,比如冗余用户到计算机网络中心的数据链路。

4 结束语

研究计算机网络系统的可靠性对解决问题有着重要的意义,所以研究其可靠性是很有必要的,但从理论方法上看还需要进一步深入探讨。随着计算机网络系统的应用遍及各个角落,其可靠性分析已经越来越备受业界的关注。网络可靠性分析的手段要本着理论服务于实践的宗旨,将可靠性分析理论应用到实际生产中,使计算机网络的建设更加的科学、合理。

参考文献:

[1]刘君.计算机网络可靠性优化设计问题的研究[J].中国科技信息,2011(18):29.

[2]邓志平.浅谈计算机网络可靠性优化设计[J].科技广场,2010(10):52.

[3]高飞.基于网络状态之间关系的网络可靠性分析[J].通信网络,2012(25):19.

人工智能神经网络论文

随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!

人工神经网络的发展及应用

摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。

关键词人工神经网络;发展;应用

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

1人工神经网络概述

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

2人工神经网络的发展历程

2.1 萌芽时期

在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

2.2 低谷时期

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

2.3 复兴时期

美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

2.4 稳步发展时期

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

3人工神经网络的应用

3.1 在信息领域中的应用

人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。

3.2 在医学领域的应用

人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。

3.3 在经济领域中的应用

经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。

3.4 在其他领域的应用

人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。

4总结

随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。

参考文献

[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.

[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.

[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.

[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.

[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.

下一页分享更优秀的<<<人工智能神经网络论文

模式识别与人工智能的简介

《模式识别与人工智能》是由中国自动化学会、国家智能计算机研究开发中心和中国科学院合肥智能机械研究所共同主办、科学出版社出版的学术性期刊。本刊主要发表和报道模式识别、人工智能、智能系统等方面的研究成果与进展,旨在推动信息科学技术发展。本刊1989年创刊,双月刊,主编为戴汝为院士。本刊创刊以来,得到较大发展,已成为模式识别、人工智能学术界有较大影响的刊物。1、自1992年以来,一直被《中文核心期刊要目总览》收为自动化技术、计算机技术领域核心刊物。2、1994年起,为《中国学术期刊文摘》引用期刊。3、1995年,被美国工程信息公司(Ei)收为Ei Page One数据库收录期刊。4、1996年被《中国科学引文数据库》列为来源期刊及统计源。5、1998年,被教育部定为“学位与研究生教育中文重要期刊”之一。6、1999年~2000年,获国家自然科学基金委择优支持基础性和高科技学术期刊专项资助经费资助。7、2008年,被 EI Compendex 数据库收录。8、2010年,获中国科协2010年度精品科技期刊项目资助。9、为适应和推动我国人工智能、模式识别学科发展,本刊1999年由每期80页扩版至128页,2000年起由16开本改为大16开本,2004年由季刊改为双月刊。近两年来,本刊每期作了较大扩版。人工智能是我国优先发展的学科之一,模式识别与智能系统是我国鼓励发展的专业。近些年来,我国人工智能、模式识别学科发展较快,在研究与应用方面不断取得进展。本刊将会成为与学科同步发展的精品性期刊。本刊共设四个栏目:论文与报告;综述与评论;研究与应用;信息与动态。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页